本篇文章给同学们谈谈周测卷必修一数学,以及高一数学周考卷答案对应的知识点,希望对各位同学有所帮助,不要忘记分享给你的朋友哦!
本文目录一览:
高一必修一数学函数的应用测试题及答案参考
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.设U=R,A={x|x0},B={x|x1},则A∩?UB=()
A{x|0≤x1} B.{x|0
C.{x|x0 d="" x=""1}
【解析】 ?UB={x|x≤1},∴A∩?UB={x|0
【答案】 B
2.若函数y=f(x)是函数y=ax(a0,且a≠1)的反函数,且f(2)=1,则f(x)=()
A.log2x B.12x
C.log12x D.2x-2
【解析】 f(x)=logax,∵f(2)=1,
∴loga2=1,∴a=2.
∴f(x)=log2x,故选A.
【答案】 A
3.下列函数中,与函数y=1x有相同定义域的是()
A.f(x)=ln x B.f(x)=1x
C.f(x)=|x| D.f(x)=ex
【解析】 ∵y=1x的定义域为(0,+∞).故选A.
【答案】 A
4.已知函数f(x)满足:当x≥4时,f(x)=12x;当x4时,f(x)=f(x+1).则f(3)=()
A.18 B.8
C.116 D.16
【解析】 f(3)=f(4)=(12)4=116.
【答案】 C
5.函数y=-x2+8x-16在区间[3,5]上()
A.没有零点 B.有一个零点
C.有两个零点 D.有无数个零点
【解析】 ∵y=-x2+8x-16=-(x-4)2,
∴函数在[3,5]上只有一个零点4.
【答案】 B
6.函数y=log12(x2+6x+13)的值域是()
A.R B.[8,+∞)
C.(-∞,-2] D.[-3,+∞)
【解析】 设u=x2+6x+13
=(x+3)2+4≥4
y=log12u在[4,+∞)上是减函数,
∴y≤log124=-2,∴函数值域为(-∞,-2],故选C.
【答案】 C
7.定义在R上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是()
A.y=x2+1 B.y=|x|+1
C.y=2x+1,x≥0x3+1,x0 D.y=ex,x≥0e-x,x0
【解析】 ∵f(x)为偶函数,由图象知f(x)在(-2,0)上为减函数,而y=x3+1在(-∞,0)上为增函数.故选C.
【答案】 C
8.设函数y=x3与y=12x-2的图象的交点为(x0,y0),则x0所在的区间是()
A.(0,1) B.(1,2)
C(2,3) D.(3,4)
【解析】 由函数图象知,故选B.
【答案】 B
9.函数f(x)=x2+(3a+1)x+2a在(-∞,4)上为减函数,则实数a的取值范围是()
A.a≤-3 B.a≤3
C.a≤5 D.a=-3
【解析】 函数f(x)的对称轴为x=-3a+12,
要使函数在(-∞,4)上为减函数,
只须使(-∞,4)?(-∞,-3a+12)
即-3a+12≥4,∴a≤-3,故选A.
【答案】 A
10.某新品牌电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则下列函数模型中能较好反映销量y与投放市场的月数x之间的关系的是()
A.y=100x B.y=50x2-50x+100
C.y=50×2x D.y=100log2x+100
【解析】 对C,当x=1时,y=100;
当x=2时,y=200;
当x=3时,y=400;
当x=4时,y=800,与第4个月销售790台比较接近.故选C.
【答案】 C
11.设log32=a,则log38-2 log36可表示为()
A.a-2 B.3a-(1+a)2
C.5a-2 D.1+3a-a2
【解析】 log38-2log36=log323-2log3(2×3)
=3log32-2(log32+log33)
=3a-2(a+1)=a-2.故选A.
【答案】 A
12.已知f(x)是偶函数,它在[0,+∞)上是减函数.若f(lg x)f(1),则x的取值范围是()
A.110,1 B.0,110∪(1,+∞)
C.110,10 D.(0,1)∪(10,+∞)
【解析】 由已知偶函数f(x)在[0,+∞)上递减,
则f(x)在(-∞,0)上递增,
∴f(lg x)f(1)?0≤lg x1,或lg x0-lg x1
?1≤x10,或0
或110
∴x的取值范围是110,10.故选C.
