衡水名师数列考试题(衡水名师卷系列丛书20202021数学)

今天给各位同学分享衡水名师数列考试题的知识,其中也会对衡水名师卷系列丛书20202021数学进行解释,如果能碰巧解决你现在面临的问题,别忘了分享本站,现在开始吧!

本文目录一览:

数列的选择题题目及答案解析

列题的解释

清 代吏部列记京官官名和 履历 的题本。《清会典·吏部·考群吏之治》:“京官曰京察,外官曰大计。京察有列题。”

词语分解

列的解释 列 è 排成 一行 : 罗列 。行(俷 )列。队列。列岛。 名,众:列位。列强。列传(刵 )。 摆出:列举。 安排 到某类事务之中:列席。 量词, 用于 成行 列的事物:一列火车。 类:不 在此 列。 姓。 古同“烈”, 题的解释 题 (题) í 写作或讲演内容的总名目:题目。主题。话题。题材。题旨。 练习 或考试时要求解答的 问题 :试题。问答题。 写上,签署:题名。题字。题壁。题诗。题辞。 题跋 。 姓。 笔画数:; 部首 :页; 笔

[img]

衡水名师卷答案哪里找

在衡水名师公众号或者官网进行查找,一般所购买的试题资料都带有答案。

很多所谓衡水名师卷都不是衡水出的,只是挂个名字而已。像学校(二中)资料是禁止外泄的,卷子也是。衡水中学(又名衡水一中)。好像有出题机构,会出卷子。

求大家帮我做这份数学题,真的救命!!!!

一 、填空题

1、等差数列,8,4,0,…的首项=8,公差d= -4。

2、点(1,-3)到直线y=2x+5的距离为: 25 。

3、在等比数列中,,则公比是 该 等比数列从第二项起,后项与相邻的前一项的比 。

4、数列20,18,16,14,。。。的通项公式为 : an=22-2n。

5、若,则= 。

6、直线y=3x+1与直线x+By+C=0互相平行,则B= -1/3 。

7、直线和直线垂直,则此两直线的斜率的乘积= -1 。

8、直线的斜截式方程是 : y=kx+b.

9、已知直线经过点A(1,2),且倾斜角为,则直线的方程是:y-2=tan倾斜角(x-1) 。

10、已知数列的通项公式为an=n·(n+1),a7+a10= 166 。

11、等差数列中, 则_________

12、已知数列的,则=_____________

13、焦点是(3,0)的抛物线的方程是 : y=12x

14、等差数列—1,2,5,…的一个通项公式为 :an= 3n-4

15、已知数列的通项公式为 ,则420是数列的第_______项

16、点在直线上,则的值为

17、点(—2,—1)到直线的距离=

18、圆心为点C(-3,1),半径为根号5的圆 的方程为:(x + 3)² + (y - 1)² = 5

19、双曲线的实轴长为 ,虚轴长为 ,离心率e为

20、以点A(1,3)、B(—5,1)为端点的线段的垂直平分线的方程为

解:

求以点A(1,3)、B(—5,1)为端点的线段的垂直平分线的方程,应分三步

一。先求AB所在的直线方程:

设AB所在直线方程为Y=KX+B

代入A、B坐标

K+B=3

-5K+B=1

K=1/3,

因为两直线垂直,K值乘积为-1

因此垂直平分线K值为-3

二,再求线段AB的中点坐标:

AB中点坐标为X=(-5+1)/2=-2,Y=(1+3)/2=2

因此坐标为(-2,2)

三,最后求以点A(1,3)、B(—5,1)为端点的线段的垂直平分线的方程:

设垂直平分线为Y=-3X+B

代入(-2,2)

6+B=2,B=-4

因此垂直平分线方程为:

Y=-3X-4,即3X+Y+4=0

10,5,25,35,(),155还有6,12,16,26,40,()括号里的数字。步骤

答案:10,5,25,35,(85)

步骤:第一个数×2+第二个数=第三个数,以此类推。

答案:6,12,16,26,40,(64)

步骤:第一个数+第二个数-2=第三个数,以此类推。

初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:

一、基本方法--看增幅

(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。然后再简化代数式a+(n-1)b。

例:4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2

(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。如增幅分别为3、5、7、9,说明增幅以同等幅度增加。此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;

2、求出第1位到第第n位的总增幅;

3、数列的第1位数加上总增幅即是第n位数。

举例说明:2、5、10、17……,求第n位数。

分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:

[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1

所以,第n位数是:2+ n2-1= n2+1

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。

(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.

