数学周测小卷单元小卷八上(八年级下册数学周测小卷答案)

本篇文章给同学们谈谈数学周测小卷单元小卷八上,以及八年级下册数学周测小卷答案对应的知识点,希望对各位同学有所帮助,不要忘记分享给你的朋友哦!

本文目录一览:

八年级数学上册勾股定理单元测试卷

勾股定理是三角形图形学习的最基础的知识点,也是解题的必备知识点,下面是我给大家带来的 八年级 数学上册《第1章 勾股定理》单元测试卷,希望能够帮助到大家!

八年级数学上册《第1章 勾股定理》单元测试卷

一、选择题

1.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()

A.如果∠C﹣∠B=∠A,则△ABC是直角三角形

B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°

C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形

D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形

2.下列各组数的三个数,可作为三边长构成直角三角形的是()

A.1,2,3 B.32,42,52 C. , , D.0.3,0.4,0.5

3.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为()

A.90 B.100 C.110 D.121

4.在Rt△ABC中,斜边长BC=3,AB2+AC2+BC2的值为()

A.18 B.9 C.6 D.无法计算

5.在Rt△ABC中,a,b,c为△ABC三边长,则下列关系正确的是()

A.a2+b2=c2 B.a2+c2=b2

C.b2+c2=a2 D.以上关系都有可能

6.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()

A.42 B.32 C.42或32 D.37或33

二.填空题

7.已知a,b,c分别是Rt△ABC的两条直角边长和斜边长,且a+b=14,c=10,则S△ABC=.

8.小强在操场上向东走200m后,又走了150m,再走250m回到原地,小强在操场上向东走了200m后,又走150m的方向是.

9.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2等于.

三.解答题

10.如图,AC⊥CE,AD=BE=13,BC=5,DE=7,求AC.

11.如图,有一个长方形的场院ABCD,其中AB=9m,AD=12m,在B处竖直立着一根电线杆,在电线杆上距地面8m的E处有一盏电灯.点D到灯E的距离是多少?

12.如图是一束平行的阳光从教室窗户射入的平面示意图,小强同学测量出BC=1m,

NC= m,BN= m,AC=4.5m,MC=6m,求MA的长.

13.如图,长方体的长为15,宽为10,高为20,点B离点C的距离是5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?

14.如图,在长方形纸片ABCD中,AB=18,把长方形纸片沿直线AC折叠,点B落在点E处,AE交DC于点F,若AF=13,求AD的长.

15.如图,对任意符合条件的直角三角形BAC,绕其锐角顶点逆时针旋转90°得△DAE,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和,根据图形写出一种证明勾股定理的 方法 .

北师大新版八年级数学上册《第1章 勾股定理》2016年单元测试卷

参考答案与试题解析

一、选择题

1.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()

A.如果∠C﹣∠B=∠A,则△ABC是直角三角形

B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°

C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形

D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形

【考点】KS:勾股定理的逆定理;K7:三角形内角和定理.

【分析】直角三角形的判定方法有:①求得一个角为90°,②利用勾股定理的逆定理.

【解答】解:A、根据三角形内角和定理,可求出角C为90度,故正确;

B、解得应为∠B=90度,故错误;

C、化简后有c2=a2+b2,根据勾股定理,则△ABC是直角三角形,故正确;

D、设三角分别为5x,3x,2x,根据三角形内角和定理可求得三外角分别为:90度,36度,54度,则△ABC是直角三角形,故正确.

故选B.

【点评】本题考查了直角三角形的判定.

2.下列各组数的三个数,可作为三边长构成直角三角形的是()

A.1,2,3 B.32,42,52 C. , , D.0.3,0.4,0.5

【考点】KS:勾股定理的逆定理.

【分析】根据勾股定理的逆定理即可判断.

【解答】解:∵0.32+0.42=0.25,0.52=0.25,

∴0.32+0.42=0.52,

∴0.3,0.4,0.5能构成直角三角形的三边.

故选D.

【点评】本题考查勾股定理的逆定理,解题的关键是记住勾股定理的逆定理的解题格式,属于中考常考题型.

3.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为()

A.90 B.100 C.110 D.121

【考点】KR:勾股定理的证明.

【专题】1 :常规题型;16 :压轴题.

【分析】延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.

【解答】解:如图,延长AB交KF于点O,延长AC交GM于点P,

所以四边形AOLP是正方形,

边长AO=AB+AC=3+4=7,

所以KL=3+7=10,LM=4+7=11,

因此矩形KLMJ的面积为10×11=110.

故选:C.

【点评】本题考查了勾股定理的证明,作出辅助线构造出正方形是解题的关键.

4.在Rt△ABC中,斜边长BC=3,AB2+AC2+BC2的值为()

A.18 B.9 C.6 D.无法计算

【考点】KQ:勾股定理.

【分析】利用勾股定理将AB2+AC2转化为BC2,再求值.

【解答】解:∵Rt△ABC中,BC为斜边,

∴AB2+AC2=BC2,

∴AB2+AC2+BC2=2BC2=2×32=18.

故选A.

【点评】本题考查了勾股定理.正确判断直角三角形的直角边、斜边,利用勾股定理得出等式是解题的关键.

5.在Rt△ABC中,a,b,c为△ABC三边长,则下列关系正确的是()

A.a2+b2=c2 B.a2+c2=b2

C.b2+c2=a2 D.以上关系都有可能

【考点】KQ:勾股定理.

【分析】根据勾股定理,分∠C是直角,∠B是直角,∠A是直角,三种情况讨论可得a,b,c之间的关系.

【解答】解:在Rt△ABC中,a,b,c为△ABC三边长,

∠C是直角,则有a2+b2=c2;

∠B是直角,则有a2+c2=b2;

∠A是直角,则有b2+c2=a2.

故选:D.

【点评】考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.

6.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()

A.42 B.32 C.42或32 D.37或33

【考点】KQ:勾股定理.

【分析】本题应分两种情况进行讨论:

(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;

(2)当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相减即为BC的长,从而可将△ABC的周长求出.

【解答】解:此题应分两种情况说明:

(1)当△ABC为锐角三角形时,在Rt△ABD中,

BD= = =9,

在Rt△ACD中,

CD= = =5

∴BC=5+9=14

∴△ABC的周长为:15+13+14=42;

(2)当△ABC为钝角三角形时,

在Rt△ABD中,BD= = =9,

在Rt△ACD中,CD= = =5,

∴BC=9﹣5=4.