【答案】 C
二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)
13.已知全集U={2,3,a2-a-1},A={2,3},若?UA={1},则实数a的值是________.
【答案】 -1或2
14.已知集合A={x|log2x≤2},B=(-∞,a),若A?B,则实数a的取值范围是(c,+∞),其中c=________.
【解析】 A={x|0
【答案】 4
15.函数f(x)=23x2-2x的单调递减区间是________.
【解析】 该函数是复合函数,可利用判断复合函数单调性的方法来求解,因为函数y=23u是关于u的减函数,所以内函数u=x2-2x的递增区间就是函数f(x)的递减区间.令u=x2-2x,其递增区间为[1,+∞),根据函数y=23u是定义域上的减函数知,函数f(x)的减区间就是[1,+∞).
【答案】 [1,+∞)
16.有下列四个命题:
①函数f(x)=|x||x-2|为偶函数;
②函数y=x-1的值域为{y|y≥0};
③已知集合A={-1,3},B={x|ax-1=0,a∈R},若A∪B=A,则a的取值集合为{-1,13};
④集合A={非负实数},B={实数},对应法则f:“求平方根”,则f是A到B的映射.你认为正确命题的序号为:________.
【解析】 函数f(x)=|x||x-2|的定义域为(-∞,2)∪
(2,+∞),它关于坐标原点不对称,所以函数f(x)=|x||x-2|既不是奇函数也不是偶函数,即命题①不正确;
函数y=x-1的定义域为{x|x≥1},当x≥1时,y≥0,即命题②正确;
因为A∪B=A,所以B?A,若B=?,满足B?A,这时a=0;若B≠?,由B?A,得a=-1或a=13.因此,满足题设的实数a的取值集合为{-1,0,13},即命题③不正确;依据映射的定义知,命题④正确.
【答案】 ②④
三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)
17.(本小题满分12分)已知函数f(x)=x2-3x-10的两个零点为x1,x2(x1
【解析】 A={x|x≤-2,或x≥5}.
要使A∩B=?,必有2m-1≥-2,3m+2≤5,3m+22m-1,
或3m+22m-1,
解得m≥-12,m≤1,m-3,或m-3,即-12≤m≤1,或m-3.
18.(本小题满分12分)已知函数f(x)=x2+2ax+2,x∈[-5,5].
(1)当a=-1时,求f(x)的最大值和最小值;
(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.
【解析】 (1)当a=-1时,
f(x)=x2-2x+2=(x-1)2+1,x∈[-5,5].
由于f(x)的对称轴为x=1,结合图象知,
当x=1时,f(x)的最小值为1,
当x=-5时,f(x)的最大值为37.
(2)函数f(x)=(x+a)2+2-a2的图象的对称轴为x=-a,
∵f(x)在区间[-5,5]上是单调函数,
∴-a≤-5或-a≥5.
故a的取值范围是a≤-5或a≥5.
19.(本小题满分12分)(1)计算:27912+(lg5)0+(2764)-13;
(2)解方程:log3(6x-9)=3.
【解析】 (1)原式
=25912+(lg5)0+343-13
=53+1+43=4.
(2)由方程log3(6x-9)=3得
6x-9=33=27,∴6x=36=62,∴x=2.
经检验,x=2是原方程的解.
20.(本小题满分12分)有一批影碟机(VCD)原销售价为每台800元,在甲、乙两家商场均有销售,甲商场用下面的方法促销:买一台单价为780元,买两台单价为760元,依次类推,每多买一台单价均减少20元,但每台最低不低于440元;乙商场一律按原价的75%销售,某单位需购买一批此类影碟机,问去哪家商场购买花费较少?
【解析】 设购买x台,甲、乙两商场的差价为y,则去甲商场购买共花费(800-20x)x,由题意800-20x≥440.
∴1≤x≤18(x∈N).
去乙商场花费800×75%x(x∈N*).
∴当1≤x≤18(x∈N*)时
y=(800-20x)x-600x=200x-20x2,
当x18(x∈N*)时,y=440x-600x=-160x,
则当y0时,1≤x≤10;
当y=0时,x=10;
当y0 x=""10(x∈N).
综上可知,若买少于10台,去乙商场花费较少;若买10台,甲、乙商场花费相同;若买超过10台,则去甲商场花费较少.