(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

二、基本技巧

(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。找出的规律,通常包序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

例如,观察下列各式数:0,3,8,15,24,……。试按此规律写出的第100个数是        。

解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。我们把有关的量放在一起加以比较:

给出的数:0,3,8,15,24,……。

序列号:  1,2,3, 4, 5,……。

容易发现,已知数的每一项,都等于它的序列号的平方减1。因此,第n项是n2-1,第100项是1002-1。

(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关。

例如:1,9,25,49,(),(),的第n为(2n-1)2

(三)看例题:

A: 2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18 答案与3有关且............即:n3+1

B:2、4、8、16.......增幅是2、4、8.. .....答案与2的乘方有关 即:2n

(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系。再在找出的规律上加上第一位数,恢复到原来。

例:2、5、10、17、26……,同时减去2后得到新数列:

0、3、8、15、24……,

序列号:1、2、3、4、5

分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1

(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来。

例 : 4,16,36,64,?,144,196,… ?(第一百个数)

同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方。

(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3)。当然,同时加、或减的可能性大一些,同时乘、或除的不太常见。

(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律。

三、基本步骤

1、 先看增幅是否相等,如相等,用基本方法(一)解题。

2、 如不相等,综合运用技巧(一)、(二)、(三)找规律

3、 如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律

4、 最后,如增幅以同等幅度增加,则用用基本方法(二)解题

四、练习题

例1:一道初中数学找规律题

0,3,8,15,24,······

2,5,10,17,26,·····

0,6,16,30,48······

(1)第一组有什么规律?

(2)第二、三组分别跟第一组有什么关系?

(3)取每组的第7个数,求这三个数的和?

2、观察下面两行数

2,4,8,16,32,64, ...(1)

5,7,11,19,35,67...(2)

根据你发现的规律,取每行第十个数,求得他们的和。(要求写出最后的计算结果和详细解题过程。)

3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑 排列的珠子,前2002个中有几个是黑的?

4、 3^2-1^2=8×1    5^2-3^2=8×2    7^2-5^2=8×3   ……

用含有N的代数式表示规律

写出两个连续技术的平方差为888的等式

五、对于数表

1、先看行的规律,然后,以列为单位用数列找规律方法找规律

2、看看有没有一个数是上面两数或下面两数的和或差。

数列解题方法技巧总结

人生需要反思,总结才能远航,回首往夕,收获的是经验和提高。下面就是我整理的数列解题方法技巧总结,一起来看一下吧。

学生们在高中的数学学习过程中如果能够充分掌握高中数学数列试题的解题方法和技巧,这对于在大学期间学习数学会有很大的帮助。在最近几年的数学高考中,数列知识点的考查已经成为高考出题人比较看重的一项考点,甚至有一部分拔高题也都和数列有着直接的关系。可是在高中数学的学习阶段,很多的学生对于高中数学数列试题的解题方法和技巧还非常欠缺,对有一些问题和内容并没有得到充分的理解和吸收,往往在解题过程中,出现这样那样的问题。所以,探索和研究不同类型数列的解题方法和技巧,能够帮助学生更好地学好高中的数学。

高中数学数列试题教学中的解题思路与技巧

1.对数列概念的考查

在高中数列试题中,有一些试题可以直接通过带入已学的通项公式或求和公式,就可以得到答案,面对这一种类型的试题,没有什么技巧而言,我们只需熟练掌握相关的数列公式即可。

例如:在各项都为正数的等比数列{b}中,首项b1=3,b1+b2+b3=21,那么b3+b4+b5等于多少?

解析:(1)本道试题主要是对正项数列的概念以及等比数列的通项公式和求和公式知识点的考查,考查学生对数列基础知识和基本运算的掌握能力。

(2)本试题要求学生要熟练掌握老师在课堂上所教的通项公式和求和公式。

(3)首先让我们来求公比,很明显q不等1,那么我们可以根据我们所学过的等比数列前项和公式,列出关于公比的方程,即3(1-q3)/(1-q)=21。

对于这个方程,我们首先要选择其运算的方式,要求学生平时的练习过程中,要让学生能够熟练地将高次方程转化为低次方程进行运算。

2.对数列性质的考察

有些数列的试题中,经常会变换一些说法来考查学生对数列的基本性质的`理解和掌握能力。

例如:己知等差数列{xn},其中xl+x7=27,求x2+x3+x5+x6等于多少?

