本篇文章给同学们谈谈模拟调研卷理科数学答案,以及模拟调研卷理科数学答案对应的知识点,希望对各位同学有所帮助,不要忘记分享给你的朋友哦!
本文目录一览:
- 1、跪求名校导航2019浙江数学高考信息模拟卷答案!有赏!
- 2、2022全国乙卷理科数学试卷及答案解析
- 3、2020届全国100所名校最新高考模拟示范卷理科数学(一)(二)(三)的答案!!!
- 4、求2011年普通高等学校招生全国统一考试模拟试题〔一〕衡水中学调研卷 理数
- 5、初三数学上期末调研测试卷及答案
跪求名校导航2019浙江数学高考信息模拟卷答案!有赏!
2019年浙江省高考信息模拟卷数学(一)
试卷分第I卷(选择题)和第II卷(非选择题)两部分,全卷满分150分,考试时间120分钟.第I卷(选择题共40分)
一、选择题(本大题共10小题,每小题4分共40分,在每小题给出的四个选项中,只有一项
是符合题目要求的.)
1.已知集合2x,则()M{x|yx−4x−5},N{y|yln(e+1)}(CM)NRA.(1,5)B.(0,5)C.(1,5]D.(0,5]|z1|
2.若z13=−i,z21=+3i,则()|z2|A.1B.2C.3D.10|a|b
3.已知a,bR,则“”是a|b|的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
4.设函数,则的奇偶性()f(x)sin(x=+)(0)f(x)A.与有关,且与有关B.与有关,但与无关C.与无关,且与无关D.与无关,但与有关V,VV−V
5.两个几何体的三视图如图所示,记几何体的体积为12,则21()−2−2A.B.C.D.3636x−3y0
6.已知,点,则S{(x,y)|x=+3y−630}P(3,3),T{N|PM=+PN0,M=S}x0ST的面积为()A.33B.6C.63D.9
7.如图,已知正四棱锥P−ABCD的各棱长均相等,M是上的动点(不包括端点),是的中点,分别记ABNAD二面角P−MN−C,P−AB−C,P−MD−C为,,,则()A.B.C.D.
8.对函数f(x)x2=+aln(x4+x2+1)(xR)的极值和最值情况,一定()A.既有极大值,也有最大值B.无极大值,但有最大值C.既有极小值,也有最小值D.无极小值,但有最小值22xyFE:+1(a=b0)
9.如图,点为椭圆22的右焦点,ab222My点时圆O:x+yb上一动点(轴右侧),过M作圆的切线交椭圆于A,B两点,若ABF的周长O为3b,则椭圆的离心率为()E2253A.B.C.D.3232Rf(−x)+f(x)x2x0
10.定义在上的可导函数f(x)满足,当时,f'(x)x,则不等式132f(x+1)−f(2x)+x−x的解集为()22A.[1,+)B.(−,1]C.(−,2]D.[2,+)第II卷(非选择题共110分)
二、填空题(本大题共7小题,多空题每小题6分,单空题每小题4分,共36分.)
11.集合,,则,U{x|1=x9,xN}A{1,3,5,7},B{5,6,7,8,9}AB(CA)(CB).UU32
12.若sin(−),=(0,),则sin,sin2+cos.452
13.双曲线E:4x2−y21,则渐近线方程为,以焦点为圆心,与渐近线相切得圆的面积为.
14.已知x2+x8a=+a(2+x)+a(2+x)2++a(2+x)8,则a,01287a+a+a++a+a.01278
15.甲乙两袋中各有4个大小相同,形状一样,质地均匀的小球,其中甲袋中3红1白,乙袋中3白1红,现同时从甲乙两袋中各摸出2个球交换,则交换后甲袋中红球的个数的数学期望E().
16.已知满足|a|2,(a=+b)b8,则的取值范围为.a,baba
17.设函数f(x)1=−x+4−x,g(x)(a=R),若对任意的x(0,1),恒有f(x)xag(x)成立,则实数的取值范围是多少?