∴△ABC的周长为:15+13+4=32

∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.

故选C.

【点评】此题考查了勾股定理及解直角三角形的知识,在解本题时应分两种情况进行讨论,易错点在于漏解,同学们思考问题一定要全面,有一定难度.

二.填空题

7.已知a,b,c分别是Rt△ABC的两条直角边长和斜边长,且a+b=14,c=10,则S△ABC= 24 .

【考点】KQ:勾股定理;K3:三角形的面积.

【分析】直接利用勾股定理结合已知得出关于b的等式,进而求出答案.

【解答】解:∵a,b,c分别是Rt△ABC的两条直角边长和斜边长,且a+b=14,c=10,

∴a=14﹣b,则(14﹣b)2+b2=c2,

故(14﹣b)2+b2=102,

解得:b1=6,b2=8,

则a1=8,a2=6,

即S△ABC= ab= ×6×8=24.

故答案为:24.

【点评】此题主要考查了勾股定理以及三角形面积求法,正确得出直角边长是解题关键.

8.小强在操场上向东走200m后,又走了150m,再走250m回到原地,小强在操场上向东走了200m后,又走150m的方向是 北或南 .

【考点】KU:勾股定理的应用.

【分析】据题意作出图形,利用勾股定理的逆定理判定直角三角形即可确定答案.

【解答】解:解:如图,AB=200米,BC=BD=150米,AC=AD=250米,

根据2002+1502=2502得:∠ABC=∠ABD=90°,

∴小强在操场上向东走了200m后,又走150m的方向是向北或向南,

故答案为:向北或向南.

故答案为北或南

【点评】本题考查了勾股定理的应用,解题的关键是根据题意作出图形,难度中等.

9.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2等于 2π .

【考点】KQ:勾股定理.

【专题】11 :计算题.

【分析】根据半圆面积公式结合勾股定理,知S1+S2等于以斜边为直径的半圆面积.

【解答】解:S1= π( )2= πAC2,S2= πBC2,

所以S1+S2= π(AC2+BC2)= πAB2=2π.

故答案为:2π.

【点评】此题根据半圆的面积公式以及勾股定理证明:以直角三角形的两条直角边为直径的半圆面积和等于以斜边为直径的半圆面积,重在验证勾股定理.

三.解答题

10.如图,AC⊥CE,AD=BE=13,BC=5,DE=7,求AC.

【考点】KQ:勾股定理.

【分析】由已知可以利用勾股定理求得EC的长,从而可得到CD的长,再根据勾股定理求得AC的长即可.

【解答】解:∵AC⊥CE,AD=BE=13,BC=5,DE=7,

∴EC= =12,

∵DE=7,

∴CD=5,

∴AC= =12.

【点评】此题考查学生对直角三角形的性质及勾股定理的运用.

11.如图,有一个长方形的场院ABCD,其中AB=9m,AD=12m,在B处竖直立着一根电线杆,在电线杆上距地面8m的E处有一盏电灯.点D到灯E的距离是多少?

【考点】KU:勾股定理的应用.

【分析】在Rt△ABD中求出BD,然后在Rt△EBD中利用勾股定理即可得出DE的长度.

【解答】解:在Rt△BAD中,∠BAD=90°, 米,

在Rt△EBD中,∠EBD=90°, 米.

故点D到灯E的距离是17米.

【点评】本题考查了勾股定理的应用,属于基础题,解答本题的关键是熟练掌握勾股定理的表达式.

12.如图是一束平行的阳光从教室窗户射入的平面示意图,小强同学测量出BC=1m,

NC= m,BN= m,AC=4.5m,MC=6m,求MA的长.

【考点】KU:勾股定理的应用.

【分析】先根据勾股定理的逆定理判断出△BCN的形状,再由勾股定理即可得出结论.

【解答】解:∵BC=1m,NC= m,BN= m,

∴BC2=1,NC2= ,BN2= ,

∴BC2+NC2=BN2,

∴AC⊥MC.

在Rt△ACM中,

∵AC=4.5m,MC=6m,MA2=AC2+CM2=56.25,

∴MA=7.5 m.

【点评】本题考查的是勾股定理的应用,先根据题意判断出AC⊥MC是解答此题的关键.

13.如图,长方体的长为15,宽为10,高为20,点B离点C的距离是5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?

【考点】KV:平面展开﹣最短路径问题.

【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体侧面展开,然后利用两点之间线段最短解答.

【解答】解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如第1个图:

∵长方体的宽为10,高为20,点B离点C的距离是5,

∴BD=CD+BC=10+5=15,AD=20,

在直角三角形ABD中,根据勾股定理得:

∴AB= = =25;

只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如第2个图:

∵长方体的宽为10,高为20,点B离点C的距离是5,

∴BD=CD+BC=20+5=25,AD=10,

在直角三角形ABD中,根据勾股定理得:

∴AB= = =5 ;

只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如第3个图:

∵长方体的宽为10,高为20,点B离点C的距离是5,

∴AC=CD+AD=20+10=30,

在直角三角形ABC中,根据勾股定理得:

∴AB= = =5 ;

∵255 ,

∴蚂蚁爬行的最短距离是25.

【点评】本题主要考查两点之间线段最短.

14.如图,在长方形纸片ABCD中,AB=18,把长方形纸片沿直线AC折叠,点B落在点E处,AE交DC于点F,若AF=13,求AD的长.

【考点】PB:翻折变换(折叠问题).

【分析】由折叠得:∠EAC=∠BAC,AE=AB=18,根据平行线性质得:AF=FC=13,再求出EF=5,利用勾股定理求出EC的长,即AD的长.

【解答】解:由折叠得:∠EAC=∠BAC,AE=AB=18,

∵四边形ABCD为长方形,

∴DC∥AB,

∴∠DCA=∠BAC,

∴∠EAC=∠DCA,

∴FC=AF=13,

∵AB=18,AF=13,

∴EF=18﹣13=5,

∵∠E=∠B=90°,

∴EC= =12,

∵AD=BC=EC,

∴AD=12.

【点评】本题是折叠问题,考查了长方形、折叠的性质,难度不大;属于常考题型,熟练掌握折叠前后的两个对应角相等;与平行线的内错角相等得出等腰三角形,根据等角对等边,求出边的长,利用勾股定理解决问题.

