五年级奥数综合调研卷的简单介绍

今天给各位同学分享五年级奥数综合调研卷的知识,其中也会对进行解释,如果能碰巧解决你现在面临的问题,别忘了分享本站,现在开始吧!

本文目录一览:

五年级30道奥数题带答案,要提的问题短一点,解答必须要有,要不一分不给

.一块长1米20厘米,宽90厘米的铝皮,剪成直径30厘米的圆片,最多可以剪几块?

分析:此题不需求面积的。只需求长和宽各是圆的直径的几倍,然后求出长和宽的倍数的积。

1米20厘米=120厘米

120÷30=4 90÷30=3

4×3=12(块)

答:最多可以剪12块。

2.一个圆柱,底面半径1分米,它的侧面展开是一个正方形。这个圆柱的表面积和体积是多少?

分析:从侧面展开图正方形入手,可知这个圆柱的高是圆柱的底面周长。

圆柱的表面积:

(3.14×1×2)×(3.14×1×2)+3.14×1×1×2

=6.28×6.28+6.28

=6.28×7.28

=45.7184(平方分米)

圆柱的体积:

3.14×1×1×(3.14×1×2)

=3.14×6.28

=19.7192(平方分米)

答:这个圆柱的表面积是45.7184平方分米,体积是19.7192平方分米。

3.一列火车上午8时从甲站开出,到第二天的晚上9时到达乙站。已知火车平均每小时行98千米。甲乙两站间的铁路长多少千米?

分析:这题的解题关键是要知道火车行驶的时间。

24-8+9=25(小时)[或者:12-8+12+9=25(小时)]

98×25=(100-2)×25

=2500-50

=2450(千米)

答:甲乙两站间的铁路长2450千米。

4.一个圆和一个扇形的半径相等。已知圆的面积是30平方厘米,扇形的圆心角是72度。求扇形的面积。

分析:因为圆和扇形的半径相等,圆和扇形的面积存要在倍数关系。这个倍数就是它们圆心角之间的倍数关系。

72÷360=1/5,30×1/5=6(平方厘米)

答:扇形的面积是6平方厘米。

4.一个半径3厘米的圆,在圆中画一个扇形,使它的面积占圆面积的20%,并且算出这个扇形的面积。

分析:此题与上题的思路一样。

3.14×3×3×20%=5.652(平方厘米)

答:这个扇形的面积是5.652平方厘米。

5.学校把植树任务按5:3分给六年级和五年级。六年级实际栽了108棵,超过原分配任务的20%。原计划五年级栽树多少棵?

分析:六年级原计划栽树的棵数是解题的关键。

1、六年级原计划栽树多少棵?

108÷(1+20%)=108×5/6=90(棵)

2、原计划五年级栽树多少棵?

90÷5×3=54(棵)

综合算式:

108÷(1+20%)÷5×3

=90÷5×3

=54(棵)

答:原计划五年级栽树54棵。

6.甲乙两面个工程队全修一段公路,甲队的工作效率是乙队的3/5。两队合修6天正好完成这段公路的2/3,余下的由乙队单独修,还要几天才能修完?

分析:求两队的工效是解题的关键。

1、两队的工效和是多少?

2/3÷6=1/9

2、乙队的工效是多少?

1/9×[5÷(3+5)]

=1/9×5/8

=5/72

3、还要几天才能修完?

(1-2/3)÷5/72

=1/3×72/5

=24/5(天)

答:还要24/5天才能修完。

7.某水泥厂去年生产水泥232400吨,今年头5个月的产量就等于去年全年的产量。照这样计算,这个水泥厂今年将比去年增产百分之几?

解法一:分析,今年后7个月的产量就是增产的,因此我们要先求出后7个月生产量。

232400÷5×(12-5)

=46480×7

=325360(吨)

325360÷232400=1、4=140%

解法二:把232400吨看作单位“1”,

1、今年平均每月生产量是去年的几分之几?

1÷5=1/5

2、今年比去年增产几分之几?

1/5×(12-5)=7/5

3、今年比去年增产百分之几?

7/5=1.4=140%

综合算式:1÷5×(12-5)=1.4=140%

答:这个厂今年比去年增产140%。

8.幼儿园买进大小两种毛巾各40条,共用258.8元。大毛巾的单价比小毛巾单价的2倍多0.11元。这两种毛巾单价各是多少元?

解:设小毛巾的单价是x元,则大毛巾的单价是(2x+0.11)元。

[x+(2x+0.11)]×40=258.8

3x=6.47-0.11

x=6.36÷3

x=2.12

2x+0.11=2.12×2+0.11

=4.35

答:大毛巾的单价是每条4.35元,小毛巾的单价是每条2.12元。

9. 一间长4、8米、宽3、6米的房间,用边长0、15米的正方形瓷砖铺地面,需要768块。在长6米、宽4、8米的房间里,如果用同样的瓷砖来铺,需要多少块?如果在第一个房间改铺边长0、2米的正方形瓷砖,要用多少块?(用比例解)

分析:房间的面积是一定的,每块砖的面积和块数成反比例。

解:设需要x块。

0.15×0.15x =6×4.8

x =6×4.8÷0.15÷0.15

x =1280

答:需要1280块。

解:设需要y块。

0.2×0.2y=4.8×3.6

y=4.8×3.6÷0.2÷0.2

y=432

答:需要432块。

10.一艘轮船所带的柴油最多可以用6小时。驶出时顺风,每小时行驶30千米。驶回时逆风,每小时行驶的路程是顺风时的4/5。这艘轮船最多驶出多远应往回驶?

分析:轮船行驶的路程一定,每小时行驶的路程和时间成反比例。

解:设这艘轮船逆风行驶了x小时。

30×4/5x=30×(6-x)

4/5x=6-x

9/5x=6

x=10/3

30×4/5×10/3=80(千米)

答:这艘轮船最多驶出80千米就应往回驶。

11. 一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,这时距离乙地还有94千米。甲乙两地的公路长多少千米?

分析:“从第二小时比第一小时多行了16千米”可知第二小时行了全程的1/7和16千米。第一小时和第二小时共行全程的(1/7+1/7)和16千米。由此可知(96+16)占全程的(1-1/7-1/7)。

根据上面的分析得:

(96+16)÷(1-1/7-1/7)

=112÷5/7

=112×7/5

=156、8(千米)

答:甲乙两地的公路长156、8千米。

或者用方程解:

解:设甲乙两地的公路长x千米。

(1-1/7-1/7)x=96+16

5/7x=112

x=156、8

答:甲乙两地的公路长156、8千米。

题目改编:若这题中的一个条件改成“这时距离甲地96千米”,其它条件不变,问题也不变。如何解答?

12.一个编织组,原来30人10天生产1500只花篮。现在增加到80人,按原来的工效,生产6000只花篮需要多少天?(用比例解答)

分析:题中说“按原来的工效”,这说明这个纺织组的工作效率是一定的。工作效率一定,工作总量和工作时间成正比例。

解:设需要x天。

1500:(30×50)=6000:(80×x)

1500×(80×x)=6000×(30×50)

x=6000×30×50÷80÷1500

x=6000÷80

x=75

答:需要75天。

13

今年是05年,父母亲年龄和是70岁,姐弟俩的年龄和是16岁,到08年时,父亲的年龄是弟弟年龄的4倍,母亲的年龄是姐姐的3倍,那么当父亲的年龄是姐姐年龄的2倍时,是哪年? 答案:解:设弟弟的年龄为x岁

∵05年 父+母=70 姐+弟=16

∴08年 父+母=76 姐+弟=22

四人年龄和为76+22=98(岁)

∵08年时,父亲的年龄是弟弟年龄的4倍,母亲的年龄是姐姐的3倍

∴父亲年龄为4x,姐姐年龄为22-x,母亲年龄为3(22-x)

x+4x+(22-x)+3(22-x)=98

x=10----弟弟年龄

姐姐:22-10=12(岁)

父亲:10×4=40(岁)

姐姐、父亲年龄差为:40-12=28(岁)

28÷(2-1)=28(岁)---父亲年龄是姐姐2倍时姐姐的年龄

08年姐姐12岁,28岁时是2024年

当父亲的年龄是姐姐年龄的2倍时,是2024年。

14.一块草地,供24匹马吃6天;20匹马吃10天。多少马12天吃尽?

可、假设草地单位为“1”,所以24*6=144 20*10=200 (200-144)/4=14 因此每天草地长草14个单位“1” 200-14*10=60,因此草地原有草60个单位"1"。

60/12+14=19 19马12天吃尽

供24匹马吃6天;20匹马吃10天。多少马12天吃尽?

15.一块草地,可供5只羊吃40天;6只羊吃30天。如果4只羊吃30天后又增加2只羊一起吃,那么这块草地还可以再吃多少天?