全部题请看图片如下:
[img]2022全国乙卷理科数学试卷及答案解析
十年寒窗标记的生活刻度难以磨灭,伏案苦读也没法用一句“俱往矣”概括,高考注定将是莘莘学子生活之书里浓墨重彩的章节。下面我为大家带来2022全国乙卷理科数学试卷及答案解析,希望对您有帮助,欢迎参考阅读!
2022全国乙卷理科数学试卷及答案解析
高考数学解题技巧
1、首先是精选题目,做到少而精。只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。
2、其次是分析题目。解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学 方法 的灵活应用能力。例如,许多三角方面的题目都是把角、函数名、结构形式统一后就可以解决问题了,而选择怎样的三角公式也是成败的关键。
3、最后,题目 总结 。解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足的,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结:
①在知识方面,题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。②在方法方面:如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。③能不能把解题过程概括、归纳成几个步骤(比如用数学归纳法证明题目就有很明显的三个步骤)。④能不能归纳出题目的类型,进而掌握这类题目的解题通法(我们反对老师把现成的题目类型给学生,让学生拿着题目套类型,但我们鼓励学生自己总结、归纳题目类型)。
高考数学知识点
第一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二、平面向量和三角函数。
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。
第三、数列。
数列这个板块,重点考两个方面:一个通项;一个是求和。
第四、空间向量和立体几何,在里面重点考察两个方面:一个是证明;一个是计算。
第五、概率和统计。
这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。
第六、解析几何。
这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括:
第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法;
第二类我们所讲的动点问题;
第三类是弦长问题;
第四类是对称问题,这也是2008年高考已经考过的一点;
第五类重点问题,这类题时往往觉得有思路,但是没有答案,
当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
第七、押轴题。
考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。
高三数学 知识点总结:抽样方法
随机抽样
简介
(抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征是从总体中逐个抽取;
优点:操作简便易行
缺点:总体过大不易实行
方法
(1)抽签法
一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
(抽签法简单易行,适用于总体中的个数不多时。当总体中的个体数较多时,将总体“搅拌均匀”就比较困难,用抽签法产生的样本代表性差的可能性很大)
(2)随机数法
随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。
分层抽样
简介
分层抽样主要特征分层按比例抽样,主要使用于总体中的个体有明显差异。共同点:每个个体被抽到的概率都相等N/M。
定义
一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样。
整群抽样
定义
什么是整群抽样
整群抽样又称聚类抽样。是将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群;然后以群为抽样单位抽取样本的一种抽样方式。
应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。
优缺点
整群抽样的优点是实施方便、节省经费;
整群抽样的缺点是往往由于不同群之间的差异较大,由此而引起的抽样误差往往大于简单随机抽样。
实施步骤
先将总体分为i个群,然后从i个群钟随即抽取若干个群,对这些群内所有个体或单元均进行调查。抽样过程可分为以下几个步骤:
一、确定分群的标注
二、总体(N)分成若干个互不重叠的部分,每个部分为一群。
三、据各样本量,确定应该抽取的群数。
四、采用简单随机抽样或系统抽样方法,从i群中抽取确定的群数。
例如,调查中学生患近视眼的情况,抽某一个班做统计;进行产品检验;每隔8h抽1h生产的全部产品进行检验等。
与分层抽样的区别
整群抽样与分层抽样在形式上有相似之处,但实际上差别很大。
分层抽样要求各层之间的差异很大,层内个体或单元差异小,而整群抽样要求群与群之间的差异比较小,群内个体或单元差异大;
分层抽样的样本是从每个层内抽取若干单元或个体构成,而整群抽样则是要么整群抽取,要么整群不被抽取。
系统抽样
定义
当总体中的个体数较多时,采用简单随机抽样显得较为费事。这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样。
步骤
一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:
(1)先将总体的N个个体编号。有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;
(2)确定分段间隔k,对编号进行分段。当N/n(n是样本容量)是整数时,取k=N/n;
(3)在第一段用简单随机抽样确定第一个个体编号l(l≤k);
(4)按照一定的规则抽取样本。通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本。
2022全国乙卷理科数学试题及答案解析相关 文章 :
★ 2022北京卷高考文科数学试题及答案解析
★ 2022全国甲卷文科数学卷试题及答案一览
★ 2022年全国乙卷高考语文真题试卷及答案解析(未公布)
★ 2022高考甲卷数学真题试卷及答案
★ 2022高考全国甲卷数学试题及答案
★ 2022年全国新高考2卷语文真题及答案解析
★ 2021年高考全国甲卷数学理科答案
★ 数学考试试卷及答案大全
★ 数学考试试卷及答案大全
★ 2017年中考数学试题附答案
2020届全国100所名校最新高考模拟示范卷理科数学(一)(二)(三)的答案!!!