15.如图,对任意符合条件的直角三角形BAC,绕其锐角顶点逆时针旋转90°得△DAE,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和,根据图形写出一种证明勾股定理的方法.

【考点】KR:勾股定理的证明.

【分析】证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和,化简整理得到勾股定理.

【解答】解:由图可得:

正方形ACFD的面积=四边形ABFE的面积=Rt△BAE和Rt△BFE的面积之和,

即S正方形ACFD=S△BAE+S△BFE,

∴b2= c2+ ,

整理得:a2+b2=c2.

【点评】本题主要考查了勾股定理的证明,勾股定理的证明方法有很多种,一般采用拼图的方法证明.在解题时注意:先利用拼图的方法拼图,然后再利用面积相等,证明勾股定理.

八年级上册数学第一单元测试题(人教版的)急用!

八年级上册数学试题一.填空: 1.64的平方根是______, 立方根是__________. 2.若一个多边形的内角和是外角和的5倍,则这个多边形是_________边形,其内角和为________. 3.数据6、8、9、8、10、8、9、6的平均数为_________,众数是______,中位数是___________. 4.若正比例函数、一次函数y=kx+2都经过点(-2,-4),则正比例函数为___________________,一次函数为___________________。 5.已知二元一次方程组{ ,则x-y=_________,x+y=__________. 6. 1- 的相反数是__________, 绝对值是_______________. 7、如右图,直线L一次函数y=kx+b的图象,则b= , k= ,当x_____________时,y0。 8.菱形的一条对角线与一条边长相等,则这个菱形相邻两个内角的度数分别为________________________。 9.能够铺满地面的正多边形只有________________________________________. 10.点P(2,-3)到x轴的距离为____________个单位,它关于y轴对称的点坐标为______________________。 11.将直线y=2x+1向下平移3个单位,得到的直线应为__________________. 12.Rt△ABC中,∠C=90º,AC=25,BC=60,则斜边AB的长为________。二.选择题: 1.-27的立方根与9的平方根的和是: ( ) A. 0 B . 6 C . -6 D . 0或-6 2.已知菱形的周长为9.6,两个邻角的比是1:2,这个菱形的较短对角线的长是( ) A. 2.1 B . 2.2 C . 2.3 D . 2.4 3.下列说法中正确的是 ( ) A. 四边相等的四边形是正方形 B . 四个内角相等的四边形是正方形 C . 对角线垂直的平行四边形是正方形 D . 对角线垂直的矩形是正方形 4.一次函数y=-x+2的图象与两条坐标轴所围成的三角形的面积为( ) A.1 B . 2 C . 3 D . 4 5.在下列方程组中,以{ 为解的是 ( ) A.{ B .{ C .{ D . { 6.要使正十二边形旋转后与自身重合,至少应将它绕中心逆时针方向旋转的度数为 ( ) A. 30o B . 45o C . 60o D . 75o 7.一个扇形 ( ) A. 是轴对称图形,但不是旋转对称图形 B . 是旋转对称图形,但不是轴对称图形 C . 是轴对称图形,也是旋转对称图形 D . 既不是轴对称图形,也不是旋转对称图形 8.下列五个命题: ① 0是最小的实数; ② 数轴上的所有的点都表示实数; ③ 无理数就是带根号的数; ④ 一个实数的平方根有两个,它们是互为相反数; ⑤ 的立方根是± 。其中正确的个数是( )。 A. 0 B . 1 C . 4 D . 3 9.如下图,同一坐标系中,直线l1: y=2x-3和l2: y=-3x+2的图象大致可能是( )。 A B C D 10.平行四边形内角平分线围成( ) A. 菱形 B . 平行四边形 C . 矩形 D . 正方形 11、一次函数y=-2x-3不经过( )(A) 第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限 12.Rt△ABC中,∠B=90º,AC=5,BC=4,则三角形的周长为( )。 A.10 B.11 C.12 D.13 三.解答题: 1. 化简计算:(1) - +2 (2) (3)2a (4) ( 2.解方程组:(1){ (2){ (3){ (4){ 3.如图,让字母“F”绕点O逆时针旋转90o,作出旋转后的图案。 . O 4.某养殖场有猪、鸭若干只,共有头330个,脚816只,求该养殖场养殖猪、鸭各多少只? 5. 已知正比例函数经过(1)第二、四象限,则k如何?(3分)(2)点(2,1),求它的表达式。(4分) 6.△ABC中,∠C=90o,c=2,(a+b)2 =6,求此三角形的面积。 7.根据下图,说明图形2、3、4、5、6分别可以看成是由图形1经过图形的什么运动而得到的。若是轴对称,请指出对称轴;若是平移,请指出平移的方向与距离;若是旋转,请指出旋转的中心与旋转的角度;若是几个运动的结果,请加以说明。 8.请用两种边长相同的正多边形进行密铺。

初二年级数学上册单元测试题含答案

   一、填空题(共13小题,每小题2分,满分26分)

1.已知:2x-3y=1,若把 看成 的函数,则可以表示为

2.已知y是x的一次函数,又表给出了部分对应值,则m的值是

3.若函数y=2x+b经过点(1,3),则b= _________.

4.当x=_________时,函数y=3x+1与y=2x-4的函数值相等。

5.直线y=-8x-1向上平移___________个单位,就可以得到直线y=-8x+3.

6.已知直线y=2x+8与x轴和y轴的交点的坐标分别是______________;与两条坐标

轴围成的三角形的面积是__________.中.考.资.源.网

7.中.考.资.源.网一根弹簧的原长为12 cm,它能挂的重量不能超过15 kg并且每挂重1kg就伸长0.5cm写出挂重后的弹簧长度y(cm)与挂重x(kg)之间的函数关系式是_______________.

8.写出同时具备下列两个条件的一次函数表达式:(写出一个即可) __ _ .(1)y随着x的增大而减小;(2)图象经过点(0,-3).

9.若函数 是一次函数,则m=_______,且 随 的增大而_______.

10.如图是某工程队在“村村通”工程中,修筑的公路长度y(米)与时间x(天)之间的

关系图象.根据图象提供的信息,可知该公路的长度是______米.

