高一数学必修一周测卷(高一数学周测题必修一)

今天给各位同学分享高一数学必修一周测卷的知识,其中也会对高一数学周测题必修一进行解释,如果能碰巧解决你现在面临的问题,别忘了分享本站,现在开始吧!

本文目录一览:

高一数学必修一集合试题及答案

集合的学习在高一数学课程中占据十分重要的地位,同学通过试题练习能够加强理解知识点,下面是我给大家带来的高一数学必修一集合试题,希望对你有帮助。

高一数学必修一集合试题

一、选择题

1.(20 13年高考四川卷)设集合A={1,2,3},集合B={ -2,2},则A∩B等于( B )

(A) (B){2}

(C){-2,2} (D){-2,1,2,3}

解析:A∩B={2},故选B.

2.若全集U={-1,0,1,2},P={x∈Z|x22},则∁UP等于( A )

(A){2} (B){0,2}

(C){-1,2} (D){-1,0,2}

解析:依题意得集合P={-1,0,1},

故∁UP={2}.故选A.

3.已知集合A={x|x1},则(∁RA)∩N的子集有( C )

(A)1个 (B)2个 (C)4个 (D)8个

解析:由题意可得∁RA={x|x≤1},

所以(∁RA)∩N={0,1},其子集有4个,故选C.

4.(2013年高考全国新课标卷Ⅰ)已知集合A={x|x2-2x0},B={x|-

(A)A∩B= (B)A∪B=R

(C)B⊆A (D)A⊆B

解析:A={x|x2或x0},

∴A∪B=R,故选B.

5.已知集合M={x ≥0,x∈R},N={y|y=3x2+1,x∈R},则M∩N等于( C )

(A) (B){x|x≥1}

(C){x|x1} (D){x|x≥1或x0}

解析:M={x|x≤0或x1},N={y|y≥1}={x|x≥1}.

∴M∩N={x|x1},故选C.

6.设集合A={x + =1},集合B={y - =1},则A∩B等于( C )

(A)[-2,- ] (B)[ ,2]

(C)[-2,- ]∪[ ,2] (D)[-2,2]

解析:集合A表示椭圆上的点的横坐标的取值范围

A=[-2,2],

集合B表示双曲线上的点的纵坐标的取值范围

B=(-∞,- ]∪[ ,+∞),

所以A∩B=[-2,- ]∪[ ,2].故选C.

二、填空题

7.(2012 年高考上海卷)若集合A={x|2x+10},

B={x||x-1|2},则A∩B=.

解析:A={x x- },B={x|-1

所以A∩B={x -

答案:{x -

8.已知集合A={ x 0},且2∈A,3∉A,则实数a的取值范围是 .

解析:因为2∈A,所以 0,

即(2a-1)(a- 2)0,

解得a2或a .①

若3∈A,则 0,

即( 3a-1)(a-3)0,

解得a3或a ,

所以3∉A时, ≤a≤3,②

①②取交集得实数a的取值范围是 ∪(2,3].

答案: ∪(2,3]

9.(2013济南3月模拟)已知集合A={-1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值组成的集合为.

解析:若a=0时,B= ,满足B⊆A,

若a≠0,B=(- ),

∵B⊆A,

∴- =-1或- =1,

∴a=1或a=-1.

所以a=0或a=1或a=-1组成的集合为{-1,0,1}.

答案:{-1,0,1}

10.已知集合A={x|x2+ x+1=0},若A∩R= ,则实数m的取值范围是.

解析:∵A∩R= ,∴A= ,

∴Δ=( )2-40,∴0≤m4.

答案:[0,4)

11.已知集合A={x|x2-2x-30},B={x|x2+ax+b≤0},若A∪B=R,A∩B={x| 3

解析:A={x|x-1或x3},

∵A∪B=R,A∩B={x|3

∴B={x|-1≤x≤4},

即方程x2+ax+b=0的两根为x1=-1,x2=4.

∴a=-3,b=-4,

∴a+b=-7.

答案:-7

三、解答题

12.已知集合A={-4,2a-1,a2},B={a-5,1-a,9},分别求适合下列条件的a的值.

(1)9∈(A∩B);

(2){9}=A∩B.