、同理,40*5=200 30*6=180 (200-180)/(40-30)=2[每天草地长草] 200-2*40=120[原有草] 120-(4-2)*30=60 60/(6-2)=15(天)

16.、每小时有3000人到书店买书。如果设一个售书口,每分钟可以让50人买完离开;如果设2个售书口,1小时后就没有人排队了。那么如果设4个口,多长时间后就没有人排队了?

30分钟 {每分钟有100人来,3000/(200-100)}

17.一口井,用3部抽水机40分钟可以抽干;6部抽水机16分钟可以抽干。那么5部同样的抽水机,多少分钟可以抽干?

20分钟 {3*40-6*16=24 24/24=1 120-40*1=80 80/4=20}

18.一个水池,池内除原有的水外,每天都流入同样多的水。如果用池中的水每天浇50亩地,10天用完;如果每天浇45亩地,20天用完。那么,用这些水浇多少亩地,正好可用25天?

44亩地{45*20-50*10=400 400/10=40 500-40*10=100 100/25+40=44}

19.甲、乙、丙、丁四人加工同样的零件,甲先加工了一段时间,然后乙、丙、丁三人一起参加加工,6小时后乙和甲加工的一样多;9小时后丙和甲加工的一样多,12小时后丁和甲加工的一样多。又知乙每小时加工27个零件,丙每小时加工23个零件。那么,丁每小时加工零件多少个?

21个 {9*23-6*27=45 45/3=15 162-15*6=72 72/12+15=21}

20.笼中装有鸡和兔若干只,共100只脚,若将鸡换成兔,兔换成鸡,则共92只脚。笼中原有兔、鸡各多少只?

解:兔换成鸡,每只就减少了2只脚。

(100-92)/2=4只,

兔子有4只。

(100-4*4)/2=42只

答:兔子有4只,鸡有42只。

21.15年前父亲的年龄是儿子的7倍,十年后,父亲年龄是儿子的2倍

。父亲.儿子各多少岁。

差倍问题

儿子原来:(15+10)/(7-1-1)=5(岁)

儿子今年:5+15=20(岁)

父亲原来:5×7=35(岁)

父亲今年:35+15=50(岁)

22.小明和小芳围绕着一个池塘跑步,两人从同一点出发,同向而行。小明:280米/分;小芳:220/分。8分后,小明追上小芳。这个池塘的一周有多少米?

280*8-220*8=480

23.现有两列火车同时同方向齐头行进,行12秒后快车超过慢车.快车每秒行18米,慢车每秒行10米.如果这两列火车车尾相齐同时同方向行进,则9秒后快车超过慢车,求两列火车的车身长.

快车长:18×12-10×12=96(米)

慢车长:18×9-10×9=72(米)

24.一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒.这列火车的速度和车身长各是多少?

(1)火车的速度是:(440-310)÷(40-30)=13(米/秒)

(2)车身长是:13×30-310=80(米)

25.小英和小敏为了测量飞驶而过的火车速度和车身长,他们拿了两块跑表.小英用一块表记下了火车从她面前通过所花的时间是15秒;小敏用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是20秒.已知两电线杆之间的距离是100米.你能帮助小英和小敏算出火车的全长和时速吗?

(1)火车的时速是:100÷(20-15)×60×60=72000(米/小时)

(2)车身长是:20×15=300(米)

26.一人以每分钟120米的速度沿铁路边跑步.一列长288米的火车从对面开来,从他身边通过用了8秒钟,求列车的速度.

288÷8-120÷60=36-2=34(米/秒)

27.

小明上午8时骑自行车以每小时12千米的速度从A地到B地,小强上午8时40分骑自行车以每小时16千米的速度从B地到A地,两人在A、B两地的中点处相遇,A、B两地间的路程是多少千米?

两人在两地间的路程的中点相遇,但小明比小强多行了40分钟,如果两人同时出发,相遇时,小明行的路程就比小强少12÷60×40=8(千米),就是当小强出发时,小明已经行了8千米,从8时40分起两人到两人相遇,由于小明每小时比小强少行16-12=4(千米),说明两人相遇时间是8÷4=2(小时),那么,A、B两地间的路程是8+(12+16)×2=64(千米)。

28.甲、乙两村相距3550米,小伟从甲村步行往乙村,出发5分钟后,小强骑自行车从乙村前往甲村,经过10分钟遇见小伟。小强骑车每分钟行的比小伟步行每分钟多160米,小伟每分钟走多少米?

如果小强每分钟少行160米,他行的速度就和小伟步行的速度相同,这样小强10分钟就少行了160×10=1600(米),小伟(5+10)分钟和小强10分钟一共行走的路程是3550-1600=1950(米),那么小伟每分钟走的路是1950÷(5+10+10)=78(米)。

29.客车从东城和货车从西城同时开出,相向而行,客车每小时行44千米,货车每小时行36千米,客车到西城比货车到东城早2小时。两车开出后多少小时在途中相遇?

当客车到西城时,货车离东城还有2×36=72(千米),而货车每小时行的比客车少44-36=8(千米),客车行东西城间的路程用的时间是72÷8=9(小时),因此东西城相距44×9=396(千米),两车从出发到相遇用的时间是;396÷(44+36)=4.95(小时)

30.小红和小强同时从家里出发相向而行。小红每分走52米,小强每分走70米,二人在途中的A处相遇。若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。小红和小强两人的家相距多少米?

因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同。也就是说,小强第二次比第一次少走4分。由

(70×4)÷(90-70)=14(分)

可知,小强第二次走了14分,推知第一次走了18分,两人的家相距

(52+70)×18=2196(米)。

我花了30分钟呢,你是给孩子找的吧,祝你成功!

谁有一份五年级奥数(上册的)的试卷,要含答案

分析与推理训练C卷

班级______ 姓名______ 得分______

1. 小军爷爷出生的年份数是他逝世时年龄的29倍,小军爷爷在1955年主持过一次学术会议,问小军爷爷当时的年龄多大?

2.有三顶红帽、两顶白帽,现将其中三顶给排成一列的三人每人戴一顶,每人只能看见自己前面人的帽,现让三人从后到前依次回答自己头上戴的帽什么颜色,后面的人回答不知道,中间的人也回答不知道,根据这两个人的回答,你能不能知道最前面的人戴的帽是什么颜色?

3.A、B、C三个足球队进行了循环赛,下表给出了比赛的部分结果,请你根据已有的数填满下表,并指出各场比赛的结果。

 

4.张老师、李老师、刘老师三人在北京、上海、广州中学教不同的课程:数学、语文、外语。又知道:

(1)张老师不在北京工作;

(2)李老师不在上海工作;

(3)在北京的不教外语;

(4)在上海工作的教数学;

(5)李老师不教语文。

问:三位老师各在哪个城市?各教什么课程?

5.某校举行作文比赛,甲、乙、丙、丁、戍五位同学得了前五名,发奖前,老师让他们猜一猜各人的名次排列情况。

甲说:乙第三名,丙第五名;

乙说:戍第四名,丁第五名;

丙说:甲第一名,戍第四名;

丁说:丙第一名,乙第二名;

戍说:甲第三名,丁第四名;

老师说:每个名次都有人猜对。

那么名次该如何排列呢?

6.四纸卡片上分别写着努、力、学、习四个字(一张上写一个字),取出其中三张覆盖在桌面上,甲、乙、丙分别猜每张卡片上是什么字,具体如下表:

结果每一张上的字至少有一人猜中,所猜三次中,有一人一次也没猜中,有两人分别猜中了两次和三次。

问这三张卡片上各是什么字?

7.A、B、C、D、E、F六人分别是中国、日本、美国、英国、法国、德国人。现在已知:

(1)A和中国人是医生;(2)E和法国人是教师;

(3)C和日本人是警察;(4)B和F曾当过兵,日本人从未当过兵;

(5)英国人比A年龄大,德国人比C年龄大;

(6)B同中国人下周要到中国去旅行,而C同英国人下周要到瑞士去度假。

问:A、B、C、D、E、F各是哪一国人?

8.赵、钱、孙、李四人,一个是教师,一个是售货员,一个是工人,一个是干部,请根据下面的一些情况,判断出每个人的职业是什么。

(1)赵和钱是邻居,每天一起骑车去上班;(2)钱比孙年龄大;

(3)赵正在教李打太极拳;(4)教师每天步行上班;

(5)售货员的邻居不是干部;(6)干部和工人互不相识;

(7)干部比售货员和工人年龄都大。

9.甲、乙、丙、丁四人在一起,交谈时发生了语言困难,在汉、英、法、日四种语言中,每人只会两种,可惜没有大家都会的语言,只有一种语言是三个人都会的。

(1)乙不会英语,但当甲与丙交谈时,却要请他当翻译。

(2)甲会日语,丁不懂日语,但两人能相互交谈;

(3)乙、丙、丁三人想相互交谈,却找不到大家都会的语言;

(4)没有人既能用日语讲话,又能用法语讲话。

想一想:甲、乙、丙、丁四人各会说哪两种语言?

