本篇文章给同学们谈谈周测卷答案高一数学,以及数学周周练高一对应的知识点,希望对各位同学有所帮助,不要忘记分享给你的朋友哦!
本文目录一览:
- 1、高一数学题求解答,请看图?
- 2、高一数学测试卷
- 3、高一数学下册期末试卷及答案
- 4、天一高中阶段三测卷高一数学必修四周练提升卷7答案?
- 5、跪求!!!高一数学人教A版测试题(最好有答案,并且是难题~~)
- 6、请帮助将人教版高一数学试卷复制在下边(急用)
高一数学题求解答,请看图?
这道题考查基本不等式的运用~
解答过程如图
第二问用“1的代换”
记得写“当且仅当…”检验
高一数学测试卷
松山区2006-2007学年度上学期期中考试试题
高一数学 2006.11
一.选择题(本题共12小题,每小题5分,共60分。)
1. 下列各组对象能构成集合的是( )
A.赤峰的小河流 B.方程 的解 C.接近于 的数的 D.所有的穷人
2.集合 的真子集的个数为( ) A. 3 B. 6 C. 8 D. 7
3.设 , , ,则 ( )
A. B. C. D.
4、如果命题“p或q”与命题“非p”都是真命题,那么( )
A.命题p不一定是假命题 B.命题q一定是真命题
C.命题q不一定是真命题 D.命题p与q的真值相同
5、如果( )在映射 作用下的象是 ,则(1,2)的原象是( )
A.(0, 3) B.(4,1) C.(0, 1) D.(0,1)
6、已知函数f(x) 的定义域是 [ ],那么函数y= f (2x) 的定义域是( )
A. B. C. D.
7、不等式 的解集为 ,则 的值是( )
A. B. C. D.
8. 则 ( )
A.2x+1 B.2 x-1 C.2 x-3 D.2 x +7
9、函数 的单调递减区间是( )
A. B. C. D.
10.函数y= x2的图象经过怎样的变换可以得到y=(x+1)2 +1的图象( )
A. 向左平移1个单位,再向下平移1个单位.
B. 向左平移1个单位,再向上平移1个单位.
C. 向右平移1个单位,再向上平移1个单位.
D. 向右平移1个单位,再向下平移1个单位.
11、已知A、B两地相距150千米,某人开汽车以60千米/小时的速度从A地到达B地,在B地停留1小时后再以50千米/小时的速度返回A地,把汽车离开A地的距离x表示为时间t(小时)的函数表达式是 ( )
A.x=60t B.x=60t+50t
C. x= D.x=
12、给出下列命题:
①命题“若b=3,则b2=9”的逆命题;
②命题“相似三角形的对应角相等”的否命题;
③命题“若 则 有实数根”的逆否命题;
④“ab”是“a2b2”的充分条件;
⑤“a5”是“a3”的必要条件;
其中真命题的个数是 ( )
A.1 B.2 C.3 D.4
二.填空题(本题共4小题,每小题4分,共16分。)
13.函数 的值域为:________.
14.已知函数 ,则 .
15、函数y= 的定义域为 .
16.如果二次函数 在区间 上是减函数,在区间 上是增函数,则 的值是 .
【考生须知】请把选择、填空的答案填在答题纸的相应位置,考试结束后只交答题纸.
松山区2006-2007学年度上学期期中考试试题
高一数学答题纸
得分 阅卷人
一.选择题(本题共12小题,每小题5分,共60分。)
题号 1 2 3 4 5 6 7 8 9 10 11 12
答案
得分 阅卷人
二.填空题(本题共4小题,每小题4分,共16分。)
13. 14.
15. 16.
三.解答题(本大题共6题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤.)
得分 阅卷人
17.(10分) 解不等式组
得分 阅卷人
18.(12分) 已知
(1)求 ;(2)求 、 的解析式.
得分 阅卷人
19.(12分) 已知函数 ,判断并证明 在区间(-1,+∞)上的单调性.
得分 阅卷人
20.(12分) 已知集合A=
(1)若A∪B=B,求实数 的取值范围;
(2)若A∩B≠ ,求实数 的取值范围.
得分 阅卷人
21.(12分) 已知集合A=
(1)若A是空集,求 的取值范围;
(2)若A中只有一个元素,求 的值,并把这个元素写出来;
(3)若A中至多只有一个元素,求 的取值范围。
得分 阅卷人
22.(16分) 已知二次函数 的图象(如图).