解析:我们在课堂上学习过这样的公式:等差数列和等比数列中m+n=p+q,我们可以充分利用这一特性来解此题,即:

xl+x7= x2+x6= x3+x5=27,

因此,x2+x3+x5+x6=(x2+x6)+(x3+x5)=27+27=54

这种类型的数列试题要求教师在课堂教学中,对数列的性质竟详细讲解,仔细推导。使得学生能够真正的理解数列性质的来源。

3.对求通项公式的考察

①利用等差、等比数列的通项公式,求通项公式

②利用关系an={S1,n=1;Sn-Sn-1,n≥2}求通项公式

③利用叠加、叠乘法求通项公式

④利用数学归纳法求通项公式

⑤利用构造法求通项公式.

4.求前n项和的一些方法

在最近几年的数学高考试题中,数列通项公式和数列求和这两个知识点是每年必考的,因此,在高中数学数列的课堂教学中,教师要对数列求和通项公式这方面的知识点进行细致重点的讲解。数列求和的主要解题方法有错位相减法、分组求和法与合并求和法,下面对三种数列求和的解题方法进行详细说明。

(1)错位相减法

错位相减法主要应用于等比数列的求和中,在最近几年的高考试题当中,以此方法来求解数列求和的试题经常会有所体现。这一类型的试题解题方法主要是运用于诸如{等差数列·等比数列}数列前n项和的求和中。

例如:已知{xn}是等差数列,其前n项和是Sn,{yn}是等比数列,且x1=y1=2, x4+y4=27, S4-y4=10,求(1)求数列{xn}与{yn}的通项公式;(2)Tn= xny1+xn-1y2+…+x1yn,n∈N*证明Tn+12=-2xn+10yn,n∈N*

解析:(1)xn=3n-1,yn=2n;

(2)Tn= 2xn+22xn-1+23xn-2+…+2nx1,

2Tn= 22xn+23xn-1+…+2nx2+2n+1x1

计算得,Tn=-2(3n-1)+3×22+3×23+…+3×2n+2n+1=12(1-2n+1)/(1-2+2n+2-6n+2)=10×2n-6n-10

-2an+10bn-12=-2(3n-1)+10×2n-12=10×2n-6n-10

所以,Tn+12=-2xn+10yn,n∈N*

错位相减法主要应用于形如an=bncn,即等差数列·等比数列,这样的数列求和试题运算中,解此类题的技巧是:首先分别列出等差数列和等比数列的前n的和,即Sn,然后再分别将Sn的两侧同时乘以等比数列的公比q,得出qSn;最后错一位,再将两边的式子进行相减就可以了。

(2)分组法求和

在高中数列的试题当中,往往会遇到一部分没有规律的数列试题,它们初看上去既不属于等差数列也不属于等比数列,但是如果将此类型的数列进行拆分,就可以得到我们所了解的等差数列和等比数列,遇到此类型的数列试题,我们就可以通过分组法求和的方法进行解题,首先将数列进行拆分,通过得到的等差数列和等比数列进行运算,最后将其结合在一起得出试题的答案。

(3)合并法求和

在高考数列的试题中,往往会遇到一些非常特殊的题型,它们初看上去没有规律可循,但是通过合并和拆分,就可以找出它们的特殊性质。这就要求我们教师平时要锻炼学生对数列的合并能力,通过合并找出规律,最终成功地解决这类特殊数列的求和问题。

结束语

数列知识是各种数学知识的连接点,在数学考试中,往往是基于数列知识为基础,对学生的综合数学知识进行考查。在高中数列学习过程中,首先要做好数列基本概念和基本性质的掌握,否则任何解题技巧都无济于事。

数列中等差乘等比的裂项相消题

错位相减

适合

两种数列结合在一起的

例如

cn=一个等比数列乘上或除以一个等差数列

然后找关系

列出两个等式

在用一个数乘以这个数列

原数列减去

乘数数列

中间应该会是一个等差或等比数列

掐头去尾

貌似

衡水

2012

上学期期末考试卷

有一道用这个方法的题

关于衡水名师数列考试题和衡水名师卷系列丛书20202021数学的介绍到此就结束了,不知道同学们从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

本文转载自互联网,如有侵权,联系删除