10.甲、乙、丙、丁、戍五人各从图书馆借来一本故事书,约定读完后互相交换,这五本书的厚度及五人的阅读速度都差不多,因此总是五人同时交换书,经过数次交换后,他们五人都读完了这五本书,现已知:

(1)甲最后读的书是乙读的第二本;

(2)丙最后读的书是乙读的第四本;

(3)丙读的第二本书甲在一开始就读了;

(4)丁最后读的书是丙读的第三本;

(5)乙读的第四本书是戍读的第三本;

(6)丁第三次读的书是丙一开始读的那一本。

根据以上情况,请判断出每个人读这五本书的顺序。

分析与推理训练B卷

班级______姓名______得分______

1.已知A>B,D<C,E>A,B>F,E<D。

想一想:下列各项是什么关系?

A□D D□B F□E

C□A E□C

2.有A、B、C、D、E、F六人围一张圆桌而坐,已知E与C相隔一人并坐在C的右面(如图),D坐在A的对面,B与F相隔一人并坐在F的左面,F与A不相邻。试定A、B、C、D、E、F的位置。

3.明明、冬冬、蓝蓝、静静、思思和毛毛六人参加一次会议,见面时每两人都要握一次手,明明已握了五次手,冬冬已握了四次手,蓝蓝已握了三次手,静静已握了两次手,思思握了一次,问毛毛已握了几次手?

4.甲、乙、丙、丁比赛乒乓球,每两个人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同。问丁胜了几场?

5.三个口袋,有一个装着两个黑球,另一个装着两个白球,还有一个装着一个黑球一个白球。可是,口袋外面的标签都贴错了,标签上写的字与袋子里球的颜色不一样。你能不能只从一个口袋里摸出一个球,就能说出这三个口袋各装的是什么颜色的球?

6.甲说:“我10岁,比乙小2岁,比丙大1岁。”

乙说:“我不是年龄最小的,丙和我差3岁,丙是13岁”。

丙说:“我比甲年龄小,甲 11岁,乙比甲大3岁。”

以上每人所说的三句话中都有一句是错的,请确定甲、乙、丙三人的年龄。

7.A、B、C三个人回答同样的七个判断题,按规定凡答案是对的,就打一个“√”,相对,答案是错的,就打一个“×”。回答结果发现,这三个人都只答对5题,答错2题,A、B、C三人所答题的情况如下所示:

请问:这七道题目的正确答案是什么?

8.甲、乙、丙三人用汽枪射靶,每人射一发子弹,中靶的位置如图所示(图上黑点处),其中只有一发射中靶心(25分)。计算成绩时发现三人得分相同。甲说:“我有两发子弹共得18分”,乙说:“我有一发子弹只得3分”,请你判断是谁射中了靶心?

9.少年宫一至四楼的八个房间分别是音乐、舞蹈、美术、书法、棋类、电工、航模、生物八个活动室。

已知:(1)一楼是舞蹈室和电工室;(2)航模室上面是棋类室,下面是书法室;(3)美术室和书法室在同一层楼上,美术室的上面是音乐室;(4)音乐室和舞蹈室都设在单号房间。请指出八个活动室的号码。

10.陈、李、王三位老师担任五(1)班的语文、数学、思品、体育、音乐和美术六门课的教学,每人教两门,现在知道,(1)思品老师和数学老师是邻居;(2)李老师最年轻;(3)陈老师喜欢和体育教师、数学老师交谈;(4)体育老师比语文老师年龄大;(5)李老师、音乐老师、语文老师三人经常一起去游泳。你能分析各人分别教的是哪两门课吗?

分数、百分数应用题(二)

例1:在浓度为10%、重量为80克的盐水中,加入多少克水就能得到浓度是8%的盐水?

解:设加入x克水能得到浓度为8%的盐水。

80×10%=[x+80×(1-10%)]×8% 解之得:x=24

例 2:现有浓度为20%的糖水300克,要把它变成浓度是40%的糖水,需加糖多少克?

解:设需加糖x克能得到浓度为40%的糖水。

解之得:x=100

例3:将20%的盐水与5%的盐水混合,配制成15%的盐水600克。需要20%的盐水和5%的盐水各多少克?

解:设20%的盐水为x克,5%的盐水为(600-x)克。

20%x+(600-x)×5%=600×15% 解之得:x=400 5%的盐水:(600-x)=200克。

例4:甲容器中有8%的盐水300克,乙容器中有12.5%盐水120克往甲、乙两个容器中分别倒入等量的水,使两个容器中盐水的浓度一样。每个容器应倒入水多少克?

解:设需加水x克,300×8%:(300+x)=120×12.5%:(120+x) 解之得:x=180。

例5:A、B、C三个试管中各盛有10克、20克、30克水。把某种浓度的盐水10克倒入A中,混合后取出10克倒入B中,再混合后又从B中取出10克倒入C中,现在C中的盐水浓度是0.5%。最早倒入A中的盐水浓度是百分之几?

解: =20%

练习:

1、一瓶盐水共重200克,其中盐有10克,这瓶盐水的浓度是 ( ×100%=5% )。

2、配制一种盐水,在480克水中加20克盐,这种盐水的浓度是( ×100%=4%)。

3、一种糖水的浓度是15%,300克糖水中含糖( 45 )克。

4、一种糖水的浓度是10%,12克糖需加水( 108 )克。

5、在浓度为15%,重量为200克的糖水中,加入多少克水就能得到浓度是10%的糖水?

解:15%×200÷10%-15%×200=270(克)

6、浓度为10%的糖水300克,要把它变成浓度为25%,需要加糖多少克?

解:设需要加糖x克 25% 解之得:x=60

7、有浓度为2.5%的盐水200克,为了制成浓度3.5%的盐水,从中要蒸发掉多少克水?

解:设要蒸发掉x克水。 =3.5% 解之得:x=57

8、两种钢分别含镍5%和40%,要得到140吨含镍30%的钢。需含镍5%的钢和含镍40%的钢各多少吨?

解:设含镍5%的为x吨,含镍40%的为(140-x)。

5%x+40%×(140-x)=140×30% x=40 含镍40%的为:140-x=140-40=100(吨)

9、浓度为20%、18%和16%的三种盐水混合后得到100克18.8%的盐水。如果18%的盐水比16%的盐水多30克,三种盐水各有多少克?

解:设16%的盐水为x克,18%的盐水为(x+30),20%的盐水为(100-30-2x)。

16%x+18%(x+30)+20%(70-2x)=100×18.8% x=10

18%的盐水为:(x+30)=40 20%的盐水为:(70-2x)=50

10、甲容器中有浓度为4%的盐水150克,乙容器中有某种浓度的盐水若干,从乙容器中取出450克盐水放入甲容器中混合成浓度为8.2%的盐水。求乙容器中盐水的浓度。

五年级奥数题(1)

1×2×3×.........×49×50的积末尾有多少个连续的0?

解释:在这个从1~50这50个自然数连乘式的因数钟含有质因数2的个数比质因数5的个数多,因此只要算出因数中还有质因数5的个数,就能确定积的末尾连续的0的个数.

在1~50中,含有质因数5的数如下表:

5 10 15 20 25

30 35 40 45 50

表中每行5个数前4个数各有1个质因数5,第5个数有2个质因数5,一共含有12个质因数5,它们和12个质因数2搭配,使这个算式积的末尾有12个连续的0.

