今天给各位同学分享智慧上进七年级数学试卷的知识,其中也会对智慧上进2020答案大全七年级上册数学进行解释,如果能碰巧解决你现在面临的问题,别忘了分享本站,现在开始吧!
本文目录一览:
七年级数学期末试卷与答案
一、精心选一选(每小题3分,共24分)
1.若与互为相反数,则=.()
A.14B.-14C.49D.-49
2.下列说法中,不正确的是()
A.有最小正整数,没有最小的负整数 B.若一个数是整数,则它一定是有理数
C.既不是正有理数,也不是负有理数 D.正有理数和负有理数组成有理数
3.对于由四舍五入得到的近似数,下列说法正确的是()
A.有3个有效数字,精确到百分位 B.有6个有效数字,精确到个数
C.有2个有效数字,精确到万位 D.有3个有效数字,精确到千位
4.下列各数中,不相等的组数有()
①(-3)2与-32②(-3)2与32③(-2)3与-23④3与⑤(-2)3与3
A.0组B.1组C.2组D.3组
5.下列说法正确的是()
A.同位角相等B.两点之间的距离就是指连接两点的线段的长度
C.两点之间直线最短D.火车从海安到南通所行驶的路程就是海安到南通的距离
6.已知,则的值是()
A.25B.30C.35D.40
7.下图右边四个图形一定不是左边展开图的立体图是()
8.今欲在运动会颁奖台上面及两侧铺上地毯(如图阴影部分),试问需要多少面积的地毯?()
A.B.C.D.
二、耐心填一填.(每小题3分,共30分)
9.某市一天上午气温是12℃,下午上升了2℃,半夜(24时)下降了15℃,半夜的气温是_____℃.
10.在数轴上,与表示的点距离为3的点所表示的数是_________.
11.把多项式3xy-5xy+y-2x按x的降幂排列是.
12.小明从A处向北偏东方向走10m到达B处,小亮也从A处出发向南偏西方向走15m到达C处,则BAC的度数为度.
13.若∠1+∠3=180,∠2+∠4=180,且∠1=∠4,则∠2∠3,
理由是 .
14.如图所示,∠AOB是平角,∠AOC=300,∠BOD=600,
OM、ON分别是∠AOC、∠BOD的平分线,∠MON等于_____.
15.一只船沿河顺水而行的航速为30千米/小时,若按同样的航速在该河上顺水航行3小时和逆水航行5小时的航程相等,则此船在该河上顺水漂流半小时的航程为 千米.
16.汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷米,根据题意,列出方程为.
距离期末考试越来越近了,这是检验我们一学期学习成果的时期。对于初一数学的学习,编辑老师提醒大家要多做一些练习题。一起来看一下这篇 初一年级数学期末考试题 吧!
一、选择题(每小题4分,共12分)
1.(2012宜昌中考)如图,数轴上表示数-2的相反数的点是 ( )
A.点PB.点QC.点MD.点N
2.化简-{-[+(-2013)]}的结果是 ( )
A.-2013B.2013
C.-D.
3.一个数的相反数是非负数,这个数一定是 ( )
A.正数或零B.非零的数
C.负数或零D.零
二、填空题(每小题4分,共12分)
4.a的相反数是-(+21),则a=________.
5.如果-x=2,那么-[-(-x)]=________.
6.用“∧”与“∨”表示一种法则:(a∧b)=-b,(a∨b)=-a,如(2∧3)=-3,(2∨3)=-2,则(2012∧2013)∨(2014∧2015)=________.
三、解答题(共26分)
7.(9分)化简下列各数:
(1)-[-(-2)]. (2)+[-(-3)].
(3)-{-[+(-2)]}.(4)+[-(+4)].
(5)+{-[-(-)]}.(6)-{+[-(+1)]}.
8.(8分)假如在2013前面有2013个负号,每两个负号之间用“()”隔开,这个数最后化简结果是多少?假如前面有2014个负号呢?由此你得到怎样的规律?
【拓展延伸】
9.(9分)讨论分析:在数轴上表示有理数a与-a的点相对于原点的位置.
17.写出一个满足下列条件的一元一次方程:①未知数的系数是;②方程的解是3,这样的方程是 .
