衡水名师初等函数(衡水中学函数专题)

今天给各位同学分享衡水名师初等函数的知识,其中也会对衡水中学函数专题进行解释,如果能碰巧解决你现在面临的问题,别忘了分享本站,现在开始吧!

本文目录一览:

基本初等函数图像及性质

基本初等函数图像及性质如下:

1、幂函数性质如下:

当α0时,幂函数y=xα有下列性质:

图像都经过点(1,1)(0,0);函数的图像在区间[0,+∞)上是增函数;在第一象限内,α1时,导数值逐渐增大;α=1时,导数为常数;0α1时,导数值逐渐减小,趋近于0(函数值递增);

负值性质:当α0时,幂函数y=xα有下列性质:

图像都通过点(1,1);图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。

零值性质:当α=0时,幂函数y=xa。

2、指数函数的性质如下:

a、y=x0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。

指数函数y=a^x(a0且a≠1)的函数值恒大于零,定义域为R,值域为(0,+00);指数函数y=a^x(a0且a≠1)的图像经过点(0,1);指数函数y=a^x(a1)在R上递增,指数函数y=a^x(0 a 1)在R上递减。

函数总是在某一个方向上无限趋向于X轴,并且永不相交。函数总是通过(0,1)这点,(若 ,则函数定过点(0,1+b));指数函数无界;指数函数是非奇非偶函数;指数函数具有反函数,其反函数是对数函数。

3、对数函数性质如下:

定义域:对数函数y=log ax 的定义域是{x 丨x0};定点 :对数函数的函数图像恒过定点(1,0);单调性 :a1时,在定义域上为单调增函数; 0a1时,在 定义域上为单调减函数;零点:x=1。

初等函数性质

初等函数是由基本初等函数经过有限次的四则运算和复合运算所得到的函数。基本初等函数和初等函数在其定义区间内均为连续函数。不是初等函数的函数,称为非初等函数,如狄利克雷函数和黎曼函数。有两种分类方法:数学分析有六种基本初等函数,高等数学只有五种。

[img]

这个是求基本初等函数的极限,但我答案没看懂,谁可以教教我😭?

当你求出初等函数的极限后,往往需要把求得的极限进行验证,判断是否正确。在这个过程中,需要注意的是:

1.极限值必须要存在。

2.极限值必须要唯一。

3.需要注意初等函数的性质和定义,不要被一些基本初等函数表达式的特殊性质所迷惑。

如果你的答案看不懂,可以先看看自己审题有没有偏差。如果实在看不懂,可以向老师、同学或者一些网上学习论坛提问,得到更多的帮助和指导。

初等函数和复合函数区别?举例

直接举一个例子吧

如果设初等函数

最后得到的函数就是幂函数与三角函数复合得到的复合函数。

跪求高中数学10种函数的8大性质 越详细越好,

1.一次函数(包括正比例函数)

最简单最常见的函数,在平面直角坐标系上的图象为直线.

定义域(下面没有说明的话,都是在无特殊要求情况下的定义域):R

值域:R

奇偶性:无

周期性:无

平面直角坐标系解析式(下简称解析式):

①ax+by+c=0[一般式]

②y=kx+b[斜截式]

(k为直线斜率,b为直线纵截距,正比例函数b=0)

③y-y1=k(x-x1)[点斜式]

(k为直线斜率,(x1,y1)为该直线所过的一个点)

④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]

((x1,y1)与(x2,y2)为直线上的两点)

⑤x/a-y/b=0[截距式]

(a、b分别为直线在x、y轴上的截距)

解析式表达局限性:

①所需条件较多(3个);

②、③不能表达没有斜率的直线(平行于x轴的直线);

④参数较多,计算过于烦琐;

⑤不能表达平行于坐标轴的直线和过圆点的直线.

倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜 角.设一直线的倾斜角为a,则该直线的斜率k=tg(a).

2.二次函数:

题目中常见的函数,在平面直角坐标系上的图象是一条对称轴与y轴平行的抛物线.