21.(本小题满分12分)已知函数f(x)=lg(1+x)-lg(1-x).
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性;
【解析】 (1)由1+x0,1-x0,得-1
∴函数f(x)的定义域为(-1,1).
(2)定义域关于原点对称,对于任意的x∈(-1,1),
有-x∈(-1,1),
f(-x)=lg(1-x)-lg(1+x)=-f(x)
∴f(x)为奇函数.
22.(本小题满分14分)设a0,f(x)=exa+aex是R上的偶函数.
(1)求a的值;
(2)证明:f(x)在(0,+∞)上是增函数.
【解析】 (1)解:∵f(x)=exa+aex是R上的偶函数,
∴f(x)-f(-x)=0.
∴exa+aex-e-xa-ae-x=0,
即1a-aex+a-1ae-x=0
1a-a(ex-e-x)=0.
由于ex-e-x不可能恒为0,
∴当1a-a=0时,式子恒成立.
又a0,∴a=1.
(2)证明:∵由(1)知f(x)=ex+1ex,
在(0,+∞)上任取x1
f(x1)-f(x2)=ex1+1ex1-ex2-1ex2
=(ex1-ex2)+(ex2-ex1)?1ex1+x2.
∵e1,∴0
∴ex1+x21,(ex1-ex2)1-1ex1+x20,
∴f(x1)-f(x2)0,即f(x1)
∴f(x)在(0,+∞)上是增函数.
我为大家提供的高一必修一数学函数的应用测试题,大家仔细阅读了吗?最后祝同学们学习进步。
[img]人教版高一数学必修一测试卷答案
生物卷一答案- -
选择题:1-5BCBDD 6-10BACBC 11-15ADCAB 16-20CDBCC 21-25ABCAA
非选择题:26.(1)f DNA (2)脱氧核苷酸 e是f的基本组成单位 1分子磷酸 1分子脱氧核糖 1分子含氮碱基 4 (3)C、H、O、N、P b、c、d (4)磷酸——五碳糖——碱基 27.(1)叶 (2)叶肉细胞 (3)种群 (4)组成 结构 功能 28.(1)HIV病毒 免疫 (2)细胞结构 活 病毒不能独立生存 29.(1)蓝藻 细菌 (2)没有核膜 都有细胞膜、细胞质 (3)细菌是异养生物,蓝藻是自养生物 30.(1) 物镜 (2)低倍镜 视野中央 镜筒 (3)细 粗 细 (4)多样 细胞膜、细胞质、细胞核 统一 (5)①还要盖盖波片 ②先用低倍镜找到物体,在换用高倍镜 ③应转动细准交螺旋 (6)图略
物理卷一答案- -
选择题:1.C 2.BD 3.CD 4.C 5.B 6.BCD 7.B 8.B 9.B 10.B 11.D 12.ABC 填空题 13.(265.7) 14.(10.8 , 150 ) 15.(0.02 , 大) 16.(2 ,6) 17.(根号3) 实验题 18.(0.35 ,0.42 ,0.35 ) 19.ABDEC
必修一数学试题
一.选择题:(每题4分,共40分)
1.一个直角三角形绕斜边旋转 形成的空间几何体为( )
A.一个圆锥 B.一个圆锥和一个圆柱 C.两个圆锥 D.一个圆锥和一个圆台
2.设 , ,则 等于………………( )
A. B. C. D.
3.下列命题中: ① 若A α, B α, 则AB α;② 若A α, A β, 则α、β一定相交于一条直线,设为m,且A m ③经过三个点有且只有一个平面 ④ 若a b, cb, 则a//c. 正确命题的个数( )
A. 1 B. 2 C. 3 D. 4
4.如图所示的直观图,其平面图形的面积是( )
A.4 B.4 C.2 D.8
5.若 ,则 =( )高考资源网
A.0 B.1 C.2 D.3
6.一个正方体的顶点都在球面上,它的棱长为 ,则球的半径是( )cm.
