模拟调研卷数学(2023年全国高考模拟调研卷数学)

本篇文章给同学们谈谈模拟调研卷数学,以及2023年全国高考模拟调研卷数学对应的知识点,希望对各位同学有所帮助,不要忘记分享给你的朋友哦!

本文目录一览:

初三数学上期末调研测试卷及答案

对于初三数学期末考试的复习,制定计划做数学试题更有利于数学的学习和备考。

初三数学上期末调研测试卷

一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)

1.sin60°的值是

A. B. C.1 D.

2.图1是一个球体的一部分,下列四个选项中是它的俯视图的是

3.用配方法解方程 ,下列配方正确的是

A. B.

C. D.

4.图2是我们学过的反比例函数图象,它的函数解析式可能是

A. B. C. D.

5.如图3,已知∠BAD=∠CAD,则下列条件中不一定能使

△ABD≌△ACD的是

A.∠B=∠C B.∠BDA=∠CDA

C.AB=AC D.BD=CD

6.过某十 字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为

A. B. C. D.

7.矩形具有而菱形不具有的性质是

A.对角线互相平分 B.对角线互相垂直

C.对角线相等 D.是中心对称图形

8.关于二次函数 ,下列说法中正确的是

A.它的开口方向是向上 B.当x –1时,y随x的增大而增大

C.它的顶点坐标是(–2,3) D.当x = 0时,y有最小值是3

9.如图4,已知A是反比例函数 (x 0)图象上的一个

动点,B是x轴上的一动点,且AO=AB.那么当点A在图

象上自左向右运动时,△AOB的面积

A.增大 B.减小 C.不变 D.无法确定

10.如图5,已知AD是△ABC的高,EF是△ABC的中位线,

则下列结论中错误的是

A.EF⊥AD B.EF= BC

C.DF= AC D.DF= AB

11.某公司今年产值200万元,现计划扩大生产,使今后两年的产值都比前一年增长一个相同的百分数,这样三年(包括今年)的总产值就达到了1400万元.设这个百分数为x,则可列方程为

A.

B.

C.

D.

12.如图6,已知抛物线 与x轴分别交于A、B两点,顶点为M.将抛物线l1沿x轴翻折后再向左平移得到抛物线l2.若抛物线l2过点B,与x轴的另一个交点为C,顶点为N,则四边形AMCN的面积为

A.32 B.16 C.50 D.40

第二部分(非选择题,共64分)

二、填空题(每小题3分,共12分。)请把答案填在答题卷相应的表格里。

13.2011年深圳大运会期间,在一个有3000人的小区里,小明随机调查了其中的500人,发现有450人看深圳电视台的大运会晚间新闻.那么在该小区里随便问一人,他看深圳电视台的大运会晚间新闻的概率大约是答案请填在答题表内.

14.若方程 的一个根为1,则b的值为答案 请填在答题表内.

15.如图7,甲、乙两盏路灯相距20米,一天晚上,当小刚

从灯甲底部向灯乙底部直行16米时,发现自己的身影顶

部正好接触到路灯乙的底部,已知小刚的身高为1.6米,

那么路灯甲的高为答案请填在答题表内米.

16.如图8,四边形ABCD是边长为2的正方形,E是AD边上一点,将△CDE绕点C沿逆时针方向旋转至△CBF,连接EF交BC于点G.若EC=EG,则DE = 答案请填在答题表内.

三、解答题(本题共7小题,共52分)

17.(本题 5分)计算:

18.(本题5分)解方程:

19.(本题8分)如图9,等腰梯形ABCD中,AB//CD,AD = BC = CD,对角线BD⊥AD,DE⊥AB于E,CF⊥BD于F.

(1)求证:△ADE≌△CDF;(4分)

(2)若AD = 4,AE=2,求EF的长.(4分)

(1)转动该转盘一次,则指针指在红色区域内的概率为_______;

(2分)

(2)转动该转盘两次,如果指针两次指在的颜色能配成紫色(红

色和蓝色一起可配成紫色),那么游戏者便能获胜.请用列

表法或画树状图的方法求出游戏者能获胜的概率.(6分)

21.(本题8分)如图11,A、B、C是三座城市,A市在B市的正西方向.C市在A市北偏东60º的方向,在B市北偏东30º的方向.这三座城市之间有高速公路l1、l2、l3相互贯通.小亮驾车从A市出发,以平均每小时80公里的速度沿高速公路l2向C市驶去,3小时后小亮到达了C市.