18.小红家粉刷房间,雇用了5个工人,干了10天完成,用了某种涂料150升,费用为4800元,粉刷面积是150m2,最后结算时,有以下几种方案:方案一:按工计算,每个工30元(1个人干一天是1个工);方案二:按涂料费用算,涂料费用的'30%作为工钱;方案三:按粉刷面积算,每平方米付工钱12元;请你帮小红家出主意,选择方案_____付钱最合算,是元.
三、解答题(共
19.计算与化简(每题3分,共12分)
20.解方程(每小题3分,共6分)
21.(5分)一个角的补角比它的余角的2倍还大18度,求这个角的度数.
22.(6分)若多项式的值与字母无关,
求代数式的值.
23.(6分)已知线段AB,反向延长线段AB到D,使AD=AB;再延长AB到C,使AC=3AB.
(1)根据题意画出图形;
(2)若DC的长为2cm,AB的中点为E,BC的中点为F,求EF的长.
24.(6分)如图,已知点O是直线AB上的一点,,OD、OE分别是、
的角平分线.
(1)求的度数;
(2)写出图中与互余的角;
(3)有补角吗?若有,请把它找出来,并说明理由.
25.(5分)一份数学竞赛试卷有20道选择题,规定做对一题得5分,一题不做或做错■■■■(此处因印刷原因看不清楚).文文做对了16道,但只得了76分,这是为什么?
26.(6分)某石油进口国这个月的石油进口量比上个月减少,由于国际油价上涨,这个月进口石油的费用反而比上个月增加.求这个月的石油价格相对上个月的增长百分比.
27.(6分)某市水果批发部门欲将A市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时.其它主要参考数据如下:
运输工具途中平均速度(千米/时)运费(元/千米)装卸费用(元)
火车100152000
汽车8020900
(1)如果汽车的总支出费用比火车费用多1100元,你知道本市与A市之间的路程是多少千米吗?请你列方程解答.
(2)如果A市与某市之间的距离为S千米,且知道火车与汽车在路上耽误的时间分别为2小时和3.1小时,你若是A市水果批发部门的经理,要想将这种水果运往其他地区销售.你将选择哪种运输方式比较合算呢?
28.(6分)据了解,火车票价按“”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价180元,下表是沿途各站至H站的里程数:
车站名ABCDEFGH
各站至H站的里程(单位:千米)15001130910622402219720
例如:B站至E站票价为(元)
(1)求A站至F站的火车票价(精确到1元);
(2)旅客王大妈乘A站至H站的火车去女儿家,上车过两站后拿着车票问乘务员:我快到站了吗?乘务员看到王大妈手中票价是66元,马上说下一站就到了,请问王大妈将在哪一站下车?(要求写出解答过程)
这篇 七年级数学期末试卷 就为大家分享到这里了。同时,更多的初一各科的期末试卷尽在七年级期末试卷,预祝大家都能顺利通过考试!
好消息:为了方便各地的初中生相互学习和交流,特地建立了QQ群【117367168】,欢迎广大学生尽快来加入哦!希望通过这个平台我们的成绩会有新的突破!!!
这一学期的努力成果就看期末考试的成绩了,因此,我们一定要重视。在期末考试来临之际,各位初一的同学们,下文为大家整理了一份 七年级数学期末试卷及答案 ,希望可以对各位考生有所帮助!
一、选择题(每小题4分,共12分)
1.方程3x+6=0的解的相反数是( )
A.2B.-2C.3D.-3
2.若2x+1=8,则4x+1的值为( )
A.15B.16C.17D.19
3.某同学解方程5x-1=□x+3时,把□处数字看错得x=-,他把□处看成了( )
A.3B.-9C.8D.-8
二、填空题(每小题4分,共12分)
4.方程3x+1=x的解为 .
5.若代数式3x+7的值为-2,则x= .
6.(2012潜江中考)学校举行“大家唱大家跳”文艺汇演,设置了歌唱与舞蹈两类节目,全校师生一共表演了30个节目,其中歌唱类节目比舞蹈类节目的3倍少2个,则全校师生表演的歌唱类节目有 个.
三、解答题(共26分)
7.(8分)解下列方程.
(1)2x+3=x-1.(2)2t-4=3t+5.
