高一周测卷数学二十二(高一2020数学)

本篇文章给同学们谈谈高一周测卷数学二十二,以及高一2020数学对应的知识点,希望对各位同学有所帮助,不要忘记分享给你的朋友哦!

本文目录一览:

高一数学测试卷

松山区2006-2007学年度上学期期中考试试题

高一数学 2006.11

一.选择题(本题共12小题,每小题5分,共60分。)

1. 下列各组对象能构成集合的是( )

A.赤峰的小河流 B.方程 的解 C.接近于 的数的 D.所有的穷人

2.集合 的真子集的个数为( ) A. 3 B. 6 C. 8 D. 7

3.设 , , ,则 ( )

A. B. C. D.

4、如果命题“p或q”与命题“非p”都是真命题,那么( )

A.命题p不一定是假命题 B.命题q一定是真命题

C.命题q不一定是真命题 D.命题p与q的真值相同

5、如果( )在映射 作用下的象是 ,则(1,2)的原象是( )

A.(0, 3) B.(4,1) C.(0, 1) D.(0,1)

6、已知函数f(x) 的定义域是 [ ],那么函数y= f (2x) 的定义域是( )

A. B. C. D.

7、不等式 的解集为 ,则 的值是( )

A. B. C. D.

8. 则 ( )

A.2x+1 B.2 x-1 C.2 x-3 D.2 x +7

9、函数 的单调递减区间是( )

A. B. C. D.

10.函数y= x2的图象经过怎样的变换可以得到y=(x+1)2 +1的图象( )

A. 向左平移1个单位,再向下平移1个单位.

B. 向左平移1个单位,再向上平移1个单位.

C. 向右平移1个单位,再向上平移1个单位.

D. 向右平移1个单位,再向下平移1个单位.

11、已知A、B两地相距150千米,某人开汽车以60千米/小时的速度从A地到达B地,在B地停留1小时后再以50千米/小时的速度返回A地,把汽车离开A地的距离x表示为时间t(小时)的函数表达式是 ( )

A.x=60t B.x=60t+50t

C. x= D.x=

12、给出下列命题:

①命题“若b=3,则b2=9”的逆命题;

②命题“相似三角形的对应角相等”的否命题;

③命题“若 则 有实数根”的逆否命题;

④“ab”是“a2b2”的充分条件;

⑤“a5”是“a3”的必要条件;

其中真命题的个数是 ( )

A.1 B.2 C.3 D.4

二.填空题(本题共4小题,每小题4分,共16分。)

13.函数 的值域为:________.

14.已知函数 ,则 .

15、函数y= 的定义域为 .

16.如果二次函数 在区间 上是减函数,在区间 上是增函数,则 的值是 .

【考生须知】请把选择、填空的答案填在答题纸的相应位置,考试结束后只交答题纸.

松山区2006-2007学年度上学期期中考试试题

高一数学答题纸

得分 阅卷人

一.选择题(本题共12小题,每小题5分,共60分。)

题号 1 2 3 4 5 6 7 8 9 10 11 12

答案

得分 阅卷人

二.填空题(本题共4小题,每小题4分,共16分。)

13. 14.

15. 16.

三.解答题(本大题共6题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤.)

得分 阅卷人

17.(10分) 解不等式组

得分 阅卷人

18.(12分) 已知

(1)求 ;(2)求 、 的解析式.

得分 阅卷人

19.(12分) 已知函数 ,判断并证明 在区间(-1,+∞)上的单调性.

得分 阅卷人

20.(12分) 已知集合A=

(1)若A∪B=B,求实数 的取值范围;

(2)若A∩B≠ ,求实数 的取值范围.

得分 阅卷人

21.(12分) 已知集合A=

(1)若A是空集,求 的取值范围;

(2)若A中只有一个元素,求 的值,并把这个元素写出来;

(3)若A中至多只有一个元素,求 的取值范围。

得分 阅卷人

22.(16分) 已知二次函数 的图象(如图).

求:(1) 二次函数 的解析式;

(2) 二次函数 在区间 上的值域;

(3)解关于 的不等式 .