高中数学合集百度网盘下载
链接:
?pwd=1234
提取码:1234
简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。
求2011年普通高等学校招生全国统一考试模拟试题〔一〕衡水中学调研卷 理数
这个网上估计找不到,以前我们学校做衡中的题目,都是买的。
初三数学上期末调研测试卷及答案
对于初三数学期末考试的复习,制定计划做数学试题更有利于数学的学习和备考。
初三数学上期末调研测试卷
一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)
1.sin60°的值是
A. B. C.1 D.
2.图1是一个球体的一部分,下列四个选项中是它的俯视图的是
3.用配方法解方程 ,下列配方正确的是
A. B.
C. D.
4.图2是我们学过的反比例函数图象,它的函数解析式可能是
A. B. C. D.
5.如图3,已知∠BAD=∠CAD,则下列条件中不一定能使
△ABD≌△ACD的是
A.∠B=∠C B.∠BDA=∠CDA
C.AB=AC D.BD=CD
6.过某十 字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为
A. B. C. D.
7.矩形具有而菱形不具有的性质是
A.对角线互相平分 B.对角线互相垂直
C.对角线相等 D.是中心对称图形
8.关于二次函数 ,下列说法中正确的是
A.它的开口方向是向上 B.当x –1时,y随x的增大而增大
C.它的顶点坐标是(–2,3) D.当x = 0时,y有最小值是3
9.如图4,已知A是反比例函数 (x 0)图象上的一个
动点,B是x轴上的一动点,且AO=AB.那么当点A在图
象上自左向右运动时,△AOB的面积
A.增大 B.减小 C.不变 D.无法确定
10.如图5,已知AD是△ABC的高,EF是△ABC的中位线,
则下列结论中错误的是
A.EF⊥AD B.EF= BC
C.DF= AC D.DF= AB
11.某公司今年产值200万元,现计划扩大生产,使今后两年的产值都比前一年增长一个相同的百分数,这样三年(包括今年)的总产值就达到了1400万元.设这个百分数为x,则可列方程为
A.
B.
C.
D.
12.如图6,已知抛物线 与x轴分别交于A、B两点,顶点为M.将抛物线l1沿x轴翻折后再向左平移得到抛物线l2.若抛物线l2过点B,与x轴的另一个交点为C,顶点为N,则四边形AMCN的面积为
A.32 B.16 C.50 D.40
第二部分(非选择题,共64分)
二、填空题(每小题3分,共12分。)请把答案填在答题卷相应的表格里。
13.2011年深圳大运会期间,在一个有3000人的小区里,小明随机调查了其中的500人,发现有450人看深圳电视台的大运会晚间新闻.那么在该小区里随便问一人,他看深圳电视台的大运会晚间新闻的概率大约是答案请填在答题表内.
14.若方程 的一个根为1,则b的值为答案 请填在答题表内.