8.(8分)(2012雅安中考)用一根绳子绕一个圆柱形油桶,若环绕油桶3周,则绳子还多4尺;若环绕油桶4周,则绳子又少了3尺.这根绳子有多长?环绕油桶一周需要多少尺?
【拓展延伸】
9.(10分)先看例子,再解类似的题目.
例:解方程|x|+1=3.
方法一:当x≥0时,原方程化为x+1=3,解方程,得x=2;当x0时,原方程化为-x+1=3,解方程,得x=-2,所以方程|x|+1=3的解是x=2或x=-2.
方法二:移项,得|x|=3-1,合并同类项,得|x|=2,由绝对值的意义知x=±2,所以原方程的解为x=2或x=-2.
问题:用你发现的规律解方程:2|x|-3=5.(用两种方法解)
七年级数学上册有理数及其运算试卷及答案
我们在就读 七年级数学 的时候,一定要认真做好数学上册有理数的试卷,祝你七年级数学考试成功!下面是我为大家精心整理的七年级数学上册有理数及其运算试卷,仅供参考。
七年级数学上册有理数及其运算试题
(时间:120分钟 满分:150分)
一、选择题(本大题共15小题,每小题3分,共45分)
1.如果用+0.02克表示一只 乒乓球 质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作( )
A.-0.02克 B.+0.02克 C.0克 D.+0.04克
2.(宁波中考改编)下列各数中,既不是正数也不是负数的是( )
A.0 B.-1 C.12 D.2
3.(遂宁中考)在下列各数中,最小的数是( )
A.0 B.-1 C.32 D.-2
4.-8的相反数是( )
A.-6 B.8 C.-16 D.18
5.用四舍五入法得到近似数4.005万,关于这个数有下列说法,其中正确的是( )
A.它 精确到万位 B.它精确到0.001 C.它精确到万分位 D.它精确到十位
6.(遵义中考)计算-3+(-5)的结果是( )
A.- 2 B.-8 C .8 D.2
7.(盐城中考)2014年5月,中俄两国签署了供气购销合同,从2018年起,俄罗斯开始向我国供气,最终达到每年380亿立方米.380亿这个数据用科学记数法表示为( )
A.3.8×109 B.3.8×1010 C.3.8×1011 D.3.8×1012
8.(河北中考)计算:3-2×(-1)=( )
A.5 B.1 C.-1 D.6
9.下列计算正确的是( )
A.(-14)-(+5)= -9 B. 0-(-3)=0+(-3)
C.(-3)×(-3)= -6 D.|3-5|= 5-3
10.某校小卖铺一周的盈亏情况如下表所示(每天固定成本200元,其中“+”表示盈利,“-”表示亏损)
星期 一 二 三 四 五
盈亏 +220 -30 +215 -25 +225
则这个周共盈利( )
A.715元 B.630元 C.635元 D.605元
1 1.下列四个有理数12、0、1、-2,任取两个相乘,积最小为 ( )
A.12 B.0 C.-1 D.-2
12.在某一段时间里,计算机按如图所示程序工作,如果输入的数是2,那么输出的数是( )
A.-54
B.54
C.-558
D.558
13.如图,四个有理数在数轴上对应点M,P,N,Q,若点P,N表示的有理数互为相反数,则图中表示绝对值最大的数的点是( )
A.点M B.点N C.点P D.点Q
14.若(a+3)2+|b-2|=0,则ab的值是( )
A.6 B.-6 C.9 D.-9
15.观察下列各算式:2 1=2,22=4,23=8,24=16,25=32,26=64…通过观察,用你所发现的规律确定22 016的个位数字是 ( )
A.2 B.4 C.6 D.8
二、填空题(本大题共5小题,每小题5分,共25分)
16.-32的倒数的绝对值为________.
17.一种零件的内径尺寸在图纸上是30±0.05(单位:毫米),表示这种零件的标准尺寸是30毫米,加工要求最大不超过________毫米,最小不低于________毫米.
18.大于-1.5小于2.5的整数共有________个.
19.一个点从数轴的原点开始,先向右移动5个单位长度,再向左移动8个单位长度,到达的终点表示的数是________________.
20.已知|a|=3,|b|=4,且ab,则a-ba+b的值为________.