解:(1) ∵9∈(A∩B),

∴2a-1= 9或a2=9,

∴a=5或a=3或a=-3.

当a=5时,A={-4,9,25},B={0,-4,9};

当a=3时,a-5=1-a=-2,不满足集合元素的互异性;

当a=-3时,A={-4,-7,9},B={-8,4,9},

所以a=5或a=-3.

(2)由(1)可知,当a=5时,A∩B={-4,9},不合题意,

当a=-3时,A∩B={9}.

所以a=- 3.

13.已知集合A={x|x2-2x-3≤0};B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.

(1)若A∩B=[0,3],求实数m的值;

(2)若A⊆∁RB,求实数m的取值范围.

解:由已知得A={x|-1≤x≤3},

B={x|m-2≤x≤m+2}.

(1)∵A∩B=[0,3],

∴m=2.

(2)∁RB={x|xm+2},

∵A⊆∁RB,

∴m-23或m+2-1,

即m5或m-3.

14.设U=R,集合A={x |x2+3x+2=0},B={x|x2+(m+1)x+m=0},若

(∁UA)∩B= ,求m的值.

解:A={x|x=-1或x=-2},

∁UA={x|x≠-1且x≠-2}.

方程x2+(m+1)x+m=0的根是x1=-1,x2=-m,

当-m=-1,即m=1时,B={-1},

此时(∁UA)∩B= .

当-m≠-1,即m≠1时,B={-1,-m},

∵(∁UA)∩B= ,

∴-m=-2,即m=2.

所以m=1或m=2.

高一数学必修一集合知识点

集合的三个特性

(1)无序性

指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。

例题:集合A={1,2},B={a,b},若A=B,求a、b的值。

解:,A=B

注意:该题有两组解。

(2)互异性

指集合中的元素不能重复,A={2,2}只能表示为{2}

(3)确定性

集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。

特殊的集合

非负整数集(即自然数集)N正整数集N*或N+

整数集Z有理数集Q实数集R

集合的表示方法:列举法与描述法。

①列举法:{a,b,c……}

②描述法:将集合中的元素的公共属性描述出来。如{xR|x-32},{x|x-32},{(x,y)|y=x2+1}

③语言描述法:例:{不是直角三角形的三角形}

例:不等式x-32的解集是{xR|x-32}或{x|x-32}

强调:描述法表示集合应注意集合的代表元素

A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。集合A中是数组元素(x,y),集合B中只有元素y。

高一数学学习方法

(1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

(2)建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

(3)熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。

(4)经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。

高一数学必修一试题

一、选择题:本大题共12小题,每小题4分,共48分. 在每小题给出的四个选项中,只有一项是符合题目要求的.

1.已知全集U{1,2,3,4,5,6.7},A{2,4,6},B{1,3,5,7}.则A(CUB)等于

A.{2,4,6} B.{1,3,5} C.{2,4,5} D.{2,5} ( )

2.已知集合A{x|x210},则下列式子表示正确的有( )

①1A

A.1个 ②{1}A B.2个 ③A C.3个 ④{1,1}A D.4个

3.若f:AB能构成映射,下列说法正确的有 ( )

(1)A中的任一元素在B中必须有像且唯一;

(2)A中的多个元素可以在B中有相同的像;

(3)B中的多个元素可以在A中有相同的原像;

(4)像的集合就是集合B.

A、1个 B、2个 C、3个 D、4个

4、如果函数f(x)x22(a1)x2在区间,4上单调递减,那么实数a的取值范围是 ( )

A、a≤3 B、a≥3 C、a≤5 D、a≥5

5、下列各组函数是同一函数的是 ( )

①f(x)

g(x)f(x)

x与g(x)

③f(x)x0与g(x)1

x0 ;④f(x)x22x1与g(t)t22t1。

A、①② B、①③ C、③④ D、①④

6.根据表格中的数据,可以断定方程exx20的一个根所在的区间是

( )A.(-1,0) B.(0,1) C.(1,2) D.(2,3)

7.若lgxlgya,则lg(x)3lg(y22)3 ( )

A.3a B.3

2a C.a D.a2

8、 若定义运算abbabx的值域是( )

aab,则函数fxlog2xlog12

A 0, B 0,1 C 1, D R

9.函数yax在[0,1]上的最大值与最小值的和为3,则a( )