15.如图7,甲、乙两盏路灯相距20米,一天晚上,当小刚
从灯甲底部向灯乙底部直行16米时,发现自己的身影顶
部正好接触到路灯乙的底部,已知小刚的身高为1.6米,
那么路灯甲的高为答案请填在答题表内米.
16.如图8,四边形ABCD是边长为2的正方形,E是AD边上一点,将△CDE绕点C沿逆时针方向旋转至△CBF,连接EF交BC于点G.若EC=EG,则DE = 答案请填在答题表内.
三、解答题(本题共7小题,共52分)
17.(本题 5分)计算:
18.(本题5分)解方程:
19.(本题8分)如图9,等腰梯形ABCD中,AB//CD,AD = BC = CD,对角线BD⊥AD,DE⊥AB于E,CF⊥BD于F.
(1)求证:△ADE≌△CDF;(4分)
(2)若AD = 4,AE=2,求EF的长.(4分)
(1)转动该转盘一次,则指针指在红色区域内的概率为_______;
(2分)
(2)转动该转盘两次,如果指针两次指在的颜色能配成紫色(红
色和蓝色一起可配成紫色),那么游戏者便能获胜.请用列
表法或画树状图的方法求出游戏者能获胜的概率.(6分)
21.(本题8分)如图11,A、B、C是三座城市,A市在B市的正西方向.C市在A市北偏东60º的方向,在B市北偏东30º的方向.这三座城市之间有高速公路l1、l2、l3相互贯通.小亮驾车从A市出发,以平均每小时80公里的速度沿高速公路l2向C市驶去,3小时后小亮到达了C市.
(1)求C市到高速公路l1的最短距离;(4分)
(2)如果小亮以相同的速度从C市沿C→B→A的路线从高速公路返回A市.那么经过多长时间后,他能回到A市?(结果精确到0.1小时)( )(4分)
22.(本题9分)阅读材料:
(1)对于任意实数a和b,都有 ,∴ ,于是得到 ,当且仅当a = b时,等号成立.
(2)任意一个非负实数都可写成一个数的平方的形式。即:如果 ,则 .如:2= , 等.
例:已知a 0,求证: .
证明:∵a 0,∴
∴ ,当且仅当 时,等号成立。
请解答下列问题:
某园艺公司准备围建一个矩形花圃,其中一边靠墙(墙足够长),另外三边用篱笆围成(如图12所示).设垂直于墙的一边长为x米.
(1)若所用的篱笆长为36米,那么:
①当花圃的面积为144平方米时,垂直于墙的一边的长为多少米?(3分)
②设花圃的面积为S米2,求当垂直于墙的一边的长为多少米时,这个花圃的面积最大?并求出这个最大面积;(3分)
(2)若要围成面积为200平方米的花圃,需要用的篱笆最少是多少米?(3分)
23(本题9分)如图13-1,已知抛物线 (a≠0)与x轴交于A(–1,0)、B(3,0)两点,与y轴交于点C(0,3).
(1)求抛物线的函数表达式;(3分)
(2)若矩形EFMN的顶点F、M在位于x轴上方的抛物线上,一边EN在x轴上(如图13-2).设点E的坐标为(x,0),矩形EFMN的周长为L,求L的最大值及此时点E的坐标;(3分)
(3)在(2)的前提下(即当L取得最大值时),在抛物线对称轴上是否存在一点P,使△PMN沿直线PN折叠后,点M刚好落在y轴上?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由.(3分)
初三数学上期末调研测试卷答案
一、选择题(每小题3分,共36分)
BCBAD ACBCD DA
二、填空题(每小题3分,共12分)
13.0.9; 14. 4 ; 15. 8 ; 16.