定义域:R

值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)

奇偶性:偶函数

周期性:无

解析式:

①y=ax^2+bx+c[一般式]

⑴a≠0

⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;

⑶极值点:(-b/2a,(4ac-b^2)/4a);

⑷Δ=b^2-4ac,

Δ>0,图象与x轴交于两点:

([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);

Δ=0,图象与x轴交于一点:

(-b/2a,0);

Δ<0,图象与x轴无交点;

②y=a(x-h)^2+t[配方式]

此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);

3.反比例函数

在平面直角坐标系上的图象为双曲线.

定义域:(负无穷,0)∪(0,正无穷)

值域:(负无穷,0)∪(0,正无穷)

奇偶性:奇函数

周期性:无

解析式:y=1/x

4.幂函数

y=x^a

①y=x^3

定义域:R

值域:R

奇偶性:奇函数

周期性:无

图象类似于将一个过圆点的二次函数的第四区间部分关于x轴作轴对称

后得到的图象(类比,这个方法不能得到三次函数图象)

②y=x^(1/2)

定义域:[0,正无穷)

值域:[0,正无穷)

奇偶性:无(即非奇非偶)

周期性:无

图象类似于将一个过圆点的二次函数以原点为旋转中心,顺时针旋转

90°,再去掉y轴下方部分得到的图象(类比,这个方法不能得到三次

函数图象)

5.指数函数

在平面直角坐标系上的图象(太难描述了,说一下性质吧……)

恒过点(0,1).联系解析式,若a>1则函数在定义域上单调增;若0<a<1 则函数在定义域上单调减.

定义域:R

值域:(0,正无穷)

奇偶性:无

周期性:无

解析式:y=a^x

a>0

性质:与对数函数y=log(a)x互为反函数.

*对数表达:log(a)x表示以a为底的x的对数.

6.对数函数

在定义域上的图象与对应的指数函数(该对数函数的反函数)的图象关于直线y=x轴对称.

恒过定点(1,0).联系解析式,若a>1则函数在定义域上单调增;若0<a<1 则函数在定义域上单调减.

定义域:(0,正无穷)

值域:R

奇偶性:无

周期性:无

解析式:y=log(a)x

a>0

性质:与对数函数y=a^x互为反函数.

7.三角函数

⑴正弦函数:y=sinx

图象为正弦曲线(一种波浪线,是所有曲线的基础)

定义域:R

值域:[-1,1]

奇偶性:奇函数

周期性:最小正周期为2π

对称轴:直线x=kπ/2 (k∈Z)

中心对称点:与x轴的交点:(kπ,0)(k∈Z)

⑵余弦函数:y=cosx

图象为正弦曲线,由正弦函数的图象向左平移π/2个单位(最小平移量)所得.

定义域:R

值域:[-1,1]

奇偶性:偶函数

周期性:最小正周期为2π

对称轴:直线x=kπ (k∈Z)

中心对称点:与x轴的交点:(π/2+kπ,0)(k∈Z)

⑶正切函数:y=tg x

图象的每个周期单位很像是三次函数,很多个,均匀分布在x轴上.

定义域:{x│x≠π/2+kπ}

值域:R

奇偶性:奇函数

周期性:最小正周期为π

对称轴:无

中心对称点:与x轴的交点:(kπ,0)(k∈Z).

8.反三角函数:

y=arcsin(x),

定义域[-1,1] ,

值域[-π/2,π/2]

1)y=arccos(x),

定义域[-1,1] ,

值域[0,π],

2)y=arctan(x),

定义域(-∞,+∞),

值域(-π/2,π/2),

函数性质公式 arcsin(-x)=-arcsinx

arccos(-x)=π-arccosx

arctan(-x)=-arctanx

arccot(-x)=π-arccotx

arcsinx+arccosx=π/2=arctanx+arccotx

sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)

9.复合函数:

y=f(μ)=f[φ(x)],

其中x称为自变量,μ为中间变量,y为因变量

定义域:若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数

y=f[g(x)]的定义域是:复合函数的导数D={x|x∈A,且g(x)∈B}

周期性:设y=f(u),的最小正周期为T1,

μ=φ(x)的最小正周期为T2,

则y=f(μ)的最小正周期为T1*T2,任一周期可表示为k*T1*T2(k属于R+)

增减性:依y=f(x),μ=φ(x)的增减性决定.