[url=]免费课件、教案、论文、试卷、在线考试的好地方[/url]

[url=]两万个课件全免费、全册/实录教案、优秀论文、最新试卷[/url]

[img]

请帮助将人教版高一数学试卷复制在下边(急用)

高一数学期末同步测试题

ycy

说明:本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,答题时间120分钟.

第Ⅰ卷(选择题,共60分)

一、选择题:(每小题5分,共60分,请将所选答案填在括号内)

1.函数 的一条对称轴方程是 ( )

A. B. C. D.

2.角θ满足条件sin2θ0,cosθ-sinθ0,则θ在 ( )

A.第一象限 B.第二象限 C.第三象限 D.第四象限

3.己知sinθ+cosθ= ,θ∈(0,π),则cotθ等于 ( )

A. B.- C. ± D.-

4.已知O是△ABC所在平面内一点,若 + + = ,且| |=| |=| |,则△ABC

是 ( )

A.任意三角形 B.直角三角形 C.等腰三角形 D.等边三角形

5.己知非零向量a与b不共线,则 (a+b)⊥(a-b)是|a|=|b|的 ( )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

6.化简 的结果是 ( )

A. B. C. D.

7.已知向量 ,向量 则 的最大值,最小值分别是( )

A. B. C.16,0 D.4,0

8.把函数y=sinx的图象上所有点的横坐标都缩小到原来的一半,纵坐标保持不 变,再把 图象向左平移 个单位,这时对应于这个图象的解析式 ( )

A.y=cos2x B.y=-sin2x

C.y=sin(2x- ) D.y=sin(2x+ )

9. ,则y的最小值为 ( )

A.– 2 B.– 1 C.1 D.

10.在下列区间中,是函数 的一个递增区间的是 ( )

A. B. C. D.

11.把函数y=x2+4x+5的图象按向量 a经一次平移后得到y=x2的图象,则a等于 ( )

A.(2,-1) B.(-2,1) C.(-2,-1) D.(2,1)

12. 的最小正周期是 ( )

A. B. C. D.

第Ⅱ卷(非选择题,共90分)

二、填空题:(每小题4分,共16分,请将答案填在横线上)

13.已知O(0,0)和A(6,3),若点P分有向线段 的比为 ,又P是线段OB的中点,则点B的坐标为________________.

14. ,则 的夹角为_ ___.

15.y=(1+sinx)(1+cosx)的最大值为___ ___.

16.在 中, , ,那么 的大小为___________.

三、解答题:(本大题共74分,17—21题每题12分,22题14分)

17.已知

(I)求 ;

(II)当k为何实数时,k 与 平行, 平行时它们是同向还是反向?

18.已知函数f(x)=2cos2x+ sin2x+a,若x∈[0, ],且| f(x) |<2,求a的取值范围.

19.已知函数 .

(Ⅰ)求函数f (x)的定义域和值域;

(Ⅱ)判断它的奇偶性.

20.设函数 ,其中向量 =(2cosx,1), =(cosx, sin2x),x∈R.

(Ⅰ)若f(x)=1- 且x∈[- , ],求x;

(Ⅱ)若函数y=2sin2x的图象按向量 =(m,n)(|m| )平移后得到函数y=f(x)的图象,

求实数m、n的值.

21.如图,某观测站C在城A的南偏西 方向上,从城A出发有一条公路,走向是南偏东 ,在C处测得距离C处31千米的公路上的B处有一辆正沿着公路向城A驶去,行驶了20千米后到达D处,测得C、D二处间距离为21千米,这时此车距城A多少千米?

22.某港口水深y(米)是时间t ( ,单位:小时)的函数,记作 ,下面是

某日水深的数据

t (小时) 0 3 6 9 12 15 18 21 24

y (米) 10.0 13.0 9.9 7.0 10.0 13.0 10.1 7.0 10.0

经长期观察: 的曲线可近似看成函数 的图象(A 0, )

(I)求出函数 的近似表达式;

(II)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上时认为是安全的.某船吃水深度(船底离水面的距离)为6.5米,如果该船希望在同一天内安全进出港,请问:它至多能在港内停留多长时间?