(1)求C市到高速公路l1的最短距离;(4分)

(2)如果小亮以相同的速度从C市沿C→B→A的路线从高速公路返回A市.那么经过多长时间后,他能回到A市?(结果精确到0.1小时)( )(4分)

22.(本题9分)阅读材料:

(1)对于任意实数a和b,都有 ,∴ ,于是得到 ,当且仅当a = b时,等号成立.

(2)任意一个非负实数都可写成一个数的平方的形式。即:如果 ,则 .如:2= , 等.

例:已知a 0,求证: .

证明:∵a 0,∴

∴ ,当且仅当 时,等号成立。

请解答下列问题:

某园艺公司准备围建一个矩形花圃,其中一边靠墙(墙足够长),另外三边用篱笆围成(如图12所示).设垂直于墙的一边长为x米.

(1)若所用的篱笆长为36米,那么:

①当花圃的面积为144平方米时,垂直于墙的一边的长为多少米?(3分)

②设花圃的面积为S米2,求当垂直于墙的一边的长为多少米时,这个花圃的面积最大?并求出这个最大面积;(3分)

(2)若要围成面积为200平方米的花圃,需要用的篱笆最少是多少米?(3分)

23(本题9分)如图13-1,已知抛物线 (a≠0)与x轴交于A(–1,0)、B(3,0)两点,与y轴交于点C(0,3).

(1)求抛物线的函数表达式;(3分)

(2)若矩形EFMN的顶点F、M在位于x轴上方的抛物线上,一边EN在x轴上(如图13-2).设点E的坐标为(x,0),矩形EFMN的周长为L,求L的最大值及此时点E的坐标;(3分)

(3)在(2)的前提下(即当L取得最大值时),在抛物线对称轴上是否存在一点P,使△PMN沿直线PN折叠后,点M刚好落在y轴上?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由.(3分)

初三数学上期末调研测试卷答案

一、选择题(每小题3分,共36分)

BCBAD ACBCD DA

二、填空题(每小题3分,共12分)

13.0.9; 14. 4 ; 15. 8 ; 16.

三、解答题

17.解:原式 = 2分(每写对一个函数值得1分)

= 3–1 4分(每算对一个运算得1分)

= 2 5 分

18.解法一:移项得 1分

配方得

2分

即 或 3分

∴ , 5分

解法二:∵ , ,

∴ 1分

∴ 3分

∴ , 5分

解法三:原方程可化为 1分

∴x–1 = 0或x–3 = 0 3分

∴ , 5分

19.(1)证明:∵DE⊥AB,AB//CD

∴DE⊥CD

∴∠1+∠3=90º 1分

∵BD⊥AD

∴∠2+∠3=90º

∴∠1=∠2 2分

∵CF⊥BD,DE⊥AB

∴∠CFD=∠AED=90º 3分

∵AD=CD

∴△ADE≌△CDF 4分

(2)解:∵DE⊥AB,AE=2,AD=4

∴∠2=30º,DE= 5分

∴∠3=90º–∠2=60º

∵△ADE≌△CDF

∴DE=DF 6分

∴△DEF是等边三角形

∴EF=DF= 7分

(注:用其它方法解答的,请根据此标准酌情给分)

20.(1) 2分

红 黄 蓝

红 (红,红) (黄,红) (蓝,红)

黄 (红,黄) (黄,黄) (蓝,黄)

蓝 (红,蓝) (黄,蓝) (蓝,蓝)

(2)解:列表得

结果共有9种可能,其中能成紫色的有2种

∴P(获胜)=

(说明:第(2)小题中,列表可画树状图得4分,求出概率得2分,共6分)

21.(1)解:过点C作CD⊥l1于点D,则已知得 1分

AC=3×80=240(km),∠CAD=30º 2分

∴CD= AC= ×240=120(km)3分

∴C市到高速公路l1的最短距离是120km。4分

(2)解:由已知得∠CBD=60º

在Rt△CBD中,

∵sin∠CBD=

∴BC= 5分

∵∠ACB=∠CBD–∠CAB=60º–30º=30º

∴∠ACB=∠CAB=30º

∴AB=BC= 6分

∴t = 7分

答:经过约3.5小时后,他能回到A市。8分

(注:用其它方法解答的,请根据此标准酌情给分)