三、解答题(本大题共7小题,共80分)
21.(12分)把下列各数填入相应集合内:+8.5,-312,0.3,0,-3.4,12,-9,413,-1.2,-2.
(1)正数集 合:{ };
(2)整数集合:{ };
(3)负分数集合:{ }.
22.(8分)把数-2,1.5,-(-4),-312,(-1)4,-|+0.5|在数轴上表示出来,然后用“”把它们连接起来.
23.(16分)计算:
(1)6.8-(-4.2)+(-9);(2)|-2|-(-3)×(-15);
(3)(12+56-712) ×(-24); (4)-24÷(23)2+312×(-13)-(-0.5)2.
24.(8分)已知a、b互为相反数,c、d互为倒数,x的绝对值是2,求3x-(a+b+cd)x的值.
25.(10分)已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.
(1)求2※4的值;
(2)求(1※4)※(-2)的值;
26.(12分)“新春超市”在2015年1~3月平均每月盈利20万元,4~6月平均每月亏损15万元,7~10月平均每月盈利17万元,11~12月平均每月亏损23万元.问“新春超市”2015年总的盈亏情况如何?
27.(14分)一名 足球 守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,-3,+10,-8,-6,+12,-10.
(1)守门员最后是否回到了球门线的位置?
(2)在练习过程中,守门员离开球门线最远距离是多少米?
(3)守门员全部练习结束后,他共跑了多少米?
七年级数学上册有理数及其运算试卷参考答案
1.A 2.A 3.D 4.B 5.D 6.B 7.B 8.A 9.D 10.D
11.D 12.C 13.A 14.C 15.C
16.23
17.30.05 29.95
18.4
19.-3
20.-7或-17
21.(1)+8.5,0.3,12,413 (2)0,12,-9,-2 (3)-312,-3.4,-1.2
22.在数轴上表示数略,-312-2-|+0.5|(-1)41.5-(-4).
23.(1)原式=2. (2)原式=-43. (3)原式=-18. (4)原式=-37512.
24.由题意知,a+b=0,cd=1,x=±2,当x=2时,原式=4;当x=-2时,原式=-4. 25.(1)2※4=2×4+1=9.(2)(1※4)※(-2)=(1×4+1)×(-2)+1=-9.
26.(+20)×3+(-1 5)×3+(+17)×4+(-23)×2=37(万元).答:“新春超市”2015年总的盈利为37万元.
27.(1)(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=0.答:守门员最后回到了球门线的位置.(2)由观察可知:5-3+10=12.答:在练习过程中,守门员离开球门线最远距离是12米.(3)|+5|+|-3 |+|+10|+|-8|+|-6|+|+12|+|-10|=54(米).答:守门员全部练习结束后,他共跑了54米.
猜你喜欢:
1. 初一上册数学《有理数的混合运算》试题及答案
2. 七年级上册数学第一章有理数测验试题
3. 初一上册数学有理数的加减法试题及答案
4. 7年级数学有理数测试题
5. 浙教版初一上册数学有理数的混合运算试题及答案
七年级数学上期末试卷附答案
再过一段时间,就即将迎来七年级数学上期末考试了,同学们都复习好数学知识了吗?以下是我为你整理的七年级数学上期末试卷,希望对大家有帮助!
七年级数学上期末试卷
一、选择题(每小题3分,共30分):
1.﹣2的倒数是()
A.﹣ B. C.﹣2 D.2
2.阿里巴巴数据显示,2015年天猫商城“双11”全球狂欢交易额超912亿元,数据912亿用科学记数法表示为()
A.912×108 B.91.2×109 C.9.12×1010 D.0.912×1010
3.下列调查中,其中适合采用抽样调查的是()
①检测深圳的空气质量;
②为了解某中东呼吸综合征(MERS)确诊病人同一架飞机乘客的健康情况;
③为保证“神舟9号”成功发射,对其零部件进行检查;
④调查某班50名同学的视力情况.
A.① B.② C.③ D.④
4.下列几何体中,从正面看(主视图)是长方形的是()
A. B. C. D.
5.下列运算中,正确的是()
A.﹣2﹣1=﹣1 B.﹣2(x﹣3y)=﹣2x+3y
C. D.5x2﹣2x2=3x2
6.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为()
A.两点之间,线段最短
B.两点确定一条直线
C.过一点,有无数条直线
D.连接两点之间的线段叫做两点间的距离
7.已知2x3y2m和﹣xny是同类项,则mn的值是()
A.1 B. C. D.