高一数学测试题—期末试卷参考答案

一、选择题:

1、A2、B3、B4、D 5、C 6、C 7、D 8、A 9、C10、B 11、A12、C

二、填空题:

13、(4,2) 14、 15、 16、

三、解答题:

17.解析:① = (1,0) + 3(2,1) = ( 7,3) , ∴ = = .

②k = k(1,0)-(2,1)=(k-2,-1). 设k =λ( ),即(k-2,-1)= λ(7,3),

∴ . 故k= 时, 它们反向平行.

18.解析:

解得 .

19.解析: (1) 由cos2x≠0得 ,解得x≠ ,所以f(x)的定义域为

且x≠ }

(2) ∵f(x)的定义域关于原点对称且f(-x)=f(x)

∴f(x)为偶函数.

(3) 当x≠ 时

因为

所以f(x)的值域为 ≤ ≤2}

20.解析:(Ⅰ)依题设,f(x)=2cos2x+ sin2x=1+2sin(2x+ ).

由1+2sin(2x+ )=1- ,得sin(2x+ )=- .

∵- ≤x≤ ,∴- ≤2x+ ≤ ,∴2x+ =- ,

即x=- .

(Ⅱ)函数y=2sin2x的图象按向量c=(m,n)平移后得到函数y=2sin2(x-m)+n的图象,即函数y=f(x)的图象.

由(Ⅰ)得 f(x)=2sin2(x+ )+1. ∵|m| ,∴m=- ,n=1.

21.解析:在 中, , ,

,由余弦定理得

所以 .

在 中,CD=21,

= .

由正弦定理得

(千米).所以此车距城A有15千米.

22.解析:(1)由已知数据,易知 的周期为T = 12

由已知,振幅

(2)由题意,该船进出港时,水深应不小于5 + 6.5 = 11.5(米)

故该船可在当日凌晨1时进港,17时出港,它在港内至多停留16小时.

高一必修一数学函数的应用测试题及答案参考

一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)

1.设U=R,A={x|x0},B={x|x1},则A∩?UB=()

A{x|0≤x1} B.{x|0

C.{x|x0 d="" x=""1}

【解析】 ?UB={x|x≤1},∴A∩?UB={x|0

【答案】 B

2.若函数y=f(x)是函数y=ax(a0,且a≠1)的反函数,且f(2)=1,则f(x)=()

A.log2x B.12x

C.log12x D.2x-2

【解析】 f(x)=logax,∵f(2)=1,

∴loga2=1,∴a=2.

∴f(x)=log2x,故选A.

【答案】 A

3.下列函数中,与函数y=1x有相同定义域的是()

A.f(x)=ln x B.f(x)=1x

C.f(x)=|x| D.f(x)=ex

【解析】 ∵y=1x的定义域为(0,+∞).故选A.

【答案】 A

4.已知函数f(x)满足:当x≥4时,f(x)=12x;当x4时,f(x)=f(x+1).则f(3)=()

A.18 B.8

C.116 D.16

【解析】 f(3)=f(4)=(12)4=116.

【答案】 C

5.函数y=-x2+8x-16在区间[3,5]上()

A.没有零点 B.有一个零点

C.有两个零点 D.有无数个零点

【解析】 ∵y=-x2+8x-16=-(x-4)2,

∴函数在[3,5]上只有一个零点4.

【答案】 B

6.函数y=log12(x2+6x+13)的值域是()

A.R B.[8,+∞)

C.(-∞,-2] D.[-3,+∞)

【解析】 设u=x2+6x+13

=(x+3)2+4≥4

y=log12u在[4,+∞)上是减函数,

∴y≤log124=-2,∴函数值域为(-∞,-2],故选C.

【答案】 C

7.定义在R上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是()

A.y=x2+1 B.y=|x|+1

C.y=2x+1,x≥0x3+1,x0 D.y=ex,x≥0e-x,x0

【解析】 ∵f(x)为偶函数,由图象知f(x)在(-2,0)上为减函数,而y=x3+1在(-∞,0)上为增函数.故选C.