22.(1)解:由题意得 1分

化简后得

解得: , 2分

答:垂直于墙的一边长为6米或12米。 3分

(2)解:由题意得

S = 4分

= 5分

∵a =–20,∴当x = 9时,S取得最大值是162

∴当垂直于墙的一边长为9米时,S取得最大值,最大面积是162m2。6分

(3)解:设所需的篱笆长为L米,由题意得

7分

即: 8分

∴若要围成面积为200平方米的花圃,需要用的篱笆最少是40米,9分

23.(1)解:由题意可设抛物线为 1分

抛物线过点(0,3)

解得:a =–1 2分

抛物线的解析式为:

即: 3分

(2)解:由(1)得抛物线的对称轴为直线x = 1

∵E(x,0),

∴F(x, ),EN = 4分

化简得 5分

∵–20,

∴当x = 0时,L取得最大值是10,

此时点E的坐标是(0,0) 6分

(3)解:由(2)得:E(0,0),F(0,3),M(2,3),N(2,0)

设存在满足条件的点P(1,y),

并设折叠后点M的对应点为M1

∴ NPM=NPM1=90,PM=PM1

PG = 3–y,GM=1,PH = | y |,HN = 1

∵∠NPM=90º

解得: ,

∴点P的坐标为(1, )或(1, )7分

当点P的坐标为(1, )时,连接PC

∵PG是CM的垂直平分线,∴PC=PM

∵PM=PM1,∴PC=PM=PM1

∴∠M1CM = 90º

∴点M1在y轴上8分

同理可得当点P的坐标为(1, )时,点M1也在y轴上9分

故存在满足条件的点P,点P的坐标为(1, )或(1, )

(说明:能正确求出一个点的坐标并能说明点M刚好落在y轴上,得2分)

九年级的数学中考模拟试题卷

上帝创造了整数,所有其余的数都是人造的。下面是九年级的数学中考模拟试题卷,欢迎童鞋们前来学习。

   一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的)

1.形中,既是中心对称图形又是轴对称图形的是„„„„„„„„„

. 2.下列运算正确的是„„„„„„„„„„„„„„„„„„„„„„„„( ▲ ) A. a2+a2=2a4 B.(-a2)3=-a8 C.(-ab)2=2ab2 D.(2a)2÷a=4a

3.使3x-1 有意义的x的取值范围是„„„„„„„„„„„„„„„„„( ▲ ) A.x -13 B.x 13 C.x ≥ 13 D.x ≥-1 3

4.如图,数轴上A、B两点分别对应实数a、b,则下列结论正确的是„„„( ▲ ) A. ab0 B. a-b0 C.a+b0 D.|a|-|b|0

5.已知圆锥的底面半径为4cm,母线长为3cm,则圆锥的侧面积是 „„„„ ( ▲ ) A.15cm2 B.15πcm2 C. 12 cm2 D. 12πcm2

6.如图,平行四边形ABCD中,CE⊥AB于E,若∠A=125°,则∠BCE的度数为( ▲ ) A. 35° B. 55° C. 25° D. 30°

7.如图所示为一个无盖长方体盒子的展开图(重叠部分不计),根据图中数据,可知该无盖长方体的容积为 „„„„„„„„„„„„„„„„„„„„„„„„( ▲ ) A. 4 B.6 C. 8 D.12

8.在下列命题中,真命题是 „„„„„„„„„„„„„„„„„„„„ ( ▲ ) A.两条对角线相等的四边形是矩形 B.两条对角线垂直的四边形是菱形 C.两条对角线垂直且相等的四边形是正方形 D.两条对角线相等的平行四边形是矩形

9.如图,在平面直角坐标系中,A(1,0),B(0,3),以AB为边在第一象限作正方形ABCD,点D在双曲线y=k x(k≠0)上,将正方形沿x轴负方向平移 m个单位长度后,点C恰好落 在双曲线上,则m的值是 „„„„„„„„„„„„„„„„„„„„„( ▲ ) A. 2 B. 3 C. 2 D. 3

10.已知如图,直角三角形纸片中,∠C=90°,AC=6,BC=8,若要在纸片中剪出两个相外切的等圆,则圆的半径最大为„„„„„„„„„„„„„„„„„„„( ▲ ) A. 4 3 B. 107 C. 1 D. 125

二、填空题(本大题共8小题,每空2 分,共16分.不需写出解答过程,只需把答案直接填写在答题卷上相应的位置处)

11.因式分解:x3—4x= ▲ .