11. 如图所示,表示的是某航空公司托运行李的费用y(元)中.考.资.源.网与托运行李的质量x(千

克)的关系,由图中可知行李的质量,中.考.资.源.网只要不超过_________千克,就可以免费托运.

12.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…

和点C1,C2,C3,…分别在直线 (k0)和x轴上,已知点B1(1,1),B2(3,2),

B3(7,4), 则Bn的坐标是______________.

13.如下图所示,利用函数图象回答下列问题:

(1)方程组 的解为__________;

(2)不等式2x-x+3的解集为___________;

二、选择题(每小题3分,满分24分)

1. 一次函数y=(2m+2)x+m中,y随x的增大而减小,且其图象不经过第一象限,则m

的取值范围是()中.考.资.源.网

A. B. C. D. 中.考.资.源.网

2.把直线y=-2x向上平移后得到直线AB,直线AB经过点(m,n),且2m+n=6

则直线AB的解析式是( ).

A、y=-2x-3 B、y=-2x-6 C、y=-2x+3 D、y=-2x+6

3.下列说法中: ①直线y=-2x+4与直线y=x+1的交点坐标是(1,1);②一次函数 =kx+b,若k0,b0,那么它的图象过第一、二、三象限;③函数y=-6x是一次函数,且y随着x的增大而减小;④已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为y=-x+6;⑤在平面直角坐标系中,函数 的图象经过一、二、四象限⑥若一次函数 中,y随x的增大而减小,则m的取值范围是m3学⑦点A的坐标为(2,0),点B在直线y=-x上运动,当线段AB最短时,点B的坐标为(-1,1);⑧直线y=x—1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的点C最多有5个. 正确的有( )

A.2个 B.3个 C.4个 D.5个

4.已知点(-2,y1),(-1,y2),(1,y3)都在直线y=-3x+b上,则y1,y2,y3的值的大小关系是( )

A.y1y2y3 B.y1y1y2 D.y35.下列函数中,其图象同时满足两个条件①у随着χ的增大而增大;②与ỵ轴的正半轴

相交,则它的解析式为( )

(A)у=-2χ-1 (B)у=-2χ+1 (C)у=2χ-1 (D)у=2χ+1

6.已知y-2与x成正比例,且x=2时,y=4,若点(m,2m+7),

在这个函数的图象上,则m的值是( )

A.-2 B.2C.-5D.5

7.某公司市场营销部的个人月收入与其每月的销售量成一次

函数关系,其图象如图所示,由图中给出的信息可知,营销人

员没有销售时

时的收入是( )

A.310元 B.300元 C.290元 D.280元

8.已知函数y=kx+b的图象如图,则y=2kx+b的图象可能是( )

三、解答题(共50分)

1.(10分)两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给出的数据信息,解答

问题: (1)求整齐叠放在桌面上饭碗的高度y(cm)与饭碗数x (个)之间的一次函数解析式(不

要求写出自变量x的取值范围);

(2 )若桌面上有12个饭碗,整齐叠放成一摞,求出它的高度。

2.(10分)已知一次函数的图象经过A(-2,-3),B(1,3)两点.⑴ 求这个一次函数的解析

式;⑵ 试判断点P(-1,1)是否在这个一次函数的图象上.中.考.资.源.网⑶ 求此函数与x轴、y轴围

成的三角形的面积.

3.(10分)鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:[注:“鞋码”是表示鞋子大小的一种号码]

鞋长(cm) 16 19 21 24

鞋码(号) 22 28 32 38

(1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上?

(2)求x、y之间的函数关系式;

(3)如果某人穿44号“鞋码”的`鞋,那么他的鞋长是多少?

4. (10分)抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A、B两仓库。已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为70吨,B库的容量为110吨。从甲、乙两库到A、B两

库的路程和运费如下表(表中“元/吨•千米”表示每吨粮食运送1千米所需人民币)

(1)若甲库运往A库粮食 吨,请写出将粮食运往A、B两库的总运费 (元)与 (吨)的函数关系式

(2)当甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?

5.(10分)某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:

方案一:从纸箱厂定制购买,每个纸箱价格为4元;

方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.

(1)若需要这种规格的纸箱 个,请分别写出从纸箱厂购买纸箱的费用 (元)和蔬菜加工厂自己加工制作纸箱的费用 (元)关于 (个)的函数关系式;

(2)假设你是决策者,你认为应该选择哪种方案?并说明理由.

   参考答案:

一、填空题 1. 2.-7 3. 1 4.-5 5. 4 6.(-4,0)、(0,8),16

7. y=0.5x+12 8.略 9. 1,增大 10. 504 11.20 12. 13. (1)x=1,y=2 (2)x1

二、选择题 1.B 2.D 3.B 4.A 5.D 6.C 7. B 8.C

三、解答题

1. (1) y=1.5x+4.5 (2) 22.5

2. (1) y=2x+1 (2)不在 (3)0.25

3.解:(1)一次函数.

(2)设 .

由题意,得 解得

∴ .(x是一些不连续的值.一般情况下,x取16、16.5、17、17.5、…、26、26.5、27等)

说明:只要求对k、b的值,不写最后一步不扣分.

(3) 时, . 答:此人的鞋长为27cm.

4.解(1)依题意有:

= 其中

(2)上述一次函数中

∴ 随 的增大而减小

∴当 =70吨时,总运费最省

最省的总运费为:

答:从甲库运往A库70吨粮食,往B库运送30吨粮食,从乙库运往B库80吨粮食时,总运费最省为37100元。

5. 解:(1)从纸箱厂定制购买纸箱费用:

蔬菜加工厂自己加工纸箱费用: .

(2) ,

由 ,得: ,解得: .

当 时, ,

选择方案一,从纸箱厂定制购买纸箱所需的费用低.

当 时, ,

选择方案二,蔬菜加工厂自己加工纸箱所需的费用低.

当 时, ,

两种方案都可以,两种方案所需的费用相同.

[img]

求初中八年级上数学单元测试试题

不等式、分解因式和分式

一、不等式

1.若x≠y,则x2+|y|_________0;

2.若 ,则x的取值范围是( ).

(A)x>1; (B)x≤1; (C)x≥1; (D)x<1.

3.一个三角形的三边长分别是3,1-2m,8,则m的取值范围是________.

4.若不等式组 无解,则m的取值范围是________.