8.如图,已知点C在线段AB上,点M、N分别是AC、BC的中点,且AB=8cm,则MN的长度为()cm.
A.2 B.3 C.4 D.6
9.有理数a、b在数轴上的位置如图所示,下列选项正确的是()
A.a+ba﹣b B.ab0 C.|b﹣1|1 D.|a﹣b|1
10.下列说法中,正确的是()
A.绝对值等于它本身的数是正数
B.任何有理数的绝对值都不是负数
C.若线段AC=BC,则点C是线段AB的中点
D.角的大小与角两边的长度有关,边越长角越大
二、填空题(每小题3分,共18分):
11.单项式 的系数是.
12.如图,在直线AD上任取一点O,过点O作射线OB,OE平分∠DOB,OC平分∠AOB,∠BOC=26°时,∠BOE的度数是.
13.对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则2☆(﹣3)=.
14.一家商店将某种服装按成本价提高20%后标价,又以9折优惠卖出,结果每件服装仍可获利8元,则这种服装每件的成本是.
15.如图是一块长为a,宽为b(ab)的长方形空地,要将阴影部分绿化,则阴影面积是.
16.如图所示,用长度相等的小棒按一定规律摆成一组图案,第一个图案需要6根小棒,第2个图案需要11根小棒,第3个图案需要16根小棒…,则第n个图案需要根小棒.
三、解答题(共52分,其中17题8分,18题9分,19题9分):
17.计算
(1)10﹣(﹣5)+(﹣9)+6
(2)(﹣1)3+10÷22×( ).
18.(1)化简(2m+1)﹣3(m2﹣m+3)
(2) (﹣4x2+2x﹣8y)﹣(﹣x﹣2y)
19.解方程
(1)3(2x﹣1)=5x+2
(2) .
20.在“迎新年,庆元旦”期间,某商场推出A、B、C、D四种不同类型礼盒共1000盒进行销售,在图1中是各类型礼盒所占数的百分比,已知四类礼盒一共已经销售了50%,各类礼盒的销售数量如图2所示:
(1)商场中的D类礼盒有盒.
(2)请在图1扇形统计图中,求出A部分所对应的圆心角等于度.
(3)请将图2的统计图补充完整.
(4)通过计算得出类礼盒销售情况最好.
21.列方程解应用题
某周末小明从家里到西湾公园去游玩,已知他骑自行车去西湾公园,骑自行车匀速的速度为每小时8千米,回家时选择乘坐公交车,公交车匀速行驶的速度为每小时40千米,结果骑自行车比公交车多用1.6小时,问他家到西湾公园相距多少千米?
22.我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?
(1)如图1所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A落在A′处,BC为折痕.若∠ABC=55°,求∠A′BD的度数.
(2)在(1)条件下,如果又将它的另一个角也斜折过去,并使BD边与BA′重合,折痕为BE,如图2所示,求∠2和∠CBE的度数.
(3)如果将图2中改变∠ABC的大小,则BA′的位置也随之改变,那么(2)中∠CBE的大小会不会改变?请说明.
七年级数学上期末试卷答案
一、选择题(每小题3分,共30分):
1.﹣2的倒数是()
A.﹣ B. C.﹣2 D.2
【考点】倒数.
【分析】根据倒数的定义即可求解.
【解答】解:﹣2的倒数是﹣ .
故选:A.
2.阿里巴巴数据显示,2015年天猫商城“双11”全球狂欢交易额超912亿元,数据912亿用科学记数法表示为()
A.912×108 B.91.2×109 C.9.12×1010 D.0.912×1010
【考点】科学记数法—表示较大的数.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|10,n为整数.确定n的值是易错点,由于912亿有11位,所以可以确定n=11﹣1=10.
【解答】解:912亿=912000 000 000=9.12×1010.
故选C.
3.下列调查中,其中适合采用抽样调查的是()
①检测深圳的空气质量;
②为了解某中东呼吸综合征(MERS)确诊病人同一架飞机乘客的健康情况;
③为保证“神舟9号”成功发射,对其零部件进行检查;
④调查某班50名同学的视力情况.