12.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680 000 000元,这个 数用科学记数法表示为 ▲ 元.

13.若x1,x2是方程x2+2x—3=0的.两根,则x1+x2= ▲ .

14.六边形的内角和等于 ▲ °.

15.如图,将△ABC沿它的中位线MN折叠后,点A落在点A′处,若∠A=28°,∠B=130°, 则∠A′NC= ▲ °.

16.如图,△ABC中,∠A=90°,∠C=75°,AC=6,DE垂直平分BC,则BE= ▲ .

17.如图,点C、D分别在⊙O的半径OA、OB的延长线上,且OA=6,AC=4,CD平行 于AB,并与AB相交于MN两点.若tan∠C=1 2 ,则CN的长为 ▲ .

18.已知梯形ABCD,AD∥BC,AB⊥BC,AD=1,AB=3,BC=4.若P为线段AB上任 意一点,延长PD到E,使DE=2PD,再以PE、PC为边作□PCQE,求对角线PQ的最小值 ▲ . (第16题图) A B D C E A B C D O M N (第17题图) A B C D O x y (第9题图) A B C (第10题图) M N B C A’ (第15题图)

三、解答题(本大题共10小题,共计84分.解答时应写出必要的证明过程或演算步骤.

19.(本题8分)

(1)计算:(1 4)-1-27+(5-π)0 (2)(2x-1)2+(x-2)(x+2)-4x(x-1

2) 20.(本题满分8分)(1)解方程: 1x-3=2+x 3-x

(2) 解不等式组:x-3(x-2)≤4,1+2x3 x-1

21.(本题8分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC 的平行线交CE的延长线于F,且AF=BD,连接BF. (1)求证:BD=CD. (2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论

. 22.(本题满分6分)为了解某校九年级学生体育测试成绩情况,现从中随机抽取部分学 生的体育成绩统计如下,其中右侧扇形统计图中的圆心角α为36°.体育成绩(分) 人数(人) 百分比31 32 m 33 8 16% 3424% 35 15 根据上面提供的信息,回答下列问题: (1)m= ▲ ;抽取部分学生体育成绩的中位数为 ▲ 分;

(2)已知该校九年级共有500名学生,如果体育成绩达33分以上(含33分)为优秀,请估计该校九年级学生体育成绩达到优秀的总人数.

[img]

北师大版四年级下册数学期末模拟试卷

在我们的日常学习生活中,我们应该多做试题卷,锻炼我们的做题能力,这样子才能够使我们的学习成绩有所提升!下面是我网络整理的四年级下册数学期末模拟试卷以供大家学习参考。

四年级下册数学期末模拟试卷

一、计算。(共22分)

1、直接写出得数。(10分)

25×8= 80×5= 125×4= 640+40= 35×6=

540-60= 72×8= 16×50= 14×500= 42×40=

2、列竖式计算。(12分)

237×18= 360×75= 605×29= 80×540=

二、填空。(每空1分,共23分)

1、一个十位数,它的最高位是( )位;一个数的最高位是百万位,它是( )位数。

2、一个数,千万位和万位上都是5,十位上是8,其余各位都是0,这个数写作( )。

3、由6个十亿、7个百万、3个千和2个一组成的数是( ),这个数也可以看作是由( )个亿、( )个万和( )个一组成。

4、50005005000中从左边起,第二个“5”表示5个( )。

5、 2013年,苏州人口统计数据显示,年末总户数是2155714户,精确到万位是( )万户,省略最高位后面的尾数约是( )户。

6、一个数省略“亿”后面的尾数是12亿,这个数最大是( ),最小是( )。

7、用四舍五入法 7□7890300≈8亿,□里最小可以填( ),

64□230≈64万,□里可以填( )。

8、飞机每小时飞行960千米,每小时960千米可以写成( )。

9、两个数的积是450,一个乘数乘10,另一个乘数乘2,现在的积是( )。

10、850×25的积是( )位数。25×400积的末尾一共有( )个0。

11、10枚5分硬币叠放在一起的高度大约是1厘米。照这样,1000枚5分硬币叠放在一起的高度大约是( )米,1百万枚5分硬币叠放在一起的高度大约是( )米,1亿枚叠放在一起的高度大约是( )千米。