5.下列说法① 是不等式 的一个解;②当 时, ;③不等式 恒成立;④不等式 和 解集相同,其中正确的个数为( )

A.4个 B.3个 C.2个 D.1个

1.k为何值时,等式|-24+3a|+ 中的b是负数?

2.若方程组 的解 、 的值都不大于1,求 的取值范围。

3.小李和小张决定把省下的零用钱存起来.这个月小李存了168元,小张存了85元.下个月开始小李每月存16元,小张每月存25元.问几个月后小张的存款数能超过小李?(试根据题意列出不等式,并参照教科书中问题1的探索,找出所列不等式的解)。

4.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆,已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元,(1)设从乙仓库调往A县农用车 辆,用含 的代数式表示总运费W元;(2)请你用尝试的方法,探求总运费不超过900元,共有几种调运方案?你能否求出总运费最低的调运方案.

5.国庆期间两名家长计划带几个孩子去旅游,他们联系了两家旅行社,报价均为每人500元,经协商甲旅行社的优惠条件是:两名家长全额收费,孩子均按7折收费;乙旅行社的条件是:家长和孩子均按8折收费。假设两名家长带领x名孩子去旅游,他们应选择哪家旅行社?

二、分解因式

1.在多项式 中,可以用平方差公式分解因式的

有________________________ ,其结果是 _____________________。

2.分解因式: .

3. 则 =____ =____

4.多项式 的公因式是( )

A、-a、 B、 C、 D、

5.计算 的值是( )

A、1/2 B、 1/20 C、1/10 D、11/20

6.若x、y互为相反数,且 ,求x、y的值

7.已知 ,求 的值.

8.已知 , ,求 的值.

9.运用简便的方法计算: .

10.分解因式: .

三、分式

1.若非零实数a,b满足4a2+b2=4ab,则 =_____。

2.下列等式中不成立的是( )

A、 =x-y B、

C、 D、

3.已知a,b为实数,且ab=1,设M= ,N= ,则M,N的大小关系是( ) A、MN B、M=N C、MN D、不确定

4.若分式方程 无解,则 的值为( )

A、-1 B、-3 C、0 D、-2

5.已知: ,求 的值.

6.若关于 的分式方程 有增根,求 的值.

7.若分式方程 的解是正数,求 的取值范围.

8.解关于 的方程:(1) ;(2) .

9.已知 ,求(1) ,(2) 的值.

10.甲、乙、丙三个数依次小1,已知乙数的倒数与甲数的倒数的2倍之和与丙数的倒数的3倍相等,求这三个数。

八年级上册数学第一单元测试题及答案(2)

11.30 cm 解析:当50 cm长的木棒构成直角三角形的斜边时,设最短的木棒长为x cm(x0),由勾股定理,得 ,解得x=30.

12.15 cm 解析:如图,∵ 等腰三角形底边上的高、中线以及顶角的平分线互相重合,

∵ BC=16,∴

∵ AD⊥BC,∴ ∠ADB=90°.

在Rt△ADB中,∵ AB=AC=17,由勾股定理,得 .∴ AD=15 cm.

13.108 解析:因为 ,所以△ 是直角三角形,且两条直角边长分别为9,12,则用两个这样的三角形拼成的长方形的面积为 .

14.612 解析:由勾股定理,得楼梯的底面至楼梯的最高层的水平距离为12 m,所以楼道上铺地毯的长度为5+12=17(m).因为楼梯宽为2 m,地毯每平方米18元,所以铺完这个楼道需要的钱数为18×17×2=612(元).

15.6  解析:∵ △ABH≌△BCG≌△CDF≌△DAE,∴ AH=DE.

又∵ 四边形ABCD和EFGH都是正方形,

∴ AD=AB=10,HE=EF=2,且AE⊥DE.

∴ 在Rt△ADE中, ,∴ + =

∴ + = ,∴ AH=6或AH= - 8(不合题意,舍去).

16.126或66  解析:本题分两种情况.

(1)如图(1),在锐角△ABC中,AB=13,AC=20,BC边上的高AD=12,

第16题答图(1)

在Rt△ABD中,AB=13,AD=12,由勾股定理,得 =25,∴ BD=5.在Rt△ACD中,AC=20,AD=12,

由勾股定理,得 =256,

∴ CD=16,∴ BC的长为BD+DC=5+16=21,

△ABC的面积= •BC•AD= ×21×12=126. (2)如图(2),在钝角△ABC中,AB=13,AC=20,BC边上的高AD=12,

第16题答图(2)

在Rt△ABD中,AB=13,AD=12,由勾股定理,得 =25,∴ BD=5. 在Rt△ACD中,AC=20,AD=12,由勾股定理,得 =256,∴ CD=16.∴ BC=DC-BD=16-5=11.

△ABC的面积= •BC•AD= ×11×12=66.

综上,△ABC的面积是126或66. 17.49 解析:正方形A,B,C,D的面积之和是最大的正方形的面积,即49 .

18.4 解析:在Rt△ABC中,∠C=90°,由勾股定理,得 ,所以AB=5.他们仅仅少走了 (步).

19.解:如图,在△ABC中,AB=15,BC=14,AC=13,

设 ,∴ .

由勾股定理,得 ,

∴ ,

解得 .

∴ .

∴ .

20.解:在Rt△ 中,由勾股定理,得 ,

即 ,解得AC=3,或AC=-3(舍去).

因为每天凿隧道0.2 km,

所以凿隧道用的时间为3÷0.2=15(天).

答:15天才能把隧道AC凿通.

21.解:(1)因为三个内角的比是1︰2︰3,

所以设三个内角的度数分别为k,2k,3k(k≠0).

由k+2k+3k=180°,得k=30°,

所以三个内角的度数分别为30°,60°,90°.

(2)由(1)知三角形为直角三角形,则一条直角边长为1,斜边长为2.

设另外一条直角边长为x,则 ,即 .

所以另外一条边长的平方为3.

22.分析:旗杆折断的部分、未折断的部分和折断后原旗杆顶部离旗杆底部的部分构成了直角三角形,运用勾股定理可将折断的位置求出.

解:设旗杆未折断部分的长为x m,则折断部分的长为(16-x)m,

根据勾股定理,得 ,

解得 ,即旗杆在离底部6 m处断裂.

23.分析:从表中的数据找到规律.

解:(1)n2-1 2n n2+1

(2)以a,b,c为边长的三角形是直角三角形.