【答案】 C

8.设函数y=x3与y=12x-2的图象的交点为(x0,y0),则x0所在的区间是()

A.(0,1) B.(1,2)

C(2,3) D.(3,4)

【解析】 由函数图象知,故选B.

【答案】 B

9.函数f(x)=x2+(3a+1)x+2a在(-∞,4)上为减函数,则实数a的取值范围是()

A.a≤-3 B.a≤3

C.a≤5 D.a=-3

【解析】 函数f(x)的对称轴为x=-3a+12,

要使函数在(-∞,4)上为减函数,

只须使(-∞,4)?(-∞,-3a+12)

即-3a+12≥4,∴a≤-3,故选A.

【答案】 A

10.某新品牌电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则下列函数模型中能较好反映销量y与投放市场的月数x之间的关系的是()

A.y=100x B.y=50x2-50x+100

C.y=50×2x D.y=100log2x+100

【解析】 对C,当x=1时,y=100;

当x=2时,y=200;

当x=3时,y=400;

当x=4时,y=800,与第4个月销售790台比较接近.故选C.

【答案】 C

11.设log32=a,则log38-2 log36可表示为()

A.a-2 B.3a-(1+a)2

C.5a-2 D.1+3a-a2

【解析】 log38-2log36=log323-2log3(2×3)

=3log32-2(log32+log33)

=3a-2(a+1)=a-2.故选A.

【答案】 A

12.已知f(x)是偶函数,它在[0,+∞)上是减函数.若f(lg x)f(1),则x的取值范围是()

A.110,1 B.0,110∪(1,+∞)

C.110,10 D.(0,1)∪(10,+∞)

【解析】 由已知偶函数f(x)在[0,+∞)上递减,

则f(x)在(-∞,0)上递增,

∴f(lg x)f(1)?0≤lg x1,或lg x0-lg x1

?1≤x10,或0

或110

∴x的取值范围是110,10.故选C.

【答案】 C

二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)

13.已知全集U={2,3,a2-a-1},A={2,3},若?UA={1},则实数a的值是________.

【答案】 -1或2

14.已知集合A={x|log2x≤2},B=(-∞,a),若A?B,则实数a的取值范围是(c,+∞),其中c=________.

【解析】 A={x|0

【答案】 4

15.函数f(x)=23x2-2x的单调递减区间是________.

【解析】 该函数是复合函数,可利用判断复合函数单调性的方法来求解,因为函数y=23u是关于u的减函数,所以内函数u=x2-2x的递增区间就是函数f(x)的递减区间.令u=x2-2x,其递增区间为[1,+∞),根据函数y=23u是定义域上的减函数知,函数f(x)的减区间就是[1,+∞).

【答案】 [1,+∞)

16.有下列四个命题:

①函数f(x)=|x||x-2|为偶函数;

②函数y=x-1的值域为{y|y≥0};

③已知集合A={-1,3},B={x|ax-1=0,a∈R},若A∪B=A,则a的取值集合为{-1,13};

④集合A={非负实数},B={实数},对应法则f:“求平方根”,则f是A到B的映射.你认为正确命题的序号为:________.

【解析】 函数f(x)=|x||x-2|的定义域为(-∞,2)∪

(2,+∞),它关于坐标原点不对称,所以函数f(x)=|x||x-2|既不是奇函数也不是偶函数,即命题①不正确;

函数y=x-1的定义域为{x|x≥1},当x≥1时,y≥0,即命题②正确;

因为A∪B=A,所以B?A,若B=?,满足B?A,这时a=0;若B≠?,由B?A,得a=-1或a=13.因此,满足题设的实数a的取值集合为{-1,0,13},即命题③不正确;依据映射的定义知,命题④正确.

【答案】 ②④

三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)

17.(本小题满分12分)已知函数f(x)=x2-3x-10的两个零点为x1,x2(x1

【解析】 A={x|x≤-2,或x≥5}.