求:(1) 二次函数 的解析式;
(2) 二次函数 在区间 上的值域;
(3)解关于 的不等式 .
[url=]免费课件、教案、论文、试卷、在线考试的好地方[/url]
[url=]两万个课件全免费、全册/实录教案、优秀论文、最新试卷[/url]
高一数学下册期末试卷及答案
心无旁骛,全力以赴,争分夺秒,顽强拼搏脚踏实地,不骄不躁,长风破浪,直济沧海,我们,注定成功!下面给大家带来一些关于 高一数学 下册期末试卷及答案,希望对大家有所帮助。
试题
一选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知是第二象限角,,则()
A.B.C.D.
2.集合,,则有()
A.B.C.D.
3.下列各组的两个向量共线的是()
A.B.
C.D.
4.已知向量a=(1,2),b=(x+1,-x),且a⊥b,则x=()
A.2B.23C.1D.0
5.在区间上随机取一个数,使的值介于到1之间的概率为
A.B.C.D.
6.为了得到函数的图象,只需把函数的图象
A.向左平移个单位B.向左平移个单位
C.向右平移个单位D.向右平移个单位
7.函数是()
A.最小正周期为的奇函数B.最小正周期为的偶函数
C.最小正周期为的奇函数D.最小正周期为的偶函数
8.设,,,则()
A.B.C.D.
9.若f(x)=sin(2x+φ)为偶函数,则φ值可能是()
A.π4B.π2C.π3D.π
10.已知函数的值为4,最小值为0,最小正周期为,直线是其图象的一条对称轴,则下列各式中符合条件的解析式是
A.B.
C.D.
11.已知函数的定义域为,值域为,则的值不可能是()
A.B.C.D.
12.函数的图象与曲线的所有交点的横坐标之和等于
A.2B.3C.4D.6
第Ⅱ卷(非选择题,共60分)
二、填空题(每题5分,共20分)
13.已知向量设与的夹角为,则=.
14.已知的值为
15.已知,则的值
16.函数f(x)=sin(2x-π3)的图像为C,如下结论中正确的是________(写出所有正确结论的编号).
①图像C关于直线x=1112π对称;②图像C关于点(23π,0)对称;③函数f(x)在区间[-π12,512π]内是增函数;④将y=sin2x的图像向右平移π3个单位可得到图像C.、
三、解答题:(共6个题,满分70分,要求写出必要的推理、求解过程)
17.(本小题满分10分)已知.
(Ⅰ)求的值;
(Ⅱ)求的值.
18.(本小题满分12分)如图,点A,B是单位圆上的两点,A,B两点分别在第一、二象限,点C是圆与x轴正半轴的交点,△AOB是正三角形,若点A的坐标为(35,45),记∠COA=α.
(Ⅰ)求1+sin2α1+cos2α的值;
(Ⅱ)求cos∠COB的值.
19.(本小题满分12分)设向量a=(4cosα,sinα),b=(sinβ,4cosβ),c=(cosβ,-4sinβ),
(1)若a与b-2c垂直,求tan(α+β)的值;
(2)求|b+c|的值.
20.(本小题满分12分)函数f(x)=3sin2x+π6的部分图像如图1-4所示.
(1)写出f(x)的最小正周期及图中x0,y0的值;
(2)求f(x)在区间-π2,-π12上的值和最小值.
21.(本小题满分12分)已知向量的夹角为.
(1)求;(2)若,求的值.
22.(本小题满分12分)已知向量).
函数
(1)求的对称轴。
(2)当时,求的值及对应的值。
参考答案
1-12BCDCDABDBDDC
填空
13141516
17解:(Ⅰ)
由,有,解得………………5分
(Ⅱ)
………………………………………10分
18解:(Ⅰ)∵A的坐标为(35,45),根据三角函数的定义可知,sinα=45,cosα=35
∴1+sin2α1+cos2α=1+2sinαcosα2cos2α=4918.…………………………………6分
(Ⅱ)∵△AOB为正三角形,∴∠AOB=60°.
∴cos∠COB=cos(α+60°)=cosαcos60°-sinαsin60°.=35×12-45×32=3-4310
…………………………………12分
19解(1)b-2c=(sinβ-2cosβ,4cosβ+8sinβ),
又a与b-2c垂直,
∴4cosα(sinβ-2cosβ)+sinα(4cosβ+8sinβ)=0,
即4cosαsinβ-8cosαcosβ+4sinαcosβ+8sinαsinβ=0,
∴4sin(α+β)-8cos(α+β)=0,
得tan(α+β)=2.
