高二数学试卷文科金太阳(金太阳高二数学期末试卷)

本篇文章给同学们谈谈高二数学试卷文科金太阳,以及金太阳高二数学期末试卷对应的知识点,希望对各位同学有所帮助,不要忘记分享给你的朋友哦!

本文目录一览:

金太阳高二考试范围

金太阳高二考试范围:语文、数学、外语、思想政治、历史等10个学科。根据查询相关信息可知,普通高中学业水平考试科目为语文、数学、外语、思想政治、历史、地理、物理、化学、生物学、信息技术10个学科。各学科考试内容为普通高中课程标准规定的必修课程内容。

[img]

现在高二,开始自己复习了,我现在用的资料是五三,我想提高下数学和英语,有没有好的资料推荐?我是文科

某才刚刚进大学呢,常用的:

数学:

5·3;

红对勾;

天利38套(试卷);

绿色通道(试卷+资料书);

题典(这个非常全面呢,不过你要有选择性地看题写题,全部写完很困难的~~)

英语:

英语周报坚持做!

红对勾资料书;

世纪金榜(这一本是习题加讲解,讲解部分非常细致,比较全)

金太阳(这一本几乎是高考英语最权威、最有效的了,好好做、好好看、好好记,它会给你极大的帮助的!!!)

以上每类最后一本均为强推书,去年我才试验过,结果证明很有效~~

加油加油加油!某高考的激动心情过了半年还没有平静下来啊。。。

希望我的经验能给你一点帮助!!!

高中文科数学复习用什么复习材料好?

高中数学合集百度网盘下载

链接:

?pwd=1234

提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

问几道高二文科班数学题,谢谢大家了

一、设圆的方程为(x-a)^2+(y-b)^2=r^2

分别由1、2、3条件得

1) a^2+1^2=r^2(截y轴所得的弦长为2,利用圆的性质,弦的一半与圆心到弦的距离还有半径构成一个直角三角形)

2)(2分之根号2)r=/b/(绝对值b)

3)/a-2b/除以根号5=根号5/5

由三个方程解三个未知数

a=1 b=1 r^2=2

a=-1 b=-1 r^2=2

二、设Q(m,n)

则M(5+m/2,-3+n/2)

由于点Q在x²+y²=4上运动

所以m²+n²=4

x=5+m/2,y=-3+n/2

m=2x-10 n=2y+6带入m²+n²=4得出M的轨迹方程(x-5)^+(y+3)^2=1

2018年高二文科数学期末试卷及答案

不知不觉已到了期末,文科的各位同学数学复习的怎么样,做套题试试吧。下面由我给你带来关于2018年高二文科数学期末试卷及答案,希望对你有帮助!

2018年高二文科数学期末试卷

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)

1.已知集合A={x|x2+x-2=0},B={x|ax=1},若A∩B=B,则a= ()

A.-12或1 B.2或-1 C.-2或1或0 D.-12或1或0

2.设有函数组:① , ;② , ;③ , ;④ , .其中表示同一个函数的有( ).

A.①② B.②④ C.①③ D.③④

3.若 ,则f(-3)的值为()

A.2 B.8 C.18 D.12

4.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y=x2+1,值域为{1,3}的同族函数有()

A.1个 B.2个 C.3个 D.4个

5.下列函数中,在[1,+∞)上为增函数的是 ()

A.y=(x-2)2 B.y=|x-1| C.y=1x+1 D.y=-(x+1)2

6.函数f(x)=4x+12x的图象()

A.关于原点对称 B.关于直线y=x对称

C.关于x轴对称 D.关于y轴对称

7.如果幂函数y=xa的图象经过点2,22,则f(4)的值等于 ()

A.12 B.2 C.116 D. 16

8.设a=40.9,b=80.48,c=12-1.5,则 ()

A.c ab B. bac C.abc D.acb

9 .设二次函数f(x)=a x2-2ax+c在区间[0,1]上单调递减,且f(m)≤f(0),则实数m的取值范围是 ()

A.(-∞,0] B.[2,+∞) C.[0,2] D.(-∞,0]∪[2,+∞)

10.已知f(x)在区间(0,+∞)上是减函数,那么f(a2-a+1)与f34的大小关系是 ()

A.f(a2-a+1)f34 B.f(a2-a+1)≤f34

C.f(a2-a+1)≥f34 D.f(a2-a+1)11.已知幂函数f(x)=xα的部分对应值如下表:

x 1 12

f(x) 1 22

则不等式f(|x|)≤2的解集是 ()

A.{x|-4≤x≤4} B.{x|0≤x≤4} C.{x|-2≤x≤2} D.{x|012.若奇函数f(x)在(0,+∞)上是增函数,又f(-3)=0,则 的解集为()

A.(-3,0)∪(3,+∞) B.(-3,0)∪(0,3)

C.(-∞,-3)∪(3,+∞) D.(-∞,-3)∪(0,3)

第Ⅱ卷(共90分)

二、填空题:(本大题共4小题,每题5分,共20分,把最简答案填写在答题卡的横线上)

13. 已知函数 若关于x的方程f(x)=k有两个不 同的实根,则实数k的取值范围是________.

14.已知f2x+1=lg x,则f(21)=___________________.

15.函数 的增区间是____________.

16.设偶函数f(x)对任意x∈R,都有 ,且当x∈[-3,-2]时,f(x)=2x,则f(113.5)的值是____________.

三.解答题(本大题共6小题,共70分. 解答应写出必要的文字说明、证明过程或演算步骤).

17.(本题满分10分) 已知函数 ,且 .

(1)求实数c的值;

(2)解不等式 .

18.(本题满分12分) 设集合 , .