A.11

2 B.2 C.4 D.4

10. 下列函数中,在0,2上为增函数的是( )

A、ylog1(x1) B、ylog22

C、ylog12

2x D、ylog(x4x5)

11.下表显示出函数值y随自变量x变化的一组数据,判断它最可能的函数模型是(

A.一次函数模型 B.二次函数模型

C.指数函数模型 D.对数函数模型

12、下列所给4个图象中,与所给3件事吻合最好的'顺序为 ( )

(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;

(2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;

(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。

(1) (2) (3) (4) )A、(1)(2)(4) B、(4)(2)(3) C、(4)(1)(3) D、(4)(1)(2)

二、填空题:本大题4小题,每小题4分,共16分.把正确答案填在题中横线上.

13.函数y=x+4x+2的定义域为

14. 若f(x)是一次函数,f[f(x)]=4x-1且,则f(x)= _________________.

15.已知幂函数y=f(x)的图象过点(2,2),则f(9)= .

16.若一次函数f(x)=ax+b有一个零点2,那么函数g(x)=bx2-ax的零点是三、解答题:本大题共5小题,共56分,解答应写出文字说明,证明过程或演算步骤.

17.(本小题10分)

已知集合A={x|a-1已知定义在R上的函数y=f(x)是偶函数,且x≥0时,f(x)=lnx-2x+2(2),(1)当x0时,求f(x)解析式;(2)写出f(x)的单调递增区间。

19.(本小题满分12分)

某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出。当每辆车的月租金每增加50元时,未租出的车将会增加一辆。租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元。

(1)当每辆车的月租金定为3600元时,能租出多少辆车?

(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少? 20、(本小题满分12分) 已知函数4-x2(x0)

f(x)=2(x=0)

1-2x(x0)

(1)画出函数f(x)图像;

(2)求f(a2+1)(a∈R),f(f(3))的值; (3)当-4≤x3时,求f(x)取值的集合. 21.(本小题满分12分)

探究函数

f(x)=x+4x,x∈(0,+∞)的最小值,并确定取得最小值时x的值.列表如下:

请观察表中y值随x值变化的特点,完成以下的问题. 函数函数

f(x)=x+4x4x

(x0)在区间(0,2)上递减;

(x0)在区间 上递增.

f(x)=x+当x= 时,y最小=证明:函数f(x)=x+思考:函数f(x)=x+4x

4x(x0)在区间(0,2)递减.(x0)时,有最值吗?是最大值还是最小值?此时x为何值?(直接回果,不需证明)

[img]

高一必修一数学函数的应用测试题及答案参考

一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)

1.设U=R,A={x|x0},B={x|x1},则A∩?UB=()

A{x|0≤x1} B.{x|0

C.{x|x0 d="" x=""1}

【解析】 ?UB={x|x≤1},∴A∩?UB={x|0

【答案】 B

2.若函数y=f(x)是函数y=ax(a0,且a≠1)的反函数,且f(2)=1,则f(x)=()

A.log2x B.12x

C.log12x D.2x-2

【解析】 f(x)=logax,∵f(2)=1,

∴loga2=1,∴a=2.

∴f(x)=log2x,故选A.

【答案】 A

3.下列函数中,与函数y=1x有相同定义域的是()

A.f(x)=ln x B.f(x)=1x

C.f(x)=|x| D.f(x)=ex

【解析】 ∵y=1x的定义域为(0,+∞).故选A.

【答案】 A

4.已知函数f(x)满足:当x≥4时,f(x)=12x;当x4时,f(x)=f(x+1).则f(3)=()

A.18 B.8

C.116 D.16

【解析】 f(3)=f(4)=(12)4=116.

【答案】 C

5.函数y=-x2+8x-16在区间[3,5]上()

A.没有零点 B.有一个零点

C.有两个零点 D.有无数个零点

【解析】 ∵y=-x2+8x-16=-(x-4)2,

∴函数在[3,5]上只有一个零点4.

【答案】 B

6.函数y=log12(x2+6x+13)的值域是()

A.R B.[8,+∞)

C.(-∞,-2] D.[-3,+∞)

【解析】 设u=x2+6x+13

=(x+3)2+4≥4

y=log12u在[4,+∞)上是减函数,

∴y≤log124=-2,∴函数值域为(-∞,-2],故选C.