A.① B.② C.③ D.④
【考点】全面调查与抽样调查.
【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
【解答】解:①检测深圳的空气质量,应采用抽样调查;
②为了解某中东呼吸综合征(MERS)确诊病人同一架飞机乘客的健康情况,意义重大,应采用全面调查;
③为保证“神舟9号”成功发射,对其零部件进行检查,意义重大,应采用全面调查;
④调查某班50名同学的视力情况,人数较少,应采用全面调查,
故选:A.
4.下列几何体中,从正面看(主视图)是长方形的是()
A. B. C. D.
【考点】简单几何体的三视图.
【分析】主视图是分别从物体正面看,所得到的图形.
【解答】解:圆锥的主视图是等腰三角形,
圆柱的主视图是长方形,
圆台的主视图是梯形,
球的主视图是圆形,
故选B.
5.下列运算中,正确的是()
A.﹣2﹣1=﹣1 B.﹣2(x﹣3y)=﹣2x+3y
C. D.5x2﹣2x2=3x2
【考点】有理数的混合运算;合并同类项;去括号与添括号.
【分析】计算出各选项中式子的值,即可判断哪个选项是正确的.
【解答】解:因为﹣2﹣1=﹣3,﹣2(x﹣3y)=﹣2x+6y,3÷6× =3× ,5x2﹣2x2=3x2,
故选D.
6.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为()
A.两点之间,线段最短
B.两点确定一条直线
C.过一点,有无数条直线
D.连接两点之间的线段叫做两点间的距离
【考点】直线的性质:两点确定一条直线.
【分析】依据两点确定一条直线来解答即可.
【解答】解:在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据是两点确定一条直线.
故选:B.
7.已知2x3y2m和﹣xny是同类项,则mn的值是()
A.1 B. C. D.
【考点】同类项.
【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程2m=1,n=3,求出n,m的值,再代入代数式计算即可.
【解答】解:∵2x3y2m和﹣xny是同类项,
∴2m=1,n=3,
∴m= ,
∴mn=( )3= .
故选D.
8.如图,已知点C在线段AB上,点M、N分别是AC、BC的中点,且AB=8cm,则MN的长度为()cm.
A.2 B.3 C.4 D.6
【考点】两点间的距离.
【分析】根据MN=CM+CN= AC+ CB= (AC+BC)= AB即可求解.
【解答】解:∵M、N分别是AC、BC的中点,
∴CM= AC,CN= BC,
∴MN=CM+CN= AC+ BC= (AC+BC)= AB=4.
故选C.
9.有理数a、b在数轴上的位置如图所示,下列选项正确的是()
A.a+ba﹣b B.ab0 C.|b﹣1|1 D.|a﹣b|1
【考点】数轴.
【分析】根据数轴可以得到b﹣10
【解答】解:由数轴可得,b﹣10
则a+b1,|a﹣b|1,
故选D.
10.下列说法中,正确的是()
A.绝对值等于它本身的数是正数
B.任何有理数的绝对值都不是负数
C.若线段AC=BC,则点C是线段AB的中点
D.角的大小与角两边的长度有关,边越长角越大
【考点】绝对值;两点间的距离;角的概念.
【分析】根据绝对值、线段的中点和角的定义判断即可.
【解答】解:A、绝对值等于它本身的数是非负数,错误;
B、何有理数的绝对值都不是负数,正确;
C、线段AC=BC,则线段上的点C是线段AB的中点,错误;
D、角的大小与角两边的长度无关,错误;
故选B.
二、填空题(每小题3分,共18分):
11.单项式 的系数是 ﹣ .
【考点】单项式.
【分析】根据单项式系数的概念求解.
【解答】解:单项式 的系数为﹣ .
故答案为:﹣ .
12.如图,在直线AD上任取一点O,过点O作射线OB,OE平分∠DOB,OC平分∠AOB,∠BOC=26°时,∠BOE的度数是 64° .
【考点】角平分线的定义.
【分析】先根据角平分线的性质求出∠AOB的度数,再利用平角求出∠BOD的度数,利用OE平分∠DOB,即可解答.