12、根据所给算式的规律进行填空。

26640÷111=240 26640÷222=120

26640÷333=( ) 26640÷555=( )

三、判断。(每题1分,共5分)

1、两个乘数的末尾一共有2个0,积的末尾至少有2个0。 ( )

2、个、十、百、千、万......千亿都是数位。 ( )

3、如果 ×□ =50,那么( ×2)×(□×4)=300 ( )

4、万位左边的数位是千位,右边是十万位。 ( )

5、三角形有3条对称轴。 ( )

四、选择。(每题1分,共5分)

1、下面的图形中,对称轴条数最多的是( )。

A、正方形 B、等边三角形 C、长方形 D、圆形

2、要使□21×31的积是五位数,□最小填( )。

A、2 B、3 C、4 D、5

3、最接近30万的数是( )。

A、298000 B、302000 C、300200 D、290800

4、下面的数中只读一个“零”的是( )。

A、8808000 B、808800 C、8080800 D、800080

5、把一个图形顺时针旋转( ),又回到了原来的位置。

A、90° B、180° C、270° D、360°

五、按要求做。(共13分)

1、(1)图形1绕点0 顺时针旋转90°到图形( )所在的位置。

(2)图形4绕点0( )时针旋转90°到图形3所在的位置。

(3)图形3绕点0逆时针旋转( )度到图形1所在的位置。

2、(1)将 先向下平移5格,再向右平移3格。(2分)

(2)将平行四边形沿A点顺时针方向旋转90°。(2分)

3、画出下面图形的另一半,使它成为轴对称图形。(4分)

4、按旋转的规律继续画下去。(2分)

六、解决问题。(第1-4题每题5分,第5、6题每题6分,共32分)

1、某商店一月份共用电146千瓦•时,照这样计算,这家超市一年大约用电多少千瓦•时?

2、一辆汽车以96千米/时的速度从甲地开往乙地,6小时到达。从乙地返回时,因为下雨,用了8小时。这辆汽车返回时的平均速度是多少千米/时?

3、李华家有120棵桃树,去年平均每棵收获桃子45千克。今年预计每棵比去年多收获15千克,今年预计能收获桃子多少千克?

4、小明看一本 故事 书,5天看了235页,照这样的速度,又看了15天正好把这本书看完,这本故事书一共有多少页?

5、苏宁电器商场从工厂批发了80台点读机,每台140元。

(1)商场先按每台180元的价钱卖出58台,商场共卖得多少元?(2分)

(2)剩下的每台卖120元,如果点读机全部卖出,你认为商场是赚钱还是亏损?(4分)

6、苏果超市举行优惠购物活动,对某品牌糖果进行如下优惠销售。

数量(千克) 1—20 21—50 50以上

单价(元) 25 20 15

四年级同学组织一次联欢活动,一班需要购买15千克,二班需要购买18千克,三班需要购买22千克。

(1)每班分别购买,各需多少元?(3分)

(2)三个班合起来购买,共需要多少元?(3分)

小学 四年级数学 复习计划

一、复习指导思想:

1、查漏补缺。对本册教材内容进行系统的归纳整理,理清知识点的联系,通过对基础知识的复习和练习,加强学生的记忆,深化认识,使所学的知识内化为学生的知识素养,使学生对知识的掌握理解由感性认识提升到一个理性的认识上来。

2、灵活解题,提高综合运用与解决实际问题的能力。使学生在复习、练习过程中,对知识进行分类、整理,帮助学生找出各知识之间的联系和解题规律,重新整合,形成一个完整的知识体系,达到举一反三、能综合、灵活地运用所学的知识解决简单实际问题、应用数学的能力。

3、在复习、练习过程当中,注重学生的 学习 方法 、数感和数学思维的梳理和培养,发展学生 逻辑思维 能力。

4、养成学生认真做题、细心检查的良好学习习惯,形成良好的数学情操。

二、复习形式:

分类复习、综合复习、做复习提纲相结合

三、复习目标:

1、对万级、亿级的数,十进制计数法,用“万”、“亿”作单位表示大数目以及近似数、改写等知识有进一步的认识,建立有关整数概念的认知结构;

2、进一步巩固除数是两位数的除法笔算,进一步提高用计算器进行大数目计算以及探索规律的操作技能,加深对计算器的认识;

3、掌握直线、射线和线段的特征,认识角,能正确画出平行线和垂线(过直线外一点和直线上一点),进一步发展空间观念;

4、通过整理和复习,进一步掌握统计的基本知识和方法,并能根据给定的数据整理制作统计图,分析结果。

5、通过整理和复习,进一步提高综合运用所学知识解决实际问题的能力,在解决实际问题的过程中进一步体会数学的价值;

6、通过整理和复习,经历回顾本学期的学习情况,以及整理知识和学习方法的过程,激发学生主动学习的愿望,进一步培养 反思 的意识和能力。

四、复习 措施 :

1、教会学生 复习方法 ,对所学知识进行全面系统的复习,先全面复习每一单元,再重点复习有关重点内容。复习后及时进行检测。复习作业的设计体现层次性、综合性、趣味性和开放性,及时批改,及时发现问题,查漏补缺,做到知识天天清。

2、狠抓学生的计算和理解方面的能力。采用多种方法,比如学生出题,抢答,抽查,学生互批等方法,提高学习兴趣。

3、提高基础较好的学生,主要是在课堂提高。 对基础较差的学生采取课堂引导,课后辅导,尽量提高对基础题的理解掌握。

4、加强补差,将课内课外补差相结合,采用“一帮一”的形式,发动学生帮助他们一起进步,同时取得家长的配合,鼓励和督促其进步。做到课上多提问,作业多辅导,练习多讲解,多表扬、鼓励,多提供表现的机会。让他们力争做到当天的任务当天完成。

5、课堂上教会学生抓住每单元的知识要点,重点突破,加强解决问题能力的培养,并相机进行口算能力的培养。

6、在抓好基础知识的同时,全面培养学生的数学素养,培养学生 总结 与反思的态度和习惯,提高学生的学习能力。

小学四年级数学复习指导

一、复习目标:

这一册教材内容涉及的面比较广,基本概念比较多,也比较抽象,很多内容都是今后进一步学习的基础知识。通过总复习把本册内容进行系统的整理和复习,使学生对所学概念、计算方法和 其它 知识更好地掌握,并把各单元内容联系起来,形成较系统的知识,使计算能力和解答应用题的能力得到进一步的提高,圆满完成本学期的教学任务,另外通过总复习,查缺补漏,使学习比较吃力的孩子,能弥补当初没学会的知识,打好基础。

二、复习时间:12月19日——12月30日

三、复习形式:

1、分章复习。对全章知识进行复习之后,结合习题进行巩固。

2、综合练习。以测验或作业的形式让学生练习,在课堂上教师精讲。

3、查缺补漏。对于在复习中学生反映出的问题加以补充练习。

四、复习内容:

人教版四年级数学上册全册内容,复习时按照整册教材的知识体系分——大数的认识、公顷和平方米、角的度量、条形统计图、4、6单元的计算,平行四边形和梯形,数学广角这几大块来进行知识的梳理。

五、复习措施:

(1)教会学生复习方法,对所学知识进行全面系统的复习,先全面复习每一单元,再重点复习有关重点内容。复习后及时进行检测。

(2)狠抓学生的计算和理解方面的能力。采用多种方法,比如学生出题,抢答,抽查,学生互批等方法,提高学习兴趣。

(3)提高基础较好的学生,主要是在课堂提高。对基础较差的学生采取课堂引导,课后辅导,尽量提高对基础题的理解掌握。

(4)加强补差,让优等生帮助后进生。

(5)课堂上教会学生抓住每单元的知识要点,重点突破,加强解决问题能力的培养,并相机进行口算能力的培养。

谁有利德智达调研模拟卷——数学(6)的答案?

找不到了!!! 把悬赏分给我吧!!! 我的那给你!!! 真好不多不少!!! 要不就亏了!!!

模拟调研卷数学的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于2023年全国高考模拟调研卷数学、模拟调研卷数学的信息别忘了在本站进行查找喔。

本文转载自互联网,如有侵权,联系删除