【答案】 C

7.定义在R上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是()

A.y=x2+1 B.y=|x|+1

C.y=2x+1,x≥0x3+1,x0 D.y=ex,x≥0e-x,x0

【解析】 ∵f(x)为偶函数,由图象知f(x)在(-2,0)上为减函数,而y=x3+1在(-∞,0)上为增函数.故选C.

【答案】 C

8.设函数y=x3与y=12x-2的图象的交点为(x0,y0),则x0所在的区间是()

A.(0,1) B.(1,2)

C(2,3) D.(3,4)

【解析】 由函数图象知,故选B.

【答案】 B

9.函数f(x)=x2+(3a+1)x+2a在(-∞,4)上为减函数,则实数a的取值范围是()

A.a≤-3 B.a≤3

C.a≤5 D.a=-3

【解析】 函数f(x)的对称轴为x=-3a+12,

要使函数在(-∞,4)上为减函数,

只须使(-∞,4)?(-∞,-3a+12)

即-3a+12≥4,∴a≤-3,故选A.

【答案】 A

10.某新品牌电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则下列函数模型中能较好反映销量y与投放市场的月数x之间的关系的是()

A.y=100x B.y=50x2-50x+100

C.y=50×2x D.y=100log2x+100

【解析】 对C,当x=1时,y=100;

当x=2时,y=200;

当x=3时,y=400;

当x=4时,y=800,与第4个月销售790台比较接近.故选C.

【答案】 C

11.设log32=a,则log38-2 log36可表示为()

A.a-2 B.3a-(1+a)2

C.5a-2 D.1+3a-a2

【解析】 log38-2log36=log323-2log3(2×3)

=3log32-2(log32+log33)

=3a-2(a+1)=a-2.故选A.

【答案】 A

12.已知f(x)是偶函数,它在[0,+∞)上是减函数.若f(lg x)f(1),则x的取值范围是()

A.110,1 B.0,110∪(1,+∞)

C.110,10 D.(0,1)∪(10,+∞)

【解析】 由已知偶函数f(x)在[0,+∞)上递减,

则f(x)在(-∞,0)上递增,

∴f(lg x)f(1)?0≤lg x1,或lg x0-lg x1

?1≤x10,或0

或110

∴x的取值范围是110,10.故选C.

【答案】 C

二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)

13.已知全集U={2,3,a2-a-1},A={2,3},若?UA={1},则实数a的值是________.

【答案】 -1或2

14.已知集合A={x|log2x≤2},B=(-∞,a),若A?B,则实数a的取值范围是(c,+∞),其中c=________.

【解析】 A={x|0

【答案】 4

15.函数f(x)=23x2-2x的单调递减区间是________.

【解析】 该函数是复合函数,可利用判断复合函数单调性的方法来求解,因为函数y=23u是关于u的减函数,所以内函数u=x2-2x的递增区间就是函数f(x)的递减区间.令u=x2-2x,其递增区间为[1,+∞),根据函数y=23u是定义域上的减函数知,函数f(x)的减区间就是[1,+∞).

【答案】 [1,+∞)

16.有下列四个命题:

①函数f(x)=|x||x-2|为偶函数;

②函数y=x-1的值域为{y|y≥0};

③已知集合A={-1,3},B={x|ax-1=0,a∈R},若A∪B=A,则a的取值集合为{-1,13};

④集合A={非负实数},B={实数},对应法则f:“求平方根”,则f是A到B的映射.你认为正确命题的序号为:________.

【解析】 函数f(x)=|x||x-2|的定义域为(-∞,2)∪

(2,+∞),它关于坐标原点不对称,所以函数f(x)=|x||x-2|既不是奇函数也不是偶函数,即命题①不正确;

函数y=x-1的定义域为{x|x≥1},当x≥1时,y≥0,即命题②正确;

因为A∪B=A,所以B?A,若B=?,满足B?A,这时a=0;若B≠?,由B?A,得a=-1或a=13.因此,满足题设的实数a的取值集合为{-1,0,13},即命题③不正确;依据映射的定义知,命题④正确.