【解答】解:∵OC平分∠AOB,∠BOC=26°,
∴∠AOB=2∠BOC=26°×2=52°,
∴∠BOD=180°﹣∠AOB=180°﹣52°=128°,
∵OE平分∠DOB,
∴∠BOE= BOD=64°.
故答案为:64°.
13.对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则2☆(﹣3)= 1 .
【考点】有理数的混合运算.
【分析】根据给出的运算方法把式子转化为有理数的混合运算,进一步计算得出答案即可.
【解答】解:2☆(﹣3)
=22﹣|﹣3|
=4﹣3
=1.
故答案为:1.
14.一家商店将某种服装按成本价提高20%后标价,又以9折优惠卖出,结果每件服装仍可获利8元,则这种服装每件的成本是 100元 .
【考点】一元一次方程的应用.
【分析】设这种服装每件的成本是x元,根据题意列出一元一次方程(1+20%)•90%•x﹣x=8,求出x的值即可.
【解答】解:设这种服装每件的成本是x元,
由题意得:(1+20%)•90%•x﹣x=8,
解得:x=100.
答:这种服装每件的成本是100元.
故答案为:100元.
15.如图是一块长为a,宽为b(ab)的长方形空地,要将阴影部分绿化,则阴影面积是 ab﹣ .
【考点】列代数式.
【分析】根据题意和图形,可以用相应的代数式表示出阴影部分的面积.
【解答】解:由图可得,
阴影部分的面积是:ab﹣π =ab﹣ ,
故答案为:ab﹣ .
16.如图所示,用长度相等的小棒按一定规律摆成一组图案,第一个图案需要6根小棒,第2个图案需要11根小棒,第3个图案需要16根小棒…,则第n个图案需要 5n+1 根小棒.
【考点】规律型:图形的变化类.
【分析】由图案的变化,可以看出后面图案比前面一个图案多5根小棒,结合数据6,11,16可得出第n个图案需要的小棒数.
【解答】解:图案(2)比图案(1)多了5根小棒,图案(3)比图案(2)多了5根小棒,根据图形的变换规律可知:
每个图案比前一个图案多5根小棒,
∵第一个图案需要6根小棒,6=5+1,
∴第n个图案需要5n+1根小棒.
故答案为:5n+1.
三、解答题(共52分,其中17题8分,18题9分,19题9分):
17.计算
(1)10﹣(﹣5)+(﹣9)+6
(2)(﹣1)3+10÷22×( ).
【考点】有理数的混合运算.
【分析】(1)先化简,再分类计算即可;
(2)先算乘方,再算乘除,最后算加法.
【解答】解:(1)原式=10+5﹣9+6
=12;
(2)原式=﹣1+10÷4×
=﹣1+
=﹣ .
18.(1)化简(2m+1)﹣3(m2﹣m+3)
(2) (﹣4x2+2x﹣8y)﹣(﹣x﹣2y)
【考点】整式的加减.
【分析】(1)、(2)先去括号,再合并同类项即可.
【解答】解:(1)原式=2m+1﹣3m2+3m﹣9
=5m﹣3m2﹣8;
(2)原式=﹣x2+ x﹣2y+x+2y
=﹣x2+ x.
19.解方程
(1)3(2x﹣1)=5x+2
(2) .
【考点】解一元一次方程.
【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;
(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.
【解答】解:(1)去括号得:6x﹣3=5x+2,
移项合并得:x=5;
(2)去分母得:10x+15﹣3x+3=15,
移项合并得:7x=﹣3,
解得:x=﹣ .
20.在“迎新年,庆元旦”期间,某商场推出A、B、C、D四种不同类型礼盒共1000盒进行销售,在图1中是各类型礼盒所占数的百分比,已知四类礼盒一共已经销售了50%,各类礼盒的销售数量如图2所示:
(1)商场中的D类礼盒有 250 盒.
(2)请在图1扇形统计图中,求出A部分所对应的圆心角等于 126 度.
(3)请将图2的统计图补充完整.
(4)通过计算得出 A 类礼盒销售情况最好.
【考点】条形统计图;扇形统计图.