(2)由b+c=(sinβ+cosβ,4cosβ-4sinβ),
∴|b+c|=?sinβ+cosβ?2+16?cosβ-sinβ?2
=17-15sin2β,
当sin2β=-1时,|b+c|max=32=42.
20.解:(1)f(x)的最小正周期为π.
x0=7π6,y0=3.
(2)因为x∈-π2,-π12,所以2x+π6∈-5π6,0.
于是,当2x+π6=0,
即x=-π12时,f(x)取得值0;
当2x+π6=-π2,
即x=-π3时,f(x)取得最小值-3.
21.【答案】(1)-12;(2)
【解析】
试题分析:(1)由题意得,
∴
(2)∵,∴,
∴,∴,
22.(12分)(1)………….1
………………………………….2
……………………………………….4
……………………7
(2)
………………………9
时的值为2…………………………………12
高一数学下册期末试卷及答案相关 文章 :
★ 2017高一数学期中考试试卷答案
★ 四年级数学下册期末试卷附答案
★ 高一期末数学考试题
★ 人教版小学数学四年级下册期末测试附答案
★ 八年级下册期末数学试题附答案
★ 小学一年级下数学测试卷与答案
★ 高中数学集合与函数试卷及答案
★ 2017年四年级数学下册期末试卷及答案
★ 北师大数学高一期末试卷
★ 八年级下册数学试卷及答案
天一高中阶段三测卷高一数学必修四周练提升卷7答案?
天一高中阶段三测卷高一数学必修四周练提升卷七答案?楼主问的资料问题很大呀,帮不了你
跪求!!!高一数学人教A版测试题(最好有答案,并且是难题~~)
2007年荆门市高一数学竞赛试题
一、 选择题:每小题6分,共36分。将答案代号填入题后的括号内。
1. 已知全集U=R,且A={x||x-1|2},B={x|x -6x+80},则( A)∩B等于( )
A.[-1,4] B. (2,3) C. D.(-1,4)
2. 函数 的部分图象如右图所示,则 的解析式可能是 ( )
A.
B.
C.
D.
3. 设有两个命题,p:不等式|x|+|x+1|>a的解集为R;q:函数f(x)=log(7-3a)x在(0,+∞)是增函数,若p或q为真命题,p且q为假命题,那么实数a的取值范围是 ( )
A.〔1,2) B.(2, 〕 C.〔2, 〕 D.(1,2〕�
4. 已知数列{an}满足3an+1+an=4(n≥1),且a1=9,其前n项之和为Sn。则满足不等式|Sn-n-6| 的最小整数n是 ( )
A.5 B.6 C.7 D.8
5. 函数 的值域为 ( )
A. B. C. D.
6. 当 时,下面四个函数中最大的是 ( )
A. B. C. D.
二、 填空题:每小题9分,共54分。将答案填在题后横线上。
7. 已知 ,且 ,则 的值是____________________。
8. 若函数 与 互为反函数,则 的单调递增区间是 。
9. 函数f定义在正整数集上,且满足f(1)=2007,f(1)+f(2)+…+f(n)=n2f(n),(n1),则f(2007)的值是_________________。
10. 已知 ,把数列 的各项排成三角形状如右图所示;记 表示第 行中第 个数,则 。
11. 已知 是定义在R上的函数,且 ,若 ,则 的值为 。
12. 已知函数 的图象经过点A(0,1)、
时, 的最大值为 ,则 的解析式为 = 。
三、 解答题:每小题20分,共60分。解答应写出必要的文字说明、运算过程或推理步骤。
13.(本小题满分20分)
已知 .
(I)求 的值;
(Ⅱ)求 的值.
14.(本小题满分20分)
已知数列 中各项为:
12、1122、111222、……、 、 ……
(Ⅰ)证明这个数列中的每一项都是两个相邻整数的积.
(Ⅱ)求这个数列前n项之和Sn .
15.(本小题满分20分)
设二次函数 满足下列条件:
①当 时, 的最小值为0,且 成立;
②当 时, ≤2 +1恒成立。
(Ⅰ)求 的值;
(Ⅱ)求 的解析式;
(Ⅲ)求最大的实数m(m1),使得存在实数 ,只要当x∈ 时,就有 成立。
2007年荆门市高一数学竞赛试题 参考答案
1.C 解:全集 且
∴( A)∩B = ,选C.