五年级奥数试卷(可打印)

小学五年级奥数竞赛试卷

姓名: 班级:

(时间:80分钟)

1. 15.48×35-154.8×1.9+15.48×84=

2.解方程。

5×(2x+7)-30=3×(2x+7) x=

3.循环小数0.37 205 小数点右面第106位上的数字是 。

4. 一排电线杆,原来两根之间的距离是35米,现改为45米,如果起点的一根位置不移动,至少 米又有一根电线杆不需要移动。

5.一船在静水中每小时18千米,在一条顺水用4小时行了80千米,这条河的水流速度是 。

6.同学们去春游,带水壶的有78 人,带水果的有 77 人,既带水壶又带水果的有48 人。参加春游的同学共有 人。

7. 如图,E、F、G分别是平行四边形

ABCD中AD、BC、DC边上的中点,求平行

四边形的面积是阴影部分面积的 倍。

8. 同时被3、4、5整除的最小四位数是 。

9. 某个游戏,满分为100分,每人可以做4次,以平均分为游戏的成绩。小王的平均分为85分,那么,他任何一次游戏的得分都不能低于 分。

10. 五年级数学竞赛,小明获得的名次与他的年龄和竞赛的成绩相乘之积是2134,小明获得的名次 名,成绩是 分。

11.有一个六位数□2002□能被88整除,这个六位数是 。

12.用5、5、5、1四个数字组成一个算式,使其结果为24。算式是 。

13. 五年级有六个班,每班人数相等。从每班选16人参加少先队活动,剩下的同学相当于原来4个班的人数,原来每班 人。

14.连续5个奇数的和是95,其中最大的是 ,最小的是 。

15.1+2+3+4+5……+2007+2008的和是 。(奇数或偶数)

16.在八个房间里,有七个房间开着灯,如果每次同时拨动四个房间的开关, (能或不能)把全部房间的灯关上,每次拨动5个房间的开关, (能或不能)把全部房间的灯关上。

17.大年三十彩灯悬,彩灯齐明光灿灿,三三数时能数尽,五五数时剩一盏,七七数时刚刚好,八八数时还缺三。请你自己猜一猜,彩灯至少有 盏

18.甲、乙、丙、丁四位同学在篮球比赛中犯规的次数各不相同,A、B、C、D四位裁判有一段对话:A说:“甲犯规4次,乙犯规3次。”B说:“丙犯规4次,乙犯规2次。”C说:“丁犯规2次,丙犯规3次。”D说:“丁犯规1次,乙犯规3次。”记录员说:“A、B、C、D四位裁判每人只说对了一半。”甲犯规 次。

19.甲、乙、丙分别在南京、苏州、西安工作,他们的职业分别是工人,农民和教师。已知⑴甲不在南京工作,⑵乙不在苏州工作,⑶在苏州工作的是工人,⑷在南京工作的不是教师,⑸乙不是农民。那么,甲是 ,在 工作。

20.如图,在梯形ABCD中,DE=3EC

BC=3FC,四边形AECF的面积是14平方米。

求梯形ABCD的面积是 平方米。

图形弄不了,有两个图形

五年级奥数试卷

一、简算: 20分

1746+1747+1748 7.81×48+78.1×4.1+0.78×90

38×29+84×71+46×29 34÷17+29÷17+27÷17+46÷17

二、有趣的数字:(10分)

六 一

庆 六 一

+ 庆 祝 六 一

1 9 9 4

四、解决问题。(65分)

1、如果数A减去数B的3倍,差是51。数A加上数B的2倍,和是111,那么数A=( ),数B=( )。

2、一次数学竞赛有10道题,做对一题得10分,做错一题倒扣2分,小明得了76分,小明做对了( )题。

3、甲站有222辆汽车,乙站有78辆汽车,每天从甲站开往乙站22辆,从乙站开往甲站26辆,( )天后,甲站的汽车是乙站5倍。

4、一排电线杆,原来两根之间的距离是35米,现改为45米,如果起点的一根位置不移动,至少( )米又有一根电线杆不需要移动。

5、一列火车通过长221米的桥需要42秒,用同样的速度通过长172米的隧道需36秒,列车长( )米,列车的速度是( )米。

6、甲、乙、丙、丁四个数的和是175,甲加上4,乙减去4,丙乘上4,丁除以4后,四个数就相等了,则甲=( ),乙=( ), 丙=( ),丁=( )。

7、甲买了4千克苹果,3千克的梨,乙买了3千克苹果,2千克的梨,丙买了3千克的苹果,4千克梨,甲比乙多花了3.45元,乙比丙少花了2.9元,则甲花了( )元,乙花了( )元。

8、一个自然数被3除余1,被5除余2,被7除余3,这个自然数最小是( )。

1、在1、2、3……499、500中,数字2在一共出现了( )次。

2、食堂有大米和面粉共351袋,如果大米增加20袋,面粉减少50袋,那么大米的袋数比面粉的袋数的3倍还多1袋,原来大米有( )袋,面粉有( )袋。

3、279是甲乙丙丁四个数的和,如果甲减少2,乙增加2,丙除以2,丁乘以2后,则四个数都相等,那么甲是( ),乙是( ),丙是( ),丁是( )。

4、兄弟俩比年龄,哥哥说:“当我是你今年岁数的那一年,你刚5岁。”弟弟说:“当我长到你今年的岁数时,你就17岁了。”哥哥今年( )岁,弟弟今年( )岁。

5、甲对乙说:“我的年龄是你的3倍。”乙对甲说:“我5年后的年龄和你11年前的年龄一样。”甲今年( )岁,乙今年( )岁。

6、A、B两地相距21千米,上午9时甲、乙分别从A、B两地出发,相向而行,甲到达B地后立即返回,乙到达A地后立即返回,中午12时他们第二次相遇。此时甲走的路程比乙走的路程多9千米。甲每小时走( )千米。

7、一条轮船在两码头间航行,顺水航行需4小时,逆水航行需5小时,水速是每小时5千米 ,这条船在静水中每小时行( )千米。

8、一座铁路桥全长1200米,一列火车开过大桥需要75秒,火车开过路旁的电线杆只需15秒,那么火车全长是( )米。

9、蜗牛从一个枯井网上爬,白天向上爬110厘米,夜里向下滑40厘米,若要第五天的白天爬到井口,这口井至少深( )厘米。

10、周老师给学是发练习本,每人分7本还多出7本,如果每人多发2本,就有一个同学分不到,那么一共有( )个同学,( )个练习本。

11、王飞以每小时40千米的速度行了240千米,按原路返回时每小时行60千米,王飞往返的平均速度是每小时行( )千米。

12、“IMO”是国际数学奥林匹克竞赛的缩写,把这三个字母写成三种不同的颜色,现有五种不同的颜色,按上述要求可以写出( )中不同颜色搭配的“IMO”。

谁能提供一套小学五年级奥数题的试卷

五年级奥数综合测试

一、计算:

1.454+999×999+545

2.999+998+997+996+1000+1004+1003+1002+1001

3.11001 =( ) 十 进制

127 =( ) 二进制

4.算二十四点 3、8、9、9 4、4、10、10

二、填空:

1. 化成小数后,小数点后第2008个数字是( ),这2008个数字的和是( )。

2.2008年元旦是星期二,那么这一年的7月l日是星期( )。

3.两个数的和是444,大数除以小数商是11,且没有余数,大数是( ),小数是( )。

4.一只母鸡生蛋很有规律,总是连着三天每天生一个蛋,以后就要空一天不生蛋。已知2007年元旦这天没生蛋,2007年全年一共生了( )个蛋。

5.射击比赛规定,每射中一发记20分,脱靶一发倒扣12分,小乔打了10发,共得了136分。他射中了( )发。

6.2、5、8、11、……( )。括号里是这个数列的第100个数,这100个数是( )。

7.某班同学要订A、B、C三种报刊,每人至少订一种,最多订三种,那么每个同学有( )种不同的订阅方式。

三、解决问题:

1.3辆大车与18辆小车一次共运货物48吨,而3辆大车与26辆小车一次可运货物64吨,求大车和小车每次载重多少吨?

2.王洁读一本故事书,第一天读了8页,以后每天都比前一天多读3页,最后一天读了32页正好读完,这本书有多少页?

3.甲乙两辆汽车从相距328千米的两地同时出发相向而行,行了4小时后还相距28千米,已知乙车每小时行36千米,问甲车每小时行多少千米?

4.新艺服装厂原来做一套服装用布4.3米,现在每套节省0.3米,原来做600套服装的布,现在可以做多少套?

5.学校种杨树25棵,柳树比杨树的3倍少8棵,学校种杨树和柳树共多少棵?

6.一块平行四边形的早稻试验田,高20米,比底边短60米,预计每平方米可收稻谷0.86千克,这块试验田预计可收稻谷多少千克?

求小学五年级20道奥数题(有解题过程及答案)

9. 有7个数,它们的平均数是18。去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。求去掉的两个数的乘积。

解: 7*18-6*19=126-114=12

6*19-5*20=114-100=14

去掉的两个数是12和14它们的乘积是12*14=168

10. 有七个排成一列的数,它们的平均数是 30,前三个数的平均数是28,后五个数的平均数是33。求第三个数。

解:28×3+33×5-30×7=39。

11. 有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。问:第二组有多少个数?

解:设第二组有x个数,则63+11x=8×(9+x),解得x=3。

12.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分。如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?