理由如下:

∵ a2+b2=(n2-1)2+4n2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2=c2,

∴ 以a,b,c为边长的三角形是直角三角形.

24.分析:(1)因为将△ 翻折得到△ ,所以 ,则在Rt△ 中,可求得 的长,从而 的长可求;

(2)由于 ,可设 的长为 ,在Rt△ 中,利用勾股定理解直角三角形即可.

解:(1)由题意,得AF=AD=BC=10 cm,

在Rt△ABF中,∠B=90°,

∵ cm,∴ ,BF=6 cm,

∴ (cm). (2)由题意,得 ,设 的长为 ,则 .

在Rt△ 中,∠C=90°,

由勾股定理,得 即 ,

解得 ,即 的长为5 cm.

25.分析:要求蚂蚁爬行的最短路程,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.

解:蚂蚁沿如图(1)所示的路线爬行时,长方形 长为 ,宽为 ,

连接 ,则构成直角三角形.

由勾股定理,得 . 蚂蚁沿如图(2)所示的路线爬行时,长方形 长为 ,宽为 ,

连接 ,则构成直角三角形.

由勾股定理,

得 , .

蚂蚁沿如图(3)所示的路线爬行时,长方形 长为 宽为AB=2,连接 ,则构成直角三角形.

由勾股定理,得

∴ 蚂蚁从 点出发穿过 到达 点时路程最短,最短路程是5.

人教版八年级数学上册第二单元测试卷

想要提高数学的成绩,除了上课认真听讲,更重要的是多做基础单元测试题目。下面由我为你整理的人教版八年级数学上册第二单元测试卷,希望对大家有帮助!

人教版八年级数学上册第二单元测试卷

一、选择题

1.正三角形△ABC的边长为3,依次在边AB、BC、CA上取点A1、B1、C1,使AA1=BB1=CC1=1,则△A1B1C1的面积是()

A. B. C. D.

2.在Rt△ABC中,∠C=90°,AB=10.若以点C为圆心,CB为半径的圆恰好经过AB的中点D,则AC=()

A.5 B. C. D.6

3.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()

A.140° B.160° C.170° D.150°

4.如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=3,则BC的长为()

A.6 B.6 C.9 D.3

5.如图,在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD.若BD=1,则AC的长是()

A.2 B.2 C.4 D.4

6.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为()

A. B.1 C. D.2

7.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为()

A.0.5km B.0.6km C.0.9km D.1.2km

8.如图,一个矩形纸片,剪去部分后得到一个三角形,则图中∠1+∠2的度数是()

A.30° B.60° C.90° D.120°

9.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为()

A.2 B. C. D.

10.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()

A.120° B.90° C.60° D.30°

11.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()

A. B.2 C. D.2

12.将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()

A.3cm B.6cm C. cm D. cm

13.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于()

A. cm B.2cm C.3cm D.4cm

14.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()

A.3 B.4 C.5 D.6

15.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上一点,连接DE,则下列说法错误的是()

A.∠CAD=30° B.AD=BD C.BD=2CD D.CD=ED

二、填空题

16.由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是cm.

17.在△ABC中,∠B=30°,AB=12,AC=6,则BC=.

18.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD=.

19.如图,已知正方形ABCD的边长为4,对角线AC与BD相交于点O,点E在DC边的延长线上.若∠CAE=15°,则AE=.

20.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB=.

第2章 特殊三角形

人教版八年级数学上册第二单元测试卷参考答案与试题解析

一、选择题(共15小题)

1.正三角形△ABC的边长为3,依次在边AB、BC、CA上取点A1、B1、C1,使AA1=BB1=CC1=1,则△A1B1C1的面积是()

A. B. C. D.

【考点】等边三角形的判定与性质.

【专题】压轴题.

【分析】依题意画出图形,过点A1作A1D∥BC,交AC于点D,构造出边长为1的小正三角形△AA1D;由AC1=2,AD=1,得点D为AC1中点,因此可求出S△AA1C1=2S△AA1D= ;同理求出S△CC1B1=S△BB1A1= ;最后由S△A1B1C1=S△ABC﹣S△AA1C1﹣S△CC1B1﹣S△BB1A1求得结果.

【解答】解:依题意画出图形,如下图所示:

过点A1作A1D∥BC,交AC于点D,易知△AA1D是边长为1的等边三角形.

又AC1=AC﹣CC1=3﹣1=2,AD=1,

∴点D为AC1的中点,

∴S△AA1C1=2S△AA1D=2× ×12= ;

同理可求得S△CC1B1=S△BB1A1= ,

∴S△A1B1C1=S△ABC﹣S△AA1C1﹣S△CC1B1﹣S△BB1A1= ×32﹣3× = .

故选B.

【点评】本题考查等边三角形的判定与性质,难度不大.本题入口较宽,解题方法多种多样,同学们可以尝试不同的解题方法.

2.在Rt△ABC中,∠C=90°,AB=10.若以点C为圆心,CB为半径的圆恰好经过AB的中点D,则AC=()

A.5 B. C. D.6

【考点】等边三角形的判定与性质;含30度角的直角三角形;勾股定理.

【专题】计算题;压轴题.

【分析】连结CD,直角三角形斜边上的中线性质得到CD=DA=DB,利用半径相等得到CD=CB=DB,可判断△CDB为等边三角形,则∠B=60°,所以∠A=30°,然后根据含30度的直角三角形三边的关系先计算出BC,再计算AC.

【解答】解:连结CD,如图,

∵∠C=90°,D为AB的中点,

∴CD=DA=DB,

而CD=CB,

∴CD=CB=DB,

∴△CDB为等边三角形,

∴∠B=60°,

∴∠A=30°,

∴BC= AB= ×10=5,

∴AC= BC=5 .

故选C.

【点评】本题考查了等边三角形的判定与性质:三边都相等的三角形为等边三角形;等边三角形的三个内角都等于60°.也考查了直角三角形斜边上的中线性质以及含30度的直角三角形三边的关系.

3.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()

A.140° B.160° C.170° D.150°

【考点】直角三角形的性质.

【分析】利用直角三角形的性质以及互余的关系,进而得出∠COA的度数,即可得出答案.

【解答】解:∵将一副直角三角尺如图放置,∠AOD=20°,

∴∠COA=90°﹣20°=70°,

∴∠BOC=90°+70°=160°.