2. B 解:由 = 0排除A;对于 有 ,排除C;由 为偶函数图象关于y轴对称,排除D. ∴选B。
3.A 解:记A={a|不等式|x|+|x+1|>a的解集为R},B={a|f(x)=log(7-3a)x在(0,+∞)上是增函数},由于函数y=|x|+|x+1|的最小值是1,∴A={a|a<1}.由于f(x)=log(7-3a)x在(0,+∞)上递增,∴7-3a>1,即a<2,∴B={a|a<2}.�
又p或q为真,p且q为假,∴p与q中有且仅有一个正确,即a的取值范围是〔( RA)∩B〕∪〔( RB)∩A〕,而( RA)∩B=〔1,2),( RB)∩A= 故选A.
4.C 解:由递推式得:3(an+1-1)=-(an-1),则{an-1}是以8为首项,公比为- 的等比数列,∴Sn-n=(a1-1)+(a2-1)+…+(an-1)= =6-6×(- )n,∴|Sn-n-6|=6×( )n ,得: ,∴满足条件的最小整数 ,故选C。
5.D 解: 的定义域为 则可令 ,
则
因 ,则 故选D
6.C解:因为 ,所以 。于是有 , 。又因为 ,即 ,所以有 。因此, 最大。故选C.
7. 2 解:∵
∴
8.
9.
解:由题f(1)+f(2)+…+f(n)=n2f(n), f(1)+f(2)+…+f(n-1)=(n-1)2f(n-1)。∴f(n)=n2f(n)-(n-1)2f(n-1) ∴f(n)= f(1)
∴f(2007)=
10. 解:各行数的个数构成一个等差数列,则前9行共有 项,∴ 是数列 中的第89项,∴ 。故应填
11. 解:
,即函数的周期为8, 故 。
12. 解:由
当
当1-a>0,即a<1时, ;
当1-a<0即a>1时, 无解;
当1-a=0,即a=1时, ,相互矛盾.
故
13.解:解:(Ⅰ)由 ,得 ,得 ,
∵ = ,又 ∴ ,
∴
(Ⅱ) =
=
14.解:(Ⅰ)
记:A = , 则A= 为整数
= A (A+1) , 得证
(Ⅱ)
15.解:(Ⅰ)在②中令x=1,有1≤f(1)≤1,故f(1)=1
(Ⅱ)由①知二次函数的关于直线x=—1对称,且开口向上
故设此二次函数为f(x)=a(x+1)2,(a0),∵f(1)=1,∴a=
∴
(Ⅲ)假设存在t∈R,只需x∈[1,m],就有f(x+t)≤x.
则f(x+t)≤x (x+t+1)2≤x x2+(2t-2)x+t2+2t+1≤0.
令g(x)=x2+(2t-2)x+t2+2t+1,g(x)≤0,x∈[1,m].
∴m≤1-t+2 ≤1-(-4)+2 =9
t=-4时,对任意的x∈[1,9]
恒有g(x)≤0, ∴m的最大值为9.
请帮助将人教版高一数学试卷复制在下边(急用)
高一数学期末同步测试题
ycy
说明:本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,答题时间120分钟.
第Ⅰ卷(选择题,共60分)
一、选择题:(每小题5分,共60分,请将所选答案填在括号内)
1.函数 的一条对称轴方程是 ( )
A. B. C. D.
2.角θ满足条件sin2θ0,cosθ-sinθ0,则θ在 ( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.己知sinθ+cosθ= ,θ∈(0,π),则cotθ等于 ( )
A. B.- C. ± D.-
4.已知O是△ABC所在平面内一点,若 + + = ,且| |=| |=| |,则△ABC
是 ( )
A.任意三角形 B.直角三角形 C.等腰三角形 D.等边三角形
5.己知非零向量a与b不共线,则 (a+b)⊥(a-b)是|a|=|b|的 ( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
6.化简 的结果是 ( )
A. B. C. D.
7.已知向量 ,向量 则 的最大值,最小值分别是( )
A. B. C.16,0 D.4,0
8.把函数y=sinx的图象上所有点的横坐标都缩小到原来的一半,纵坐标保持不 变,再把 图象向左平移 个单位,这时对应于这个图象的解析式 ( )
A.y=cos2x B.y=-sin2x
C.y=sin(2x- ) D.y=sin(2x+ )
9. ,则y的最小值为 ( )
A.– 2 B.– 1 C.1 D.