解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。

13. 妈妈每4天要去一次副食商店,每 5天要去一次百货商店。妈妈平均每星期去这两个商店几次?(用小数表示)

解:每20天去9次,9÷20×7=3.15(次)。

14. 乙、丙两数的平均数与甲数之比是13∶7,求甲、乙、丙三数的平均数与甲数之比。

解:以甲数为7份,则乙、丙两数共13×2=26(份)

所以甲乙丙的平均数是(26+7)/3=11(份)

因此甲乙丙三数的平均数与甲数之比是11:7。

15. 五年级同学参加校办工厂糊纸盒劳动,平均每人糊了76个。已知每人至少糊了70个,并且其中有一个同学糊了88个,如果不把这个同学计算在内,那么平均每人糊74个。糊得最快的同学最多糊了多少个?

解:当把糊了88个纸盒的同学计算在内时,因为他比其余同学的平均数多88-74=14(个),而使大家的平均数增加了76-74=2(个),说明总人数是14÷2=7(人)。因此糊得最快的同学最多糊了

74×6-70×5=94(个)。

16. 甲、乙两班进行越野行军比赛,甲班以4.5千米/时的速度走了路程的一半,又以5.5千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以4.5千米/时的速度行进,另一半时间以5.5千米/时的速度行进。问:甲、乙两班谁将获胜?

解:快速行走的路程越长,所用时间越短。甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程长,所以乙班获胜。

17. 轮船从A城到B城需行3天,而从B城到A城需行4天。从A城放一个无动力的木筏,它漂到B城需多少天?

解:轮船顺流用3天,逆流用4天,说明轮船在静水中行4-3=1(天),等于水流3+4=7(天),即船速是流速的7倍。所以轮船顺流行3天的路程等于水流3+3×7=24(天)的路程,即木筏从A城漂到B城需24天。

18. 小红和小强同时从家里出发相向而行。小红每分走52米,小强每分走70米,二人在途中的A处相遇。若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。小红和小强两人的家相距多少米?

解:因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同。也就是说,小强第二次比第一次少走4分。由

(70×4)÷(90-70)=14(分)

可知,小强第二次走了14分,推知第一次走了18分,两人的家相距

(52+70)×18=2196(米)。

19. 小明和小军分别从甲、乙两地同时出发,相向而行。若两人按原定速度前进,则4时相遇;若两人各自都比原定速度多1千米/时,则3时相遇。甲、乙两地相距多少千米?

解:每时多走1千米,两人3时共多走6千米,这6千米相当于两人按原定速度1时走的距离。所以甲、乙两地相距6×4=24(千米)

20. 甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。求甲原来的速度。

解:因为相遇前后甲、乙两人的速度和不变,相遇后两人合跑一圈用24秒,所以相遇前两人合跑一圈也用24秒,即24秒时两人相遇。

设甲原来每秒跑x米,则相遇后每秒跑(x+2)米。因为甲在相遇前后各跑了24秒,共跑400米,所以有24x+24(x+2)=400,解得x=7又1/3米。

21. 甲、乙两车分别沿公路从A,B两站同时相向而行,已知甲车的速度是乙车的1.5倍,甲、乙两车到达途中C站的时刻分别为5:00和16:00,两车相遇是什么时刻?

解:9∶24。解:甲车到达C站时,乙车还需16-5=11(时)才能到达C站。乙车行11时的路程,两车相遇需11÷(1+1.5)=4.4(时)=4时24分,所以相遇时刻是9∶24。

22. 一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米。坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?

解:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为11

23. 甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙。问:两人每秒各跑多少米?

解:甲乙速度差为10/5=2

速度比为(4+2):4=6:4

所以甲每秒跑6米,乙每秒跑4米。

24.甲、乙、丙三人同时从A向B跑,当甲跑到B时,乙离B还有20米,丙离B还有40米;当乙跑到B时,丙离B还有24米。问:

(1) A, B相距多少米?

(2)如果丙从A跑到B用24秒,那么甲的速度是多少?

解:解:(1)乙跑最后20米时,丙跑了40-24=16(米),丙的速度

25. 在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明。已知公共汽车从始发站每次间隔同样的时间发一辆车,问:相邻两车间隔几分?

解:设车速为a,小光的速度为b,则小明骑车的速度为3b。根据追及问题“追及时间×速度差=追及距离”,可列方程

10(a-b)=20(a-3b),

解得a=5b,即车速是小光速度的5倍。小光走10分相当于车行2分,由每隔10分有一辆车超过小光知,每隔8分发一辆车。

26. 一只野兔逃出80步后猎狗才追它,野兔跑 8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步。猎狗至少要跑多少步才能追上野兔?

解:狗跑12步的路程等于兔跑32步的路程,狗跑12步的时间等于兔跑27步的时间。所以兔每跑27步,狗追上5步(兔步),狗要追上80步(兔步)需跑[27×(80÷5)+80]÷8×3=192(步)。

27. 甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过。问:

(1)火车速度是甲的速度的几倍?

(2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?

解:(1)设火车速度为a米/秒,行人速度为b米/秒,则由火车的 是行人速度的11倍;

(2)从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485-135)÷2=675(秒)。

28. 辆车从甲地开往乙地,如果把车速提高20%,那么可以比原定时间提前1时到达;如果以原速行驶100千米后再将车速提高30%,那么也比原定时间提前1时到达。求甲、乙两地的距离。

29. 完成一件工作,需要甲干5天、乙干 6天,或者甲干 7天、乙干2天。问:甲、乙单独干这件工作各需多少天?

解:甲需要(7*3-5)/2=8(天)

乙需要(6*7-2*5)/2=16(天)

30.一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完。如果放水管开了2时后再打开排水管,那么再过多长时间池内将积有半池水?

31.小松读一本书,已读与未读的页数之比是3∶4,后来又读了33页,已读与未读的页数之比变为5∶3。这本书共有多少页?

解:开始读了3/7 后来总共读了5/8

33/(5/8-3/7)=33/(11/56)=56*3=168页

32.一件工作甲做6时、乙做12时可完成,甲做8时、乙做6时也可以完成。如果甲做3时后由乙接着做,那么还需多少时间才能完成?

解:甲做2小时的等于乙做6小时的,所以乙单独做需要

6*3+12=30(小时) 甲单独做需要10小时

因此乙还需要(1-3/10)/(1/30)=21天才可以完成。

33. 有一批待加工的零件,甲单独做需4天,乙单独做需5天,如果两人合作,那么完成任务时甲比乙多做了20个零件。这批零件共有多少个?

解:甲和乙的工作时间比为4:5,所以工作效率比是5:4

工作量的比也5:4,把甲做的看作5份,乙做的看作4份

那么甲比乙多1份,就是20个。因此9份就是180个

所以这批零件共180个

34.挖一条水渠,甲、乙两队合挖要6天完成。甲队先挖3天,乙队接着

解:根据条件,甲挖6天乙挖2天可挖这条水渠的3/5

所以乙挖4天能挖2/5

因此乙1天能挖1/10,即乙单独挖需要10天。

甲单独挖需要1/(1/6-1/10)=15天。

35. 修一段公路,甲队独做要用40天,乙队独做要用24天。现在两队同时从两端开工,结果在距中点750米处相遇。这段公路长多少米?

36. 有一批工人完成某项工程,如果能增加 8个人,则 10天就能完成;如果能增加3个人,就要20天才能完成。现在只能增加2个人,那么完成这项工程需要多少天?

解:将1人1天完成的工作量称为1份。调来3人与调来8人相比,10天少完成(8-3)×10=50(份)。这50份还需调来3人干10天,所以原来有工人50÷10-3=2(人),全部工程有(2+8)×10=100(份)。调来2人需100÷(2+2)=25(天)。

37.

解:三角形AOB和三角形DOC的面积和为长方形的50%

所以三角形AOB占32%

16÷32%=50

38.

解:1/2*1/3=1/6

所以三角形ABC的面积是三角形AED面积的6倍。

39.下面9个图中,大正方形的面积分别相等,小正方形的面积分别相等。问:哪几个图中的阴影部分与图(1)阴影部分面积相等?

解:(2) (4) (7) (8) (9)

40. 观察下列各串数的规律,在括号中填入适当的数

2,5,11,23,47,( ),……

解:括号内填95

规律:数列里地每一项都等于它前面一项的2倍减1

41. 在下面的数表中,上、下两行都是等差数列。上、下对应的两个数字中,大数减小数的差最小是几?

解:1000-1=999

997-995=992

每次减少7,999/7=142……5

所以下面减上面最小是5

1333-1=1332 1332/7=190……2

所以上面减下面最小是2

因此这个差最小是2。

42. 如果四位数6□□8能被73整除,那么商是多少?

解:估计这个商的十位应该是8,看个位可以知道是6

因此这个商是86。

43. 求各位数字都是 7,并能被63整除的最小自然数。

解:63=7*9

所以至少要9个7才行(因为各位数字之和必须是9的倍数)

44. 1×2×3×…×15能否被 9009整除?