A.1 B. C. D.2
7.设偶函数f(x)的定义域为R,当x 时f(x)是增函数,则f(-2),f( ),f(-3)的大小关系是( )
A.f( )f(-3)f(-2) B.f( )f(-2)f(-3)
C.f( )f(-3)f(-2) D.f( )f(-2)f(-3)
8.下列命题中错误的是( )
A.如果 ,那么 内一定存在直线平行于平面
B.如果 ,那么 内所有直线都垂直于平面
C.如果平面 不垂直平面 ,那么 内一定不存在直线垂直于平面
D.如果 ,那么
9.三凌锥P-ABC的侧棱长相等,则点P在底面的射影O是△ABC的( )
A.内心 B.外心 C.垂心 D.重心
10.设函数 对任意 满足 ,且 ,则 =( )
A.-2 B. C. D. 2
二、填空题(每小题4分,共16分)
11.用长、宽分别是3 和 的矩形硬纸卷成圆柱的侧面,则圆柱的底面半径是_______.
12.正方体 中, 分别是 的中点,则异面直线 所成角的大小为_________。
13.函数 在区间 上递减,则实数 的取值范围是 .
14. 已知m、n是不同的直线, 是不重合的平面,给出下列命题:
① 若 ,则 平行于平面 内的任意一条直线
② 若 则
③若 ,则
④若 ,则
上面命题中,真命题的序号是____________(写出所有真命题的序号)
三、解答题:
15.(本小题满分10分)
计算 :log2.56.25+lg +ln( )+log2(log216)
16. (本小题满分12分)
右图是一个空间几何体的三视图,根据
图中尺寸 (单位: ),求该几何体的表面积
和体积.
17.(本小题满分10分)
如图在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的
中点.
(1)求证:EF‖平面CB1D1;
(2)求证:平面CAA1C1⊥平面CB1D1.
18.(本小题满分10分)
如图,圆锥 中, 、 为底面圆的两条直径,
,且 , , 为 的中点.
(1)求圆锥 的表面积;
(2)求异面直线 与 所成角的正切值.
19.(本小题满分12分)
如图,ABCD是正方形,O是正方形的中心,
PO 底面ABCD,E是PC的中点。
求证:(1)PA‖平面BDE
(2)平面PAC 平面BDE
(3)求二面角E-BD-A的大小。
20.(本小题满分10分)
如图,平面ABCD⊥平面ABEF,ABCD是正方形,ABEF是矩形,
且 G是EF的中点,
(1)求证平面AGC⊥平面BGC;
(2)求GB与平面AGC所成角的正弦值.
高一期末数学试卷参考答案
一、选择题:(每小题4分,共40分)
题号 1 2 3 4 5 6 7 8 9 10
答案 C A B A B C A B B A
二、填空题:(每小题4分,共16分)
11. 或 12. 13. 14. ③ ④
三、解答题:
15、(10分)原式=2-2+ =
16. (12分) 解:由三视图可知空间几何体是底面边长为2,侧棱长为3的正三棱柱,
其底面积为: ,侧面积为:
其全面积为: ,
其体积为: (m3)
17.(10分)
解(1)连接BD则BDD1B1是平行四边形,∴BD //B1D1
又∵EF//BD ∴EF//B1D1
EF 面CB1D1
B1D1 面CB1D1
EF//平面CB1D1
(2) ∵B1D1⊥A1C1, B1D1⊥AA1 B1D1⊥面CAA1C1
B1D1 面C1B1D1
∴平面CAA1C1⊥平面C1B1D1
18. (10分)
解: (1) ,
, ,
.
(2) , 为异面直线 与 所成角.
, ,
.在 中, , ,
,
异面直线 与 所成角的正切值为 .