(1)若 ,求实数a的取值范围;

(2)若 ,求实数a的取值范围;

(3)若 ,求实数a的值.

19.(本题满分12分) 已知函数 .

(1)对任意 ,比较 与 的大小;

(2)若 时,有 ,求实数a的取值范围.

20.(本题满分12分) 已知定义在R上的奇函数f(x)有最小正周期2,且当x∈(0,1)时,f(x)=2x4x+1.

(1)求f(1)和f(-1)的值;

(2)求f(x)在[-1,1]上的解析式.

21.(本题满分12分) 已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).

(1)求证:f(x)是奇函数;

(2)如果x为正实数,f(x)0,并且f(1)=-12,试求f(x)在区间[-2,6]上的最值.

22.(本题满分12分) 已知函数f(x)=logax+bx-b(a0,b0,a≠1).

(1)求f(x)的定义域;

(2)讨论f(x)的奇偶性;

(3)讨论f(x)的单调性;

2018年高二文科数学期末试卷答案

2.D 在①中, 的定义域为 , 的定义域为 ,故不是同一函数;在②中, 的定义域为 , 的定义域为 ,故不是同一函数;③④是同一函数.

3. C f(-3)=f(-1)=f(1)=f(3)=2-3=18.

4. C 由x2+1=1得x=0,由x2+1=3得x=±2,∴函数的定义域可以是{0,2},{0,-2},{0,2,-2},共3个.

5. B 作出A 、B、C、D中四个函数的图象进行判断.

6. D f(x)=2x+2-x,因为f(-x)=f(x),所以f(x)为偶函数.所以f(x)的图象关于y轴对称.

7. A ∵幂函数y=xa的 图象经过点2,22,

∴22=2a,解得a=-12,∴y=x ,故f(4)=4-12=12.

8. D 因为a=40.9=21.8,b=80.48=21.44 , c=12-1.5=21.5,所以由指数函数y=2x在(-∞,+∞)上 单调递增知acb.

9. C 二次函数f(x)=ax2-2ax+c在区间[0,1]上单调递减,则a≠0,f′(x)=2a(x- 1)0,x∈[0,1],所以a0,即函数图象的开口向上,对称轴是直线x=1.所以f(0) =f(2),则当f( m)≤f(0)时,有0≤m≤2.

10. B ∵a2-a+1=a-122+34≥34,

又f(x)在(0,+∞)上为减函数,∴f(a2-a+1)≤f34.

11.A 由题表知22=12α,∴α=12,∴f(x)=x .∴(|x|) ≤2,即|x|≤4,故-4≤x≤4.

12. B 根据条件画草图 ,由图象可知 xfx0⇔x0,fx0

或x0,fx0⇔-3

13. (0,1) 画出分段函数f(x)的图象如图所示,结合图象可以看出,若f(x)=k有两个不同的实根,即函数y=f(x)的图象与y=k有两个不同 的交点,k的取值范围为(0,1).

14.-1 令2x+1=t(t1),则x=2t-1,

∴f(t)=lg2t-1,f(x)= lg2x-1(x1),f(21)=-1.

15.-∞,12 ∵2x2-3x+10,∴x12或x1.

∵二次函数y=2x2-3x+1的减区间是-∞,34,∴f(x)的增区间是-∞,12.

16.15. ∵f(-x)=f(x),f(x+6)=f(x+3+3)=-1fx+3=f(x),∴f(x)的周期为6.∴f(113.5)=f(19×6-0.5)=f(-0.5)=f(0.5)=f(-2.5+3)=-1f-2.5=-12×-2.5=15.

17.解:(1)因为 ,所以 ,由 ,即 , .……5分

(2)由(1)得:

由 得,当 时,解得 .

当 时,解得 ,所以 的解集为 …10分

18.解:(1)由题 意知: , , .

①当 时, 得 ,解得 .

②当 时,得 ,解得 .

综上, .……4分

(2)①当 时,得 ,解得 ;

②当 时,得 ,解得 .

综上, .……8分

(3)由 ,则 .……12分

19.解:(1)对任意 , ,

故 .……6分

(2)又 ,得 ,即 ,

得 ,解得 .……12分

20.解: (1)∵f(x)是周期为2的奇函数,

∴f(1)=f(1-2)=f(-1)=-f(1),

∴f(1)=0,f(-1)=0 . ……4分

(2)由题 意知,f(0)=0.当x∈(-1,0)时,-x∈(0,1).

由f(x)是奇函数, ∴f(x)=-f(-x)=-2-x4-x+1=-2x4x+1,

综上,f(x)=2x4x+1, x∈0,1,-2x4x+1, x∈-1,0,0, x∈{-1,0,1}.……12分

∴f(x)+f(-x)=0,得f(-x)=-f(x),∴f(x)为奇函数.……6分

(2)设x1则f(x2-x1)=f(x2+(-x1))=f(x2)+f(-x1)=f(x2)-f(x1).

∵x2-x10,∴f(x2-x1)0.∴f(x2)-f(x1)0,即f(x)在R上单调递减.

∴f(-2)为最大值,f(6)为最小值.

∵f(1)=-12,∴f(-2)=-f(2)=-2f(1)=1,

f(6)=2f(3)=2[f(1)+f(2)]=-3.

∴f(x)在区间[-2,6]上的最大值为1,最小值为-3. ……12分

22.解: (1)令x+bx-b0,解得f(x)的定义域为(-∞,-b)∪(b,+∞).……2分

(2)因f(-x)=loga-x+b-x-b=logax+bx-b-1

=-logax+bx-b=-f(x),

故f(x)是奇函数.……7分

关于高二数学试卷文科金太阳和金太阳高二数学期末试卷的介绍到此就结束了,不知道同学们从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

本文转载自互联网,如有侵权,联系删除