解:能。

将9009分解质因数

9009=3*3*7*11*13

45. 能否用1, 2, 3, 4, 5, 6六个数码组成一个没有重复数字,且能被11整除的六位数?为什么?

解:不能。因为1+2+3+4+5+6=21,如果能组成被11整除的六位数,那么奇数位的数字和与偶数位的数字和一个为16,一个为5,而最小的三个数字之和1+2+3=6>5,所以不可能组成。

46. 有一个自然数,它的最小的两个约数之和是4,最大的两个约数之和是100,求这个自然数。

解:最小的两个约数是1和3,最大的两个约数一个是这个自然数本身,另一个是这个自然数除以3的商。最大的约数与第二大

47.100以内约数个数最多的自然数有五个,它们分别是几?

解:如果恰有一个质因数,那么约数最多的是26=64,有7个约数;

如果恰有两个不同质因数,那么约数最多的是23×32=72和25×3=96,各有12个约数;

如果恰有三个不同质因数,那么约数最多的是22×3×5=60,22×3×7=84和2×32×5=90,各有12个约数。

所以100以内约数最多的自然数是60,72,84,90和96。

48. 写出三个小于20的自然数,使它们的最大公约数是1,但两两均不互质。

解:6,10,15

49. 有336个苹果、 252个桔子、 210个梨,用这些果品最多可分成多少份同样的礼物?在每份礼物中,三样水果各多少?

解:42份;每份有苹果8个,桔子6个,梨5个。

50. 三个连续自然数的最小公倍数是168,求这三个数。

解:6,7,8。 提示:相邻两个自然数必互质,其最小公倍数就等于这两个数的乘积。而相邻三个自然数,若其中只有一个偶数,则其最小公倍数等于这三个数的乘积;若其中有两个偶数,则其最小公倍数等于这三个数乘积的一半。

51. 一副扑克牌共54张,最上面的一张是红桃K。如果每次把最上面的12张牌移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃K才会又出现在最上面?

解:因为[54,12]=108,所以每移动108张牌,又回到原来的状况。又因为每次移动12张牌,所以至少移动108÷12=9(次)。

52. 爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。”你知道爷爷和小明现在的年龄吗?

解:爷爷70岁,小明10岁。提示:爷爷和小明的年龄差是6,5,4,3,2的公倍数,又考虑到年龄的实际情况,取公倍数中最小的。(60岁)

53. 某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?并将它们写出来。

解:11,13,17,23,37,47。

54. 在放暑假的8月份,小明有五天是在姥姥家过的。这五天的日期除一天是合数外,其它四天的日期都是质数。这四个质数分别是这个合数减去1,这个合数加上1,这个合数乘上2减去1,这个合数乘上2加上1。问:小明是哪几天在姥姥家住的?

解:设这个合数为a,则四个质数分别为(a-1),(a+1),(2a-1),(2a+1)。因为(a-1)与(a+1)是相差2的质数,在1~31中有五组:3,5;5,7;11,13;17,19;21,31。经试算,只有当a=6时,满足题意,所以这五天是8月5,6,7,11,13日。

55. 有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数。求这两个整数。

解:3,74;18,37。

提示:三个数字相同的三位数必有因数111。因为111=3×37,所以这两个整数中有一个是37的倍数(只能是37或74),另一个是3的倍数。

56. 在一根100厘米长的木棍上,从左至右每隔6厘米染一个红点,同时从右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开。问:长度是1厘米的短木棍有多少根?

解:因为100能被5整除,所以可以看做都是自左向右染色。因为6与5的最小公倍数是30,即在30厘米处同时染上红点,所以染色以30厘米为周期循环出现。一个周期的情况如下图所示:

由上图知道,一个周期内有2根1厘米的木棍。所以三个周期即90厘米有6根,最后10厘米有1根,共7根。

57. 某种商品按定价卖出可得利润960元,若按定价的80%出售,则亏损832元。问:商品的购入价是多少元?

解:8000元。按两种价格出售的差额为960+832=1792(元),这个差额是按定价出售收入的20%,故按定价出售的收入为1792÷20%=8960(元),其中含利润960元,所以购入价为8000元。

58. 甲桶的水比乙桶多20%,丙桶的水比甲桶少20%。乙、丙两桶哪桶水多?

解:乙桶多。

59. 学校数学竞赛出了A,B,C三道题,至少做对一道的有25人,其中做对A题的有10人,做对B题的有13人,做对C题的有15人。如果二道题都做对的只有1人,那么只做对两道题和只做对一道题的各有多少人?

解:只做对两道题的人数为(10+13+15) -25 -2×1=11(人),

只做对一道题的人数为25-11-1=13(人)。

60. 学校举行棋类比赛,设象棋、围棋和军棋三项,每人最多参加两项。根据报名的人数,学校决定对象棋的前六名、围棋的前四名和军棋的前三名发放奖品。问:最多有几人获奖?最少有几人获奖?

解:共有13人次获奖,故最多有13人获奖。又每人最多参加两项,即最多获两项奖,因此最少有7人获奖。

61. 在前1000个自然数中,既不是平方数也不是立方数的自然数有多少个?

解:因为312<1000<322,103=1000,所以在前1000个自然数中有31个平方数,10个立方数,同时还有3个六次方数(16,26,36)。所求自然数共有 1000-(31+10)+3=962(个)。

62. 用数字0,1,2,3,4可以组成多少个不同的三位数(数字允许重复)?

解:4*5*5=100个

63. 要从五年级六个班中评选出学习、体育、卫生先进集体各一个,有多少种不同的评选结果?

解:6*6*6=216种

64. 已知15120=24×33×5×7,问:15120共有多少个不同的约数?

解: 15120的约数都可以表示成 2a×3b×5c×7d的形式,其中a=0,1,2,3,4,b=0,1,2,3,c=0,1,d=0,1,即a,b,c,d的可能取值分别有5, 4, 2, 2种,所以共有约数5×4×2×2=80(个)。

65. 大林和小林共有小人书不超过50本,他们各自有小人书的数目有多少种可能的情况?

解:他们一共可能有0~50本书,如果他们共有n本书,则大林可能有书0~n本,也就是说这n本书在两人之间的分配情况共有(n+1)种。所以不超过 50本书的所有可能的分配情况共有1+2+3…+51=1326(种)。

66. 在右图中,从A点沿线段走最短路线到B点,每次走一步或两步,共有多少种不同走法?(注:路线相同步骤不同,认为是不同走法。)

解:80种。提示:从A到B共有10条不同的路线,每条路线长5个线段。每次走一个或两个线段,每条路线有8种走法,所以不同走法共有 8×10=80(种)。

67.有五本不同的书,分别借给3名同学,每人借一本,有多少种不同的借法?

解:5*4*3=60种

68.有三本不同的书被5名同学借走,每人最多借一本,有多少种不同的借法?

解:5*4*3=60种

69. 恰有两位数字相同的三位数共有多少个?

解:在900个三位数中,三位数各不相同的有9×9×8=648(个),三位数全相同的有9个,恰有两位数相同的有900—648—9=243(个)。

70. 从1,3,5中任取两个数字,从2,4,6中任取两个数字,共可组成多少个没有重复数字的四位数?

解:三个奇数取两个有3种方法,三个偶数取两个也有3种方法。共有 3×3×4!=216(个)。

71. 左下图中有多少个锐角?

解:C(11,2)=55个

72. 10个人围成一圈,从中选出两个不相邻的人,共有多少种不同选法?

解:c(10,2)-10=35种

73. 一牧场上的青草每天都匀速生长。这片青草可供27头牛吃6周,或供23头牛吃9周。那么可供21头牛吃几周?

解:将1头牛1周吃的草看做1份,则27头牛6周吃162份,23头牛9周吃207份,这说明3周时间牧场长草207-162=45(份),即每周长草15份,牧场原有草162-15×6=72(份)。21头牛中的15头牛吃新长出的草,剩下的6头牛吃原有的草,吃完需72÷6=12(周)。

74. 有一水池,池底有泉水不断涌出。要想把水池的水抽干, 10台抽水机需抽 8时,8台抽水机需抽12时。如果用6台抽水机,那么需抽多少小时?

解:将1台抽水机1时抽的水当做1份。泉水每时涌出量为

(8×12-10×8)÷(12-8)=4(份)。

水池原有水(10-4)×8=48(份),6台抽水机需抽48÷(6-4)=24(时)。

75. 规定a*b=(b+a)×b,求(2*3)*5。

解:2*3=(3+2)*3=15

15*5=(15+5)*5=100

76. 1!+2!+3!+…+99!的个位数字是多少?