19、(12分)证明(1)∵O是AC的中点,E是PC的中点,∴OE‖AP,
又∵OE 平面BDE,PA 平面BDE,∴PA‖平面BDE
(2)∵PO 底面ABCD,∴PO BD,
又∵AC BD,且AC PO=O∴BD 平面PAC,
而BD 平面BDE,∴平面PAC 平面BDE。
(3)由(2)可知BD 平面PAC,∴BD OE,BD OC,
∠EOC是二面角E-BD-C的平面角
(∠EOA是二面角E-BD-A的平面角)
在RT△POC中,可求得OC= ,PC=2
在△EOC中,OC= ,CE=1,OE= PA=1
∴∠EOC=45°∴∠EOA =135°,即二面角E-BD-A大小为135°。
20.(10分)(1)证明:正方形ABCD ∵面ABCD⊥面ABEF且交于AB,
∴CB⊥面ABEF ∵AG,GB 面ABEF, ∴CB⊥AG,CB⊥BG
又AD=2a,AF= a,ABEF是矩形,G是EF的中点,
∴AG=BG= ,AB=2a, AB2=AG2+BG2,∴AG⊥BG ∵CG∩BG=B ∴AG⊥平面CBG 而AG 面AGC, 故平面AGC⊥平面BGC
(2)解:如图,由(Ⅰ)知面AGC⊥面BGC,且交于GC,在平面BGC内作BH⊥GC,垂足为H,则BH⊥平面AGC,
∴∠BGH是GB与平面AGC所成的角
∴在Rt△CBG中 又BG= ,
∴
图略
跪求高一数学必修1试卷及答案,100分满分的那种
高一数学必修1试卷及答案,100分满分的那种1.已知集合 ,那么 ( )
(A) (B) (C) (D)
2.下列各式中错误的是 ( )
A. B.
C. D.
3.若函数 在区间 上的最大值是最小值的 倍,则 的值为( )
A. B. C. D.
4.函数 的图象是( )
5.函数 的零点所在的区间是( )
A. B. C. D.
6.设函数 定义在实数集上,它的图像关于直线 对称,且当 时, ,则有( )
A. B.
C. D.
7.函数 的图像大致为( )
8.定义在R上的函数f(x)满足f(x)= ,则f(3)的值为( )
A.-1 B. -2 C.1 D. 2
9.函数 的定义域为
10.函数 的定义域是
11.函数y=x2+x (-1≤x≤3 )的值域是
12.计算:lg +(ln )
13.已知 ,若 有3个零点,则 的范围是
14.若函数 的零点有4个,则实数 的取值范围是
15.已知A、B两地相距150千米,某人开汽车以60千米/小时的速度从A地到B地,在B地停留1小时后
再以50千米/小时的速度返回A地,将汽车离开A地的距离x表示为时间t(小时)的函数
表达式是
16.国家规定个人稿费纳税办法为:不超过800元的不纳税;超过800元而不超过4000元的按超过部分的14%纳税;超过4000元的按全稿酬的11%纳税.某人出版了一书共纳税420元,这个人的稿费为
元。
17.某同学研究函数 ( ) ,分别给出下面几个结论:
①等式 在 时恒成立; ②函数 的值域为 (-1,1);
③若 ,则一定有 ; ④函数 在 上有三个零点.
其中正确结论的序号有 .
18.已知集合 , ,
(1)利用数轴分别求 , ;
(2)已知 ,若 ,求实数 的取值集合。
19.已知函数
(1)判断并证明函数在其定义域上的奇偶性 (2)判断并证明函数在 上的单调性
(3)解不等式
20.已知函数 是奇函数,且在定义域上单调递减,
(1)若 比较 的大小;
(2)若 的定义域为 ,且 求 的取值范围。
21.已知函数 ,判断 的奇偶性。
22.二次函数 满足 ,且 。
(1)求 的解析式;
(2)在区间 上, 的图象恒在 的图象上方,试确定实数 的范围。
答案
1. D 2. C 3. A 4.B 5.B 6.B
7. A 函数有意义,需使 ,其定义域为 ,排除C,D
又因为 ,所以当 时函数为减函数,故选A.
8.B 9.( ,1) 10. 11. 12. , 13.
14. 15. 16.3800 17.①②③
18.解:(1) ,
或 , 或 或
(2) 如图示(数轴略) ,解之得
19.解:(1)证明: , ,所以函数为奇函数
(2)定义证明略
(3)
20.解:(1) ,且 在定义域上单调递减,∴
(2) , 是奇函数,且在定义域 上单调递减
∴
21.解:当 时, 为偶函数;当 时, 函数 既不是奇函数,也不是偶函数。
22.解:(1)设 ,则
与已知条件比较得: 解之得, 又 ,
(2) 即 对 恒成立,易得 绝对正确!!!!!!!!!!!!!!!!!!!
高中数学必修一经典例题
新课标人教A高一数学必修1测试题
第Ⅰ卷(选择题 共60分)
一、选择题(本大题共10小题,每小题5分,共60分)
1.已知A={x|y=x,x∈R},B={y|y=x2,x∈R},则A∩B等于
A.{x|x∈R} B.{y|y≥0}
C.{(0,0),(1,1)} D.