【答案】 ②④

三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)

17.(本小题满分12分)已知函数f(x)=x2-3x-10的两个零点为x1,x2(x1

【解析】 A={x|x≤-2,或x≥5}.

要使A∩B=?,必有2m-1≥-2,3m+2≤5,3m+22m-1,

或3m+22m-1,

解得m≥-12,m≤1,m-3,或m-3,即-12≤m≤1,或m-3.

18.(本小题满分12分)已知函数f(x)=x2+2ax+2,x∈[-5,5].

(1)当a=-1时,求f(x)的最大值和最小值;

(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.

【解析】 (1)当a=-1时,

f(x)=x2-2x+2=(x-1)2+1,x∈[-5,5].

由于f(x)的对称轴为x=1,结合图象知,

当x=1时,f(x)的最小值为1,

当x=-5时,f(x)的最大值为37.

(2)函数f(x)=(x+a)2+2-a2的图象的对称轴为x=-a,

∵f(x)在区间[-5,5]上是单调函数,

∴-a≤-5或-a≥5.

故a的取值范围是a≤-5或a≥5.

19.(本小题满分12分)(1)计算:27912+(lg5)0+(2764)-13;

(2)解方程:log3(6x-9)=3.

【解析】 (1)原式

=25912+(lg5)0+343-13

=53+1+43=4.

(2)由方程log3(6x-9)=3得

6x-9=33=27,∴6x=36=62,∴x=2.

经检验,x=2是原方程的解.

20.(本小题满分12分)有一批影碟机(VCD)原销售价为每台800元,在甲、乙两家商场均有销售,甲商场用下面的方法促销:买一台单价为780元,买两台单价为760元,依次类推,每多买一台单价均减少20元,但每台最低不低于440元;乙商场一律按原价的75%销售,某单位需购买一批此类影碟机,问去哪家商场购买花费较少?

【解析】 设购买x台,甲、乙两商场的差价为y,则去甲商场购买共花费(800-20x)x,由题意800-20x≥440.

∴1≤x≤18(x∈N).

去乙商场花费800×75%x(x∈N*).

∴当1≤x≤18(x∈N*)时

y=(800-20x)x-600x=200x-20x2,

当x18(x∈N*)时,y=440x-600x=-160x,

则当y0时,1≤x≤10;

当y=0时,x=10;

当y0 x=""10(x∈N).

综上可知,若买少于10台,去乙商场花费较少;若买10台,甲、乙商场花费相同;若买超过10台,则去甲商场花费较少.

21.(本小题满分12分)已知函数f(x)=lg(1+x)-lg(1-x).

(1)求函数f(x)的定义域;

(2)判断函数f(x)的奇偶性;

【解析】 (1)由1+x0,1-x0,得-1

∴函数f(x)的定义域为(-1,1).

(2)定义域关于原点对称,对于任意的x∈(-1,1),

有-x∈(-1,1),

f(-x)=lg(1-x)-lg(1+x)=-f(x)

∴f(x)为奇函数.

22.(本小题满分14分)设a0,f(x)=exa+aex是R上的偶函数.

(1)求a的值;

(2)证明:f(x)在(0,+∞)上是增函数.

【解析】 (1)解:∵f(x)=exa+aex是R上的偶函数,

∴f(x)-f(-x)=0.

∴exa+aex-e-xa-ae-x=0,

即1a-aex+a-1ae-x=0

1a-a(ex-e-x)=0.

由于ex-e-x不可能恒为0,

∴当1a-a=0时,式子恒成立.

又a0,∴a=1.

(2)证明:∵由(1)知f(x)=ex+1ex,

在(0,+∞)上任取x1

f(x1)-f(x2)=ex1+1ex1-ex2-1ex2

=(ex1-ex2)+(ex2-ex1)?1ex1+x2.

∵e1,∴0

∴ex1+x21,(ex1-ex2)1-1ex1+x20,

∴f(x1)-f(x2)0,即f(x1)

∴f(x)在(0,+∞)上是增函数.

我为大家提供的高一必修一数学函数的应用测试题,大家仔细阅读了吗?最后祝同学们学习进步。

关于高一数学必修一周测卷和高一数学周测题必修一的介绍到此就结束了,不知道同学们从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

本文转载自互联网,如有侵权,联系删除