解:1!+2!+3!+4!=1+2+6+24=33

从5!开始,以后每一项的个位数字都是0

所以1!+2!+3!+…+99!的个位数字是3。

77(1).有一批四种颜色的小旗,任意取出三面排成一行,表示各种信号。在200个信号中至少有多少个信号完全相同?

解:4*4*4=64

200÷64=3……8

所以至少有4个信号完全相同。

77. (2)在今年入学的一年级新生中有 370多人是在同一年出生的。试说明:他们中至少有2个人是在同一天出生的。

解:因为一年最多有366天,看做366个抽屉

因为370366,所以根据抽屉原理至少有2个人是在同一天出生的。

78. 从前11个自然数中任意取出6个,求证:其中必有2个数互质。

证明:把前11个自然数分成如下5组

(1,2,3)(4,5)(6,7)(8,9)(10,11)

6个数放入5组必然有2个数在同一组,那么这两个数必然互质。

79. 小明去爬山,上山时每时行2.5千米,下山时每时行4千米,往返共用3.9时。小明往返一趟共行了多少千米?

80. 长江沿岸有A,B两码头,已知客船从A到B每天航行500千米,从B到A每天航行400千米。如果客船在A,B两码头间往返航行5次共用18天,那么两码头间的距离是多少千米?

解:800千米。 提示:从A到B与从B到A的速度比是5∶4,从A到B用

81. 请在下式中插入一个数码,使之成为等式:

1×11×111= 111111

解答:91*11*111=111111

82.甲、乙、丙三数的和是100,甲数除以乙数与丙数除以甲数的结果都是商5余1。问:乙数是多少?

解:设乙数是x,那么甲数就是5x+1

丙数是5(5x+1)+1=25x+6

因此x+5x+1+25x+6=100

31x=93 x=3

所以乙数是3

83.12345654321×(1+2+3+4+5+6+5+4+3+2+1)是哪个数的平方

解:12345654321=111111的平方

1+2+3+4+5+6+5+4+3+2+1=36=6的平方

所以原式=666666的平方。

84.某剧院有25排座位,后一排比前一排多2个座位,最后一排有70个座位。问:这个剧院一共有多少个座位?

解:第一排有70-24*2=22个座位

所以总座位数是(22+70)*25/2 =1150

85. 某城市举行小学生数学竞赛,试卷共有20道题。评分标准是:答对一道给3分,没答的题每题给1分,答错一道扣1分。问:所有参赛学生的得分总和是奇数还是偶数?为什么?

解:一定是偶数,因为每个人20道题得分都分别是奇数,20个奇数的和一定是偶数。每个人的得分都是偶数,所以无论有多少参赛学生,参赛学生的得分总和一定是偶数。

86. 可以分解为三个质数之积的最小的三位数是几?

解:102=2*3*17

87. 两个质数的和是39,求这两个质数的积。

解:注意到奇偶性可以知道这2个质数分别是2和37

它们的乘积是2*37=74

88. 有1,2,3,4,5,6,7,8,9九张牌,甲、乙、丙各拿了三张。甲说:“我的三张牌的积是48。”乙说:“我的三张牌的和是15。”丙说:“我的三张牌的积是63。”问:他们各拿了哪三张牌?

解:63=7*1*9 所以丙拿的1,7,9

48=2*3*8 所以甲拿的2,3,8

4+5+6=15 因此乙拿的是4,5,6

89. 四个连续自然数的积是3024,求这四个数。

解:考虑末尾数字,1*2*3*4末尾是4

6*7*8*9末尾也是4

其他情况下末尾都是0

11*12*13*14=24024太大

6*7*8*9=3024刚好

所以这4个数是6,7,8,9

90. 证明:任何一个三位数,连着写两遍得到一个六位数,这个六位数一定能被7,11,13整除。

解:该数形如ABCABC=ABC*1001

1001=7*11*13

所以这个六位数一定能被7,11,13整除。

91.在1~100中,所有的只有3个约数的自然数的和是多少?

解:4+9+25+49=87

92. 有一种电子钟,每到正点响一次铃,每过九分钟亮一次灯。如果中午12点整它既响铃又亮灯,那么下一次既响铃又亮灯是什么时间?

解:[60,9]=180

180/60=3

下次是下午3点钟。

93. 有一个数除以3余2,除以4余1。问:此数除以12余几?

解:除以3余2的数是2,5,8,11,14。。。。。。

除以4余1的数是1,5,9,。。。。。。

所以此数除以12余5

94. 把16拆成若干个自然数的和,要求这些自然数的乘积尽量大,应如何拆?

解:16=3+3+3+3+2+2

乘积是3*3*3*3*2*2=324

95. 小明按1~ 3报数,小红按1~ 4报数。两人以同样的速度同时开始报数,当两人都报了100个数时,有多少次两人报的数相同?

解:每12次作为一个周期

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 4 1 2 3 4 1 2 3 4

每个周期两人有3次报的数一样

100=12*8+4

所以两个人有8*3+3=27次报的数相同。

96. 某自然数加10或减10皆为平方数,求这个自然数。

解:设这个数是x

x+10=m^2

x-10=n^2

m^2-n^2=20 (m+n)(m-n)=20

m=6,n=4

所以x=6^2-10=26

97. 已知某铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒。求火车的速度和长度。

解:120秒行驶的距离是桥长+车长

80秒行驶的距离是桥长-车长

所以80(1000+车长)=120(1000-车长)

车长=200米

火车的速度是10米/秒

98. 甲、乙二人按顺时针方向沿圆形跑道练习跑步,已知甲跑一圈要12分,乙跑一圈要15分,如果他们分别从圆形跑道直径的两端同时出发,那么出发后多少分甲追上乙?

解:(1/2)/(1/12-1/15)=(1/2)/(1/60)=30分钟

99. 甲、乙比赛乒乓球,五局三胜。已知甲胜了第一局,并最终获胜。问:各局的胜负情况有多少种可能?

解:甲 甲 甲

甲 甲 乙 甲

甲 甲 乙 乙 甲

甲 乙 甲 甲

甲 乙 甲 乙 甲

甲 乙 乙 甲 甲

经枚举发现共有6种可能。

100. 甲、乙二人 2时共可加工 54个零件,甲加工 3时的零件比乙加工4时的零件还多4个。问:甲每时加工多少个零件?

解:甲乙二人一小时共可加工零件27个

设甲每小时加工x个,那么乙每小时加工27-x个

根据条件得3x=4(27-x)+4

7x=112 x=16

答:甲每小时加工零件16个。

[img]

要30道5年级数学奥数题,带答案。

1.一块长1米20厘米,宽90厘米的铝皮,剪成直径30厘米的圆片,最多可以剪几块?

分析:此题不需求面积的。只需求长和宽各是圆的直径的几倍,然后求出长和宽的倍数的积。

1米20厘米=120厘米

120÷30=4

90÷30=3

4×3=12(块)

答:最多可以剪12块。

2.一个圆柱,底面半径1分米,它的侧面展开是一个正方形。这个圆柱的表面积和体积是多少?

分析:从侧面展开图正方形入手,可知这个圆柱的高是圆柱的底面周长。

圆柱的表面积:

(3.14×1×2)×(3.14×1×2)+3.14×1×1×2

=6.28×6.28+6.28

=6.28×7.28

=45.7184(平方分米)

圆柱的体积:

3.14×1×1×(3.14×1×2)

=3.14×6.28

=19.7192(平方分米)

答:这个圆柱的表面积是45.7184平方分米,体积是19.7192平方分米。

3.一列火车上午8时从甲站开出,到第二天的晚上9时到达乙站。已知火车平均每小时行98千米。甲乙两站间的铁路长多少千米?

分析:这题的解题关键是要知道火车行驶的时间。

24-8+9=25(小时)[或者:12-8+12+9=25(小时)]

98×25=(100-2)×25

=2500-50

=2450(千米)

答:甲乙两站间的铁路长2450千米。

4.一个圆和一个扇形的半径相等。已知圆的面积是30平方厘米,扇形的圆心角是72度。求扇形的面积。

分析:因为圆和扇形的半径相等,圆和扇形的面积存要在倍数关系。这个倍数就是它们圆心角之间的倍数关系。

72÷360=1/5,30×1/5=6(平方厘米)

答:扇形的面积是6平方厘米。

第11题:一个半径3厘米的圆,在圆中画一个扇形,使它的面积占圆面积的20%,并且算出这个扇形的面积。

分析:此题与上题的思路一样。

3.14×3×3×20%=5.652(平方厘米)

答:这个扇形的面积是5.652平方厘米。

5.学校把植树任务按5:3分给六年级和五年级。六年级实际栽了108棵,超过原分配任务的20%。原计划五年级栽树多少棵?

分析:六年级原计划栽树的棵数是解题的关键。

1、六年级原计划栽树多少棵?