故选:B.

【点评】此题主要考查了直角三角形的性质,得出∠COA的度数是解题关键.

4.如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=3,则BC的长为()

A.6 B.6 C.9 D.3

【考点】含30度角的直角三角形;线段垂直平分线的性质.

【分析】根据线段垂直平分线上的点到线段两端距离相等可得AD=BD,可得∠DAE=30°,易得∠ADC=60°,∠CAD=30°,则AD为∠BAC的角平分线,由角平分线的性质得DE=CD=3,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2DE,得结果.

【解答】解:∵DE是AB的垂直平分线,

∴AD=BD,

∴∠DAE=∠B=30°,

∴∠ADC=60°,

∴∠CAD=30°,

∴AD为∠BAC的角平分线,

∵∠C=90°,DE⊥AB,

∴DE=CD=3,

∵∠B=30°,

∴BD=2DE=6,

∴BC=9,

故选C.

【点评】本题主要考查了垂直平分线的性质,角平分线上的点到角的两边距离相等的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.

5.如图,在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD.若BD=1,则AC的长是()

A.2 B.2 C.4 D.4

【考点】含30度角的直角三角形;线段垂直平分线的性质;勾股定理.

【分析】求出∠ACB,根据线段垂直平分线的性质求出AD=CD,推出∠ACD=∠A=30°,求出∠DCB,即可求出BD、BC,根据含30°角的直角三角形性质求出AC即可.

【解答】解:∵在Rt△ABC中,∠B=90°,∠A=30°,

∴∠ACB=60°,

∵DE垂直平分斜边AC,

∴AD=CD,

∴∠ACD=∠A=30°,

∴∠DCB=60°﹣30°=30°,

在Rt△DBC中,∠B=90°,∠DCB=30°,BD=1,

∴CD=2BD=2,

由勾股定理得:BC= = ,

在Rt△ABC中,∠B=90°,∠A=30°,BC= ,

∴AC=2BC=2 ,

故选A.

【点评】本题考查了三角形内角和定理,等腰三角形的性质,勾股定理,含30度角的直角三角形性质的应用,解此题的关键是求出BC的长,注意:在直角三角形中,如果有一个角等于30°,那么它所对的直角边等于斜边的一半.

6.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为()

A. B.1 C. D.2

【考点】含30度角的直角三角形;角平分线的性质;线段垂直平分线的性质.

【分析】先根据线段垂直平分线的性质得出BE=CE=2,故可得出∠B=∠DCE=30°,再由角平分线定义得出∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°,利用三角形内角和定理求出∠A=180°﹣∠B﹣∠ACB=90°,然后在Rt△CAE中根据30°角所对的直角边等于斜边的一半得出AE= CE=1.

【解答】解:∵在△ABC中,∠B=30°,BC的垂直平分线交AB于E,BE=2,

∴BE=CE=2,

∴∠B=∠DCE=30°,

∵CE平分∠ACB,

∴∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°,

∴∠A=180°﹣∠B﹣∠ACB=90°.

在Rt△CAE中,∵∠A=90°,∠ACE=30°,CE=2,

∴AE= CE=1.

故选B.

【点评】本题考查的是含30度角的直角三角形的性质,线段垂直平分线的性质,等腰三角形的性质,角平分线定义,三角形内角和定理,求出∠A=90°是解答此题的关键.

7.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为()

A.0.5km B.0.6km C.0.9km D.1.2km

【考点】直角三角形斜边上的中线.

【专题】应用题.

【分析】根据直角三角形斜边上的中线等于斜边的一半,可得MC=AM=1.2km.

【解答】解:∵在Rt△ABC中,∠ACB=90°,M为AB的中点,

∴MC= AB=AM=1.2km.

故选D.

【点评】本题考查了直角三角形斜边上的中线的性质:在直角三角形中,斜边上的中线等于斜边的一半.理解题意,将实际问题转化为数学问题是解题的关键.

8.如图,一个矩形纸片,剪去部分后得到一个三角形,则图中∠1+∠2的度数是()

A.30° B.60° C.90° D.120°

【考点】直角三角形的性质.

【专题】常规题型.

【分析】根据直角三角形两锐角互余解答.

【解答】解:由题意得,剩下的三角形是直角三角形,

所以,∠1+∠2=90°.

故选:C.

【点评】本题考查了直角三角形两锐角互余的性质,熟记性质是解题的关键.

9.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为()

A.2 B. C. D.

【考点】含30度角的直角三角形;勾股定理;等腰直角三角形.

【分析】在Rt△ACD中求出AD,在Rt△CDB中求出BD,继而可得出AB.

【解答】解:在Rt△ACD中,∠A=45°,CD=1,

则AD=CD=1,

在Rt△CDB中,∠B=30°,CD=1,

则BD= ,

故AB=AD+BD= +1.

故选D.

【点评】本题考查了等腰直角三角形及含30°角的直角三角形的性质,要求我们熟练掌握这两种特殊直角三角形的性质.

10.(2014•海南)在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()

A.120° B.90° C.60° D.30°

【考点】直角三角形的性质.

【分析】根据直角三角形两锐角互余列式计算即可得解.

【解答】解:∵直角三角形中,一个锐角等于60°,

∴另一个锐角的度数=90°﹣60°=30°.

故选:D.

【点评】本题考查了直角三角形两锐角互余的性质,熟记性质是解题的关键.

11.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()

A. B.2 C. D.2

【考点】等边三角形的判定与性质;勾股定理的应用;正方形的性质.

【分析】图1中根据勾股定理即可求得正方形的边长,图2根据有一个角是60°的等腰三角形是等边三角形即可求得.

【解答】解:如图1,

∵AB=BC=CD=DA,∠B=90°,

∴四边形ABCD是正方形,

连接AC,则AB2+BC2=AC2,

∴AB=BC= = = ,

如图2,∠B=60°,连接AC,

∴△ABC为等边三角形,

∴AC=AB=BC= .

【点评】本题考查了正方形的性质,勾股定理以及等边三角形的判定和性质,利用勾股定理得出正方形的边长是关键.

12.将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()

A.3cm B.6cm C. cm D. cm

【考点】含30度角的直角三角形;等腰直角三角形.