10.在下列区间中,是函数 的一个递增区间的是 ( )
A. B. C. D.
11.把函数y=x2+4x+5的图象按向量 a经一次平移后得到y=x2的图象,则a等于 ( )
A.(2,-1) B.(-2,1) C.(-2,-1) D.(2,1)
12. 的最小正周期是 ( )
A. B. C. D.
第Ⅱ卷(非选择题,共90分)
二、填空题:(每小题4分,共16分,请将答案填在横线上)
13.已知O(0,0)和A(6,3),若点P分有向线段 的比为 ,又P是线段OB的中点,则点B的坐标为________________.
14. ,则 的夹角为_ ___.
15.y=(1+sinx)(1+cosx)的最大值为___ ___.
16.在 中, , ,那么 的大小为___________.
三、解答题:(本大题共74分,17—21题每题12分,22题14分)
17.已知
(I)求 ;
(II)当k为何实数时,k 与 平行, 平行时它们是同向还是反向?
18.已知函数f(x)=2cos2x+ sin2x+a,若x∈[0, ],且| f(x) |<2,求a的取值范围.
19.已知函数 .
(Ⅰ)求函数f (x)的定义域和值域;
(Ⅱ)判断它的奇偶性.
20.设函数 ,其中向量 =(2cosx,1), =(cosx, sin2x),x∈R.
(Ⅰ)若f(x)=1- 且x∈[- , ],求x;
(Ⅱ)若函数y=2sin2x的图象按向量 =(m,n)(|m| )平移后得到函数y=f(x)的图象,
求实数m、n的值.
21.如图,某观测站C在城A的南偏西 方向上,从城A出发有一条公路,走向是南偏东 ,在C处测得距离C处31千米的公路上的B处有一辆正沿着公路向城A驶去,行驶了20千米后到达D处,测得C、D二处间距离为21千米,这时此车距城A多少千米?
22.某港口水深y(米)是时间t ( ,单位:小时)的函数,记作 ,下面是
某日水深的数据
t (小时) 0 3 6 9 12 15 18 21 24
y (米) 10.0 13.0 9.9 7.0 10.0 13.0 10.1 7.0 10.0
经长期观察: 的曲线可近似看成函数 的图象(A 0, )
(I)求出函数 的近似表达式;
(II)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上时认为是安全的.某船吃水深度(船底离水面的距离)为6.5米,如果该船希望在同一天内安全进出港,请问:它至多能在港内停留多长时间?
高一数学测试题—期末试卷参考答案
一、选择题:
1、A2、B3、B4、D 5、C 6、C 7、D 8、A 9、C10、B 11、A12、C
二、填空题:
13、(4,2) 14、 15、 16、
三、解答题:
17.解析:① = (1,0) + 3(2,1) = ( 7,3) , ∴ = = .
②k = k(1,0)-(2,1)=(k-2,-1). 设k =λ( ),即(k-2,-1)= λ(7,3),
∴ . 故k= 时, 它们反向平行.
18.解析:
,
解得 .
19.解析: (1) 由cos2x≠0得 ,解得x≠ ,所以f(x)的定义域为
且x≠ }
(2) ∵f(x)的定义域关于原点对称且f(-x)=f(x)
∴f(x)为偶函数.
(3) 当x≠ 时
因为
所以f(x)的值域为 ≤ ≤2}
20.解析:(Ⅰ)依题设,f(x)=2cos2x+ sin2x=1+2sin(2x+ ).
由1+2sin(2x+ )=1- ,得sin(2x+ )=- .
∵- ≤x≤ ,∴- ≤2x+ ≤ ,∴2x+ =- ,
即x=- .
(Ⅱ)函数y=2sin2x的图象按向量c=(m,n)平移后得到函数y=2sin2(x-m)+n的图象,即函数y=f(x)的图象.
由(Ⅰ)得 f(x)=2sin2(x+ )+1. ∵|m| ,∴m=- ,n=1.
21.解析:在 中, , ,
,由余弦定理得
所以 .
在 中,CD=21,
= .
由正弦定理得
(千米).所以此车距城A有15千米.
22.解析:(1)由已知数据,易知 的周期为T = 12
∴
由已知,振幅
∴
(2)由题意,该船进出港时,水深应不小于5 + 6.5 = 11.5(米)
∴
∴
∴
故该船可在当日凌晨1时进港,17时出港,它在港内至多停留16小时.
[img]关于周测卷答案高一数学和数学周周练高一的介绍到此就结束了,不知道同学们从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。