108÷(1+20%)=108×5/6=90(棵)

2、原计划五年级栽树多少棵?

90÷5×3=54(棵)

综合算式:

108÷(1+20%)÷5×3

=90÷5×3

=54(棵)

答:原计划五年级栽树54棵。

6.甲乙两面个工程队全修一段公路,甲队的工作效率是乙队的3/5。两队合修6天正好完成这段公路的2/3,余下的由乙队单独修,还要几天才能修完?

分析:求两队的工效是解题的关键。

1、两队的工效和是多少?

2/3÷6=1/9

2、乙队的工效是多少?

1/9×[5÷(3+5)]

=1/9×5/8

=5/72

3、还要几天才能修完?

(1-2/3)÷5/72

=1/3×72/5

=24/5(天)

答:还要24/5天才能修完。

7.某水泥厂去年生产水泥232400吨,今年头5个月的产量就等于去年全年的产量。照这样计算,这个水泥厂今年将比去年增产百分之几?

解法一:分析,今年后7个月的产量就是增产的,因此我们要先求出后7个月生产量。

232400÷5×(12-5)

=46480×7

=325360(吨)

325360÷232400=1、4=140%

解法二:把232400吨看作单位“1”,

1、今年平均每月生产量是去年的几分之几?

1÷5=1/5

2、今年比去年增产几分之几?

1/5×(12-5)=7/5

3、今年比去年增产百分之几?

7/5=1.4=140%

综合算式:1÷5×(12-5)=1.4=140%

答:这个厂今年比去年增产140%。

8.幼儿园买进大小两种毛巾各40条,共用258.8元。大毛巾的单价比小毛巾单价的2倍多0.11元。这两种毛巾单价各是多少元?

解:设小毛巾的单价是x元,则大毛巾的单价是(2x+0.11)元。

[x+(2x+0.11)]×40=258.8

3x=6.47-0.11

x=6.36÷3

x=2.12

2x+0.11=2.12×2+0.11

=4.35

答:大毛巾的单价是每条4.35元,小毛巾的单价是每条2.12元。

9.

一间长4、8米、宽3、6米的房间,用边长0、15米的正方形瓷砖铺地面,需要768块。在长6米、宽4、8米的房间里,如果用同样的瓷砖来铺,需要多少块?如果在第一个房间改铺边长0、2米的正方形瓷砖,要用多少块?(用比例解)

分析:房间的面积是一定的,每块砖的面积和块数成反比例。

解:设需要x块。

0.15×0.15x

=6×4.8

x

=6×4.8÷0.15÷0.15

x

=1280

答:需要1280块。

解:设需要y块。

0.2×0.2y=4.8×3.6

y=4.8×3.6÷0.2÷0.2

y=432

答:需要432块。

10.一艘轮船所带的柴油最多可以用6小时。驶出时顺风,每小时行驶30千米。驶回时逆风,每小时行驶的路程是顺风时的4/5。这艘轮船最多驶出多远应往回驶?

分析:轮船行驶的路程一定,每小时行驶的路程和时间成反比例。

解:设这艘轮船逆风行驶了x小时。

30×4/5x=30×(6-x)

4/5x=6-x

9/5x=6

x=10/3

30×4/5×10/3=80(千米)

答:这艘轮船最多驶出80千米就应往回驶。

11.

一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,这时距离乙地还有94千米。甲乙两地的公路长多少千米?

分析:“从第二小时比第一小时多行了16千米”可知第二小时行了全程的1/7和16千米。第一小时和第二小时共行全程的(1/7+1/7)和16千米。由此可知(96+16)占全程的(1-1/7-1/7)。

根据上面的分析得:

(96+16)÷(1-1/7-1/7)

=112÷5/7

=112×7/5

=156、8(千米)

答:甲乙两地的公路长156、8千米。

或者用方程解:

解:设甲乙两地的公路长x千米。

(1-1/7-1/7)x=96+16

5/7x=112

x=156、8

答:甲乙两地的公路长156、8千米。

题目改编:若这题中的一个条件改成“这时距离甲地96千米”,其它条件不变,问题也不变。如何解答?

12.一个编织组,原来30人10天生产1500只花篮。现在增加到80人,按原来的工效,生产6000只花篮需要多少天?(用比例解答)

分析:题中说“按原来的工效”,这说明这个纺织组的工作效率是一定的。工作效率一定,工作总量和工作时间成正比例。

解:设需要x天。

1500:(30×50)=6000:(80×x)

1500×(80×x)=6000×(30×50)

x=6000×30×50÷80÷1500

x=6000÷80

x=75

答:需要75天。

13.红光农场有两块麦田,第一块5.5公顷,共收小麦27.3吨,第二块3.6公顷,共收小麦18.2吨,这两块麦田平均每公顷收小麦多少吨?

14.

一辆汽车在山区行驶,上山用了3小时,平均每小时行30千米,下山行完同样的路程,只用了2小时,求这辆汽车上山,下山的平均速度.

15.

甲乙二人同时从同一地点向相反方向背向而行,甲每小时行驶15千米,乙每小时行驶12千米,4.5小时两人相距多少千米?甲比乙多走多少千米?

16.

服装厂计划做1470套服装,已经做了5天,平均每天做150套,剩下的要4.5天完成,剩下的平均每天比原来每天多做多少套?

17.

每套童装用布2.5米,每套成人服装用布4米,现在要做童装5套,成人服装3套,共有布30米,还可以剩下多少米布?如果每条裤子用布1.1米,剩下的这些布可做裤子多少条?

18.超市开展矿泉水“买5送1”的活动。一个旅游团有48人,想每人发一瓶矿泉水,需要购买多少瓶水就够了?

(买5送1

的意思是要6瓶矿泉水只需要买5瓶,48里有8个6,所以只需要8个5就可以了,答案是40瓶。)

19.

一个小数部分是两位的小数,用四舍五入法把它精确到0.1,它的近似值是5.0,那么这个两位小数是什么?

(解析:所求的两位小数是:4.95,4.96,4.97,4.98,4.99,5.00,5.01,5.02,5.03,5.04

20.

一只底面是正方形的长方体铁箱,如果把它的侧面展开,正好得到一个边长是40cm的正方形.求这只铁箱的容积是多少升?

40÷4=10

10×10×40÷1000=4》

回答者:

cyg2436

-

高级经理

七级

1-12

15:16

小学5年级奥数题选

填空题

1.计算:0.02+0.04+0.06+0.08+……+19.94+19.96+19.98=________。

2.1×1+2×2+3×3+……1997×1997+1998×1998的个位数字是________。

3.一个两位数,在它的两个数字中间添一个0,就比原来的数多630,这样的两位数共有_______个。

4.现有壹元的人民币4张,贰元的人民币2张,拾元的人民币3张,如果从中至少取1张,至多取9张,那么,共可以配成_______种不同的钱数。

5.一组四位数,每一个数的数字均不为0,并且互不相同,但每个数所有的数字和都为12,将所有这样的四位数从小到大依次排列,第25个数是_______。

6.大猴给小猴分桃子,如果每只小猴分8个桃子,还剩10桃子;如果每只小猴分9个桃子,那么有一只小猴就分不足9个,但仍可以分到桃子,小

8.有一栋居民楼,每家都订2份不同的报纸,该居民楼共订了三种报纸。其中《南通广播电视报》34份,《扬子晚报》30份,《报刊文摘》22份。那么,订《扬子晚报》和《报刊文摘》的共有_______家。

9.强强、芳芳两人在相距120米的直路上来回跑步,强强每秒跑2米,芳芳每秒跑3米。如果两人同时从两端点出发,那么15分钟内他们共相遇_______次。

10.某车间加工一批零件,计划每天加工48个,实际每天比计划多加工12个,结果提前5天完成任务。这批零件共有_______个。

(小数报427期改编)

11.李、孙、王三人今年年龄之和为113岁,王38岁时,孙的年龄是李的2倍,李17岁时,王的年龄是孙的2倍,孙今年_______岁。

(小数报492期,98—9—18)

(小数报475期)

13.有16把锁和20把钥匙,其中20把钥题中的16把是和16把锁一一配对的,但现在锁和钥匙弄乱了。那么,至少需要试_______次才能确保锁和钥匙都配对起来。

(小数报457期,改编)

(小数报475期98—4—10改编)

15.甲、乙、丙、丁四名学生参加南通市小学生数学竞赛。赛前,三位老师进行预测:

一位老师说:丙第一名,甲第二名;

另一位老师说:乙第一名,丁第四名;

还有一位老师:丁第二名,丙第三名。

;BlogID=6572

看看满意吗?

关于五年级奥数综合调研卷和的介绍到此就结束了,不知道同学们从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

本文转载自互联网,如有侵权,联系删除