2.方程x2-px+6=0的解集为M,方程x2+6x-q=0的解集为N,且M∩N={2},那么p+q等于
A.21 B.8 C.6 D.7
3. 下列四个函数中,在(0,+∞)上为增函数的是
A.f(x)=3-x B.f(x)=x2-3x
C.f(x)=- D.f(x)=-|x|
4.函数f(x)=x2+2(a-1)x+2在区间(-∞,4〕上递减,则a的取值范围是
A.〔-3,+∞〕 B.(-∞,-3)
C.(-∞,5〕 D.〔3,+∞)
5. 下列四个函数中,与y=x表示同一函数的是
A.y=( )2 B.y= C.y= D.y=
6. 函数y= +1(x≥1)的反函数是
A.y=x2-2x+2(x<1) B.y=x2-2x+2(x≥1)
C.y=x2-2x(x<1) D.y=x2-2x(x≥1)
7. 已知函数f(x)= 的定义域是一切实数,则m的取值范围是
A.0m≤4 B.0≤m≤1 C.m≥4 D.0≤m≤4
8.某商场对顾客实行购物优惠活动,规定一次购物付款总额:
(1)如果不超过200元,则不给予优惠;
(2)如果超过200元但不超过500元,则按标价给予9折优惠;
(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折 优惠.
某人两次去购物,分别付款168元和423元,假设他一次性购买上述两次同样的商品,则应付款是
A.413.7元 B.513.7元
C.546.6元 D.548.7元
9. 二次函数y=ax2+bx与指数函数y=( )x的图象只可能是
10. 已知函数f(n)= 其中n∈N,则f(8)等于
A.2 B.4 C.6 D.7
11.如图,设a,b,c,d0,且不等于1,y=ax , y=bx , y=cx ,y=dx 在同一坐标系中的图象如图,则a,b,c,d的大小顺序( )
A、abcd B、abdc
C、badc D、bacd
12..已知0a1,b-1,函数f(x)=ax+b的图象不经过:( )
A.第一象限; B.第二象限; C.第三象限; D.第四象限
第Ⅱ卷(非选择题 共70分)
二、填空题(本大题共4小题,每小题5分,共20分)
13.已知f(x)=x2-1(x0),则f-1(3)=_______.
14. 函数 的定义域为______________
15.某工厂8年来某产品产量y与时间t年的函数关系如下图,则:
①前3年总产量增长速度增长速度越来越快;
②前3年中总产量增长速度越来越慢;
③第3年后,这种产品停止生产;
④第3年后,这种产品年产量保持不变.
以上说法中正确的是_______.
16. 函数y= 的最大值是_______.
三、解答题
17. 求函数y= 在区间〔2,6〕上的最大值和最小值.(10分)
18.(本小题满分10分) 试讨论函数f(x)=loga (a>0且a≠1)在(1,+∞)上的单调性,并予以证明.
答案
一. BACCB BDCAD BA 二。13. 2 ,14. , 15. ①④ 16. 4
三.17.解:设x1、x2是区间〔2,6〕上的任意两个实数,且x1x2,则
f(x1)-f(x2)= -
=
= .
由2x1x26,得x2-x10,(x1-1)(x2-1)0,
于是f(x1)-f(x2)0,即f(x1)f(x2).
所以函数y= 是区间〔2,6〕上的减函数.
因此,函数y= 在区间的两个端点上分别取得最大值与最小值,即当x=2时,ymax=2;当x=6时,ymin= .
18.解:设u= ,任取x2>x1>1,则
u2-u1=
=
= .
∵x1>1,x2>1,∴x1-1>0,x2-1>0.
又∵x1<x2,∴x1-x2<0.
∴ <0,即u2<u1.
当a>1时,y=logax是增函数,∴logau2<logau1,
即f(x2)<f(x1);
当0<a<1时,y=logax是减函数,∴logau2>logau1,
即f(x2)>f(x1).
综上可知,当a>1时,f(x)=loga 在(1,+∞)上为减函数;当0<a<1时,f(x)=loga 在(1,+∞)上为增函数.
周测卷必修一数学的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于高一数学周考卷答案、周测卷必修一数学的信息别忘了在本站进行查找喔。