【分析】过另一个顶点C作垂线CD如图,可得直角三角形,根据直角三角形中30°角所对的边等于斜边的一半,可求出有45°角的三角板的直角边,再由等腰直角三角形求出最大边.

【解答】解:过点C作CD⊥AD,∴CD=3,

在直角三角形ADC中,

∵∠CAD=30°,

∴AC=2CD=2×3=6,

又∵三角板是有45°角的三角板,

∴AB=AC=6,

∴BC2=AB2+AC2=62+62=72,

∴BC=6 ,

故选:D.

【点评】此题考查的知识点是含30°角的直角三角形及等腰直角三角形问题,关键是先求得直角边,再由勾股定理求出最大边.

13.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于()

A. cm B.2cm C.3cm D.4cm

【考点】含30度角的直角三角形.

【专题】常规题型.

【分析】根据在直角三角形中,30度所对的直角边等于斜边的一半得出AE=2ED,求出ED,再根据角平分线到两边的距离相等得出ED=CE,即可得出CE的值.

【解答】解:∵ED⊥AB,∠A=30°,

∴AE=2ED,

∵AE=6cm,

∴ED=3cm,

∵∠ACB=90°,BE平分∠ABC,

∴ED=CE,

∴CE=3cm;

故选:C.

【点评】此题考查了含30°角的直角三角形,用到的知识点是在直角三角形中,30度所对的直角边等于斜边的一半和角平分线的基本性质,关键是求出ED=CE.

14.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()

A.3 B.4 C.5 D.6

【考点】含30度角的直角三角形;等腰三角形的性质.

【专题】计算题.

【分析】过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD﹣MD即可求出OM的长.

【解答】解:过P作PD⊥OB,交OB于点D,

在Rt△OPD中,cos60°= = ,OP=12,

∴OD=6,

∵PM=PN,PD⊥MN,MN=2,

∴MD=ND= MN=1,

∴OM=OD﹣MD=6﹣1=5.

故选:C.

【点评】此题考查了含30度直角三角形的性质,等腰三角形的性质,熟练掌握直角三角形的性质是解本题的关键.

15.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上一点,连接DE,则下列说法错误的是()

A.∠CAD=30° B.AD=BD C.BD=2CD D.CD=ED

【考点】含30度角的直角三角形;角平分线的性质;等腰三角形的判定与性质.

【专题】几何图形问题.

【分析】根据三角形内角和定理求出∠CAB,求出∠CAD=∠BAD=∠B,推出AD=BD,AD=2CD即可.

【解答】解:∵在△ABC中,∠C=90°,∠B=30°,

∴∠CAB=60°,

∵AD平分∠CAB,

∴∠CAD=∠BAD=30°,

∴∠CAD=∠BAD=∠B,

∴AD=BD,AD=2CD,

∴BD=2CD,

根据已知不能推出CD=DE,

即只有D错误,选项A、B、C的答案都正确;

故选:D.

【点评】本题考查了三角形的内角和定理,等腰三角形的判定,含30度角的直角三角形的性质的应用,注意:在直角三角形中,如果有一个角等于30°,那么它所对的直角边等于斜边的一半.

二、填空题

16.由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是 18 cm.

【考点】等边三角形的判定与性质.

【专题】应用题.

【分析】根据有一个角是60°的等腰三角形的等边三角形进行解答即可.

【解答】解:∵OA=OB,∠AOB=60°,

∴△AOB是等边三角形,

∴AB=OA=OB=18cm,

故答案为:18

【点评】此题考查等边三角形问题,关键是根据有一个角是60°的等腰三角形的等边三角形进行分析.

17.在△ABC中,∠B=30°,AB=12,AC=6,则BC= 6  .

【考点】含30度角的直角三角形;勾股定理.

【分析】由∠B=30°,AB=12,AC=6,利用30°所对的直角边等于斜边的一半易得△ABC是直角三角形,利用勾股定理求出BC的长.

【解答】解:∵∠B=30°,AB=12,AC=6,

∴△ABC是直角三角形,

∴BC= = =6 ,

故答案为:6 .°

【点评】此题考查了含30°直角三角形的性质,以及勾股定理,熟练掌握性质及定理是解本题的关键.

18.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD= 2 .

【考点】含30度角的直角三角形;角平分线的性质.

【分析】根据角平分线性质求出∠BAD的度数,根据含30度角的直角三角形性质求出AD即可得BD.

【解答】解:∵∠C=90°,∠B=30°,

∴∠CAB=60°,

AD平分∠CAB,

∴∠BAD=30°,

∴BD=AD=2CD=2,

故答案为2.

【点评】本题考查了对含30度角的直角三角形的性质和角平分线性质的应用,求出AD的长是解此题的关键.

19.如图,已知正方形ABCD的边长为4,对角线AC与BD相交于点O,点E在DC边的延长线上.若∠CAE=15°,则AE= 8 .

【考点】含30度角的直角三角形;正方形的性质.

【分析】先由正方形的性质可得∠BAC=45°,AB∥DC,∠ADC=90°,由∠CAE=15°,根据平行线的性质及角的和差得出∠E=∠BAE=∠BAC﹣∠CAE=30°.然后在Rt△ADE中,根据30°角所对的直角边等于斜边的一半即可得到AE=2AD=8.

【解答】解:∵正方形ABCD的边长为4,对角线AC与BD相交于点O,

∴∠BAC=45°,AB∥DC,∠ADC=90°,

∵∠CAE=15°,

∴∠E=∠BAE=∠BAC﹣∠CAE=45°﹣15°=30°.

∵在Rt△ADE中,∠ADE=90°,∠E=30°,

∴AE=2AD=8.

故答案为8.

【点评】本题考查了含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.也考查了正方形的性质,平行线的性质.求出∠E=30°是解题的关键.

20.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB= 5 .

【考点】含30度角的直角三角形;矩形的性质.

【分析】根据矩形的性质,可以得到△AOB是等边三角形,则可以求得OA的长,进而求得AB的长.

【解答】解:∵四边形ABCD是矩形,

∴OA=OB

又∵∠AOB=60°

∴△AOB是等边三角形.

∴AB=OA= AC=5,

故答案是:5.

数学周测小卷单元小卷八上的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于八年级下册数学周测小卷答案、数学周测小卷单元小卷八上的信息别忘了在本站进行查找喔。

本文转载自互联网,如有侵权,联系删除