即“增增得增,减减得增,增减得减”,可以简化为“同增异减”

10)初等函数

初等函数是由幂函数(power function)、指数函数(exponential function)、对数函数(logarithmicfunction)、三角函数(trigonometric function)、反三角函数(inverse trigonometic function)与常数经过有限次的有理运算(加、减、乘、除、有理数次乘方、有理数次开方)及有限次函数复合所产生、并且能用一个解析式表示的函数.

一般初等函数的导数还是初等函数,但初等函数的不定积分不一定是初等函数.另外初等函数的反函数不一定是初等函数.

16个基本初等函数的求导公式推导

16个基本初等函数的求导公式推导如下:

1.y=c y'=0

2. y=α^μ y'=μα^(μ-1)

3. y=a^x y'=a^x lna

y=e^x y'=e^x

4. y=loga,x y'=loga,e/x

y=lnx y'=1/x

5. y=sinx y'=cosx

6. y=cosx y'=-sinx

7. y=tanx y'=(secx)^2=1/(cosx)^2

8. y=cotx y'=-(cscx)^2=-1/(sinx)^2

9. y=arc sinx y'=1/√(1-x^2)

10.y=arc cosx y'=-1/√(1-x^2)

11.y=arc tanx y'=1/(1+x^2)

12.y=arc cotx y'=-1/(1+x^2)

13.y=sh x y'=ch x

14.y=ch x y'=sh x

15.y=thx y'=1/(chx)^2

16.y=ar shx y'=1/√(1+x^2)

17.y=ar chx y'=1/√(x^2-1)

18.y=ar th y'=1/(1-x^2)

15.y=thx y'=1/(chx)^2

16.y=ar shx y'=1/√(1+x^2)

17.y=ar chx y'=1/√(x^2-1)

18.y=ar th y'=1/(1-x^2)

高中八大函数图像及性质

函数的图象是高考的必考点,对于研究函数的单调性、奇偶性以及最值(值域)、零点有举足轻重的作用,但是很多同学看到眼花缭乱的函数解析式,就已经晕头转向了,再去画图象,不是这里错,就是那里有问题,图象也画的乱七八糟,更甭提利用图象去解题了!

但掌握以下几步,画函数图象将轻而易举:

1、首先,观察是否是基本初等函数(也就是我们在课本中学过的那几类函数),如果是,那就可以直接画;

2、如果不是,继续第二步,看看是否是经过一系列函数变换的,比如:翻折变换,对称变换,伸缩变换,平移变换等,如果是,那就根据变换的规律画出图象;

3、如果还不是,那基本这个函数图象也不需要你独自画出来了,那种题目基本会考查选择题,能从4个选项中选择出来就可以了!(今天不研究那种函数图象)

下面,给大家整理一些常用函数的图象以及函数变换的规律,希望大家能学明白!

一、基本初等函数的图象

一次函数

性质:一次函数图象是直线,当k0时,函数单调递增;当k0时,函数单调递减。

二次函数

性质:二次函数图象是抛物线,a决定函数图象的开口方向,判别式b^2-4ac决定了函数图象与x轴的交点,对称轴两边函数的单调性不同。

反比例函数

性质:反比例函数图象是双曲线,当k0时,图象经过一、三象限;当k0时,图象经过二、四象限。

要注意表述函数单调性时,不能说在定义域上单调,而应该说在(-∞,0),(0,∞)上单调。

指数函数

当0ab1cd时,指数函数的图象如下图

不同底的指数函数图象在同一个坐标系中时,一般可以做直线x=1,与各函数的交点,根据交点纵坐标的大小,即可比较底数的大小。

对数函数

当底数不同时,对数函数的图象是这样变换的。

幂函数

性质:先看第一象限,即x0时,当a1时,函数越增越快;当0a1时,函数越增越慢;当a0时,函数单调递减;然后当x0时,根据函数的定义域与奇偶性判断函数图象即可。

对勾函数

对于函数y=x+k/x,当k0时,才是对勾函数,可以利用均值定理找到函数的最值。

二、函数图象的变换

注意对于函数图象的变换,有的时候,看到解析式,可能会有两种以上的变换,尤其是针对x轴上的,那么此时,一定要

关于衡水名师初等函数和衡水中学函数专题的介绍到此就结束了,不知道同学们从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

本文转载自互联网,如有侵权,联系删除