三、解答题
17.解:原式 = 2分(每写对一个函数值得1分)
= 3–1 4分(每算对一个运算得1分)
= 2 5 分
18.解法一:移项得 1分
配方得
2分
即 或 3分
∴ , 5分
解法二:∵ , ,
∴ 1分
∴ 3分
∴ , 5分
解法三:原方程可化为 1分
∴x–1 = 0或x–3 = 0 3分
∴ , 5分
19.(1)证明:∵DE⊥AB,AB//CD
∴DE⊥CD
∴∠1+∠3=90º 1分
∵BD⊥AD
∴∠2+∠3=90º
∴∠1=∠2 2分
∵CF⊥BD,DE⊥AB
∴∠CFD=∠AED=90º 3分
∵AD=CD
∴△ADE≌△CDF 4分
(2)解:∵DE⊥AB,AE=2,AD=4
∴∠2=30º,DE= 5分
∴∠3=90º–∠2=60º
∵△ADE≌△CDF
∴DE=DF 6分
∴△DEF是等边三角形
∴EF=DF= 7分
(注:用其它方法解答的,请根据此标准酌情给分)
20.(1) 2分
红 黄 蓝
红 (红,红) (黄,红) (蓝,红)
黄 (红,黄) (黄,黄) (蓝,黄)
蓝 (红,蓝) (黄,蓝) (蓝,蓝)
(2)解:列表得
结果共有9种可能,其中能成紫色的有2种
∴P(获胜)=
(说明:第(2)小题中,列表可画树状图得4分,求出概率得2分,共6分)
21.(1)解:过点C作CD⊥l1于点D,则已知得 1分
AC=3×80=240(km),∠CAD=30º 2分
∴CD= AC= ×240=120(km)3分
∴C市到高速公路l1的最短距离是120km。4分
(2)解:由已知得∠CBD=60º
在Rt△CBD中,
∵sin∠CBD=
∴BC= 5分
∵∠ACB=∠CBD–∠CAB=60º–30º=30º
∴∠ACB=∠CAB=30º
∴AB=BC= 6分
∴t = 7分
答:经过约3.5小时后,他能回到A市。8分
(注:用其它方法解答的,请根据此标准酌情给分)
22.(1)解:由题意得 1分
化简后得
解得: , 2分
答:垂直于墙的一边长为6米或12米。 3分
(2)解:由题意得
S = 4分
= 5分
∵a =–20,∴当x = 9时,S取得最大值是162
∴当垂直于墙的一边长为9米时,S取得最大值,最大面积是162m2。6分
(3)解:设所需的篱笆长为L米,由题意得
7分
即: 8分
∴若要围成面积为200平方米的花圃,需要用的篱笆最少是40米,9分
23.(1)解:由题意可设抛物线为 1分
抛物线过点(0,3)
解得:a =–1 2分
抛物线的解析式为:
即: 3分
(2)解:由(1)得抛物线的对称轴为直线x = 1
∵E(x,0),
∴F(x, ),EN = 4分
∴
化简得 5分
∵–20,
∴当x = 0时,L取得最大值是10,
此时点E的坐标是(0,0) 6分
(3)解:由(2)得:E(0,0),F(0,3),M(2,3),N(2,0)
设存在满足条件的点P(1,y),
并设折叠后点M的对应点为M1
∴ NPM=NPM1=90,PM=PM1
PG = 3–y,GM=1,PH = | y |,HN = 1
∵∠NPM=90º
∴
∴
解得: ,
∴点P的坐标为(1, )或(1, )7分
当点P的坐标为(1, )时,连接PC
∵PG是CM的垂直平分线,∴PC=PM
∵PM=PM1,∴PC=PM=PM1
∴∠M1CM = 90º
∴点M1在y轴上8分
同理可得当点P的坐标为(1, )时,点M1也在y轴上9分
故存在满足条件的点P,点P的坐标为(1, )或(1, )
(说明:能正确求出一个点的坐标并能说明点M刚好落在y轴上,得2分)
关于模拟调研卷理科数学答案和模拟调研卷理科数学答案的介绍到此就结束了,不知道同学们从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。