要使A∩B=?,必有2m-1≥-2,3m+2≤5,3m+22m-1,

或3m+22m-1,

解得m≥-12,m≤1,m-3,或m-3,即-12≤m≤1,或m-3.

18.(本小题满分12分)已知函数f(x)=x2+2ax+2,x∈[-5,5].

(1)当a=-1时,求f(x)的最大值和最小值;

(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.

【解析】 (1)当a=-1时,

f(x)=x2-2x+2=(x-1)2+1,x∈[-5,5].

由于f(x)的对称轴为x=1,结合图象知,

当x=1时,f(x)的最小值为1,

当x=-5时,f(x)的最大值为37.

(2)函数f(x)=(x+a)2+2-a2的图象的对称轴为x=-a,

∵f(x)在区间[-5,5]上是单调函数,

∴-a≤-5或-a≥5.

故a的取值范围是a≤-5或a≥5.

19.(本小题满分12分)(1)计算:27912+(lg5)0+(2764)-13;

(2)解方程:log3(6x-9)=3.

【解析】 (1)原式

=25912+(lg5)0+343-13

=53+1+43=4.

(2)由方程log3(6x-9)=3得

6x-9=33=27,∴6x=36=62,∴x=2.

经检验,x=2是原方程的解.

20.(本小题满分12分)有一批影碟机(VCD)原销售价为每台800元,在甲、乙两家商场均有销售,甲商场用下面的方法促销:买一台单价为780元,买两台单价为760元,依次类推,每多买一台单价均减少20元,但每台最低不低于440元;乙商场一律按原价的75%销售,某单位需购买一批此类影碟机,问去哪家商场购买花费较少?

【解析】 设购买x台,甲、乙两商场的差价为y,则去甲商场购买共花费(800-20x)x,由题意800-20x≥440.

∴1≤x≤18(x∈N).

去乙商场花费800×75%x(x∈N*).

∴当1≤x≤18(x∈N*)时

y=(800-20x)x-600x=200x-20x2,

当x18(x∈N*)时,y=440x-600x=-160x,

则当y0时,1≤x≤10;

当y=0时,x=10;

当y0 x=""10(x∈N).

综上可知,若买少于10台,去乙商场花费较少;若买10台,甲、乙商场花费相同;若买超过10台,则去甲商场花费较少.

21.(本小题满分12分)已知函数f(x)=lg(1+x)-lg(1-x).

(1)求函数f(x)的定义域;

(2)判断函数f(x)的奇偶性;

【解析】 (1)由1+x0,1-x0,得-1

∴函数f(x)的定义域为(-1,1).

(2)定义域关于原点对称,对于任意的x∈(-1,1),

有-x∈(-1,1),

f(-x)=lg(1-x)-lg(1+x)=-f(x)

∴f(x)为奇函数.

22.(本小题满分14分)设a0,f(x)=exa+aex是R上的偶函数.

(1)求a的值;

(2)证明:f(x)在(0,+∞)上是增函数.

【解析】 (1)解:∵f(x)=exa+aex是R上的偶函数,

∴f(x)-f(-x)=0.

∴exa+aex-e-xa-ae-x=0,

即1a-aex+a-1ae-x=0

1a-a(ex-e-x)=0.

由于ex-e-x不可能恒为0,

∴当1a-a=0时,式子恒成立.

又a0,∴a=1.

(2)证明:∵由(1)知f(x)=ex+1ex,

在(0,+∞)上任取x1

f(x1)-f(x2)=ex1+1ex1-ex2-1ex2

=(ex1-ex2)+(ex2-ex1)?1ex1+x2.

∵e1,∴0

∴ex1+x21,(ex1-ex2)1-1ex1+x20,

∴f(x1)-f(x2)0,即f(x1)

∴f(x)在(0,+∞)上是增函数.

我为大家提供的高一必修一数学函数的应用测试题,大家仔细阅读了吗?最后祝同学们学习进步。

关于高一周测卷数学二十二和高一2020数学的介绍到此就结束了,不知道同学们从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

本文转载自互联网,如有侵权,联系删除