【分析】(1)从扇形统计图中得到D类礼盒所占的百分比,然后用这个百分比乘以1000即可得到商场中的D类礼盒的数量;
(2)从扇形统计图中得到A类礼盒所占的百分比,然后用这个百分比乘以360°即可得到A部分所对应的圆心角的度数;
(3)用销售总量分别减去A、B、D类得销售量得到C类礼盒的数量,然后补全条形统计图;
(4)由条形统计图得到礼盒销售量最大的类型,因此可判断礼盒销售情况最好的类型.
【解答】解:(1)商场中的D类礼盒的数量为1000×25%=250(盒);
(2)A部分所对应的圆心角的度数为360°×35%=126°;
(3)C部分礼盒的销售数量为500﹣168﹣80﹣150=102(盒);
如图,
(4)A礼盒销售量最大,所以A礼盒销售情况最好.
故答案为250,126,A.
21.列方程解应用题
某周末小明从家里到西湾公园去游玩,已知他骑自行车去西湾公园,骑自行车匀速的速度为每小时8千米,回家时选择乘坐公交车,公交车匀速行驶的速度为每小时40千米,结果骑自行车比公交车多用1.6小时,问他家到西湾公园相距多少千米?
【考点】一元一次方程的应用.
【分析】设小明家到西湾公园距离x千米,根据“骑自行车比公交车多用1.6小时”列出方程求解即可.
【解答】解:设小明家到西湾公园距离x千米,
根据题意得: = +1.6,
解得:x=16.
答:小明家到西湾公园距离16千米.
22.我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?
(1)如图1所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A落在A′处,BC为折痕.若∠ABC=55°,求∠A′BD的度数.
(2)在(1)条件下,如果又将它的另一个角也斜折过去,并使BD边与BA′重合,折痕为BE,如图2所示,求∠2和∠CBE的度数.
(3)如果将图2中改变∠ABC的大小,则BA′的位置也随之改变,那么(2)中∠CBE的大小会不会改变?请说明.
【考点】角平分线的定义;角的计算;翻折变换(折叠问题).
【分析】(1)由折叠的性质可得∠A′BC=∠ABC=55°,由平角的定义可得∠A′BD=180°﹣∠ABC﹣∠A′BC,可得结果;
(2)由(1)的结论可得∠DBD′=70°,由折叠的性质可得 = =35°,由角平分线的性质可得∠CBE=∠A′BC+∠D′BE= ×180°=90°;
(3)由折叠的性质可得, ,∠2=∠EBD= ∠DBD′,可得结果.
【解答】解:(1)∵∠ABC=55°,
∴∠A′BC=∠ABC=55°,
∴∠A′BD=180°﹣∠ABC﹣∠A′BC
=180°﹣55﹣55°
=70°;
(2)由(1)的结论可得∠DBD′=70°,
∴ = =35°,
由折叠的性质可得,
∴∠CBE=∠A′BC+∠D′BE= ×180°=90°;
(3)不变,
由折叠的性质可得,
,∠2=∠EBD= ∠DBD′,
∴∠1+∠2= = =90°,
不变,永远是平角的一半.
[img]七年级上册数学期末试卷及答案
七年级数学试卷 2007.2
(满分:150分;考试时间:120分钟)
[卷首语:亲爱的同学,你好!升入初中已经一学期了,祝贺你与新课程一起成长。相信你在原有的基础上又掌握了许多新的数学知识和方法,变得更加聪明了。你定会应用数学来解决实际问题了。现在让我们一起走进考场,发挥你的聪明才智,成功一定属于你!]
题号 一 二 三 总 分 合分人
1~10 11~20 21 22 23 24 25 26 27 28
得分
得分 评卷人
一.选择题(每题有且只有一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格内,每题3分,计30分)
题 号 1 2 3 4 5 6 7 8 9 10
答 案
1. 的绝对值是
A.-3 B. C.3 D.
2.下列计算正确的是
A. B. C. D.
3.下列关于单项式 的说法中,正确的是
A.系数是3,次数是2 B.系数是 ,次数是2
C.系数是 ,次数是3 D.系数是 ,次数是3
4.将下面的直角梯形绕直线 旋转一周,可以得到右边立体图形的是
5.有理数a、b在数轴上的位置如图所示,
则下列各式错误的是
A.b<0<a B.│b│>│a│ C.ab<0 D.a+b>0
6.下列方程中,解为 的方程是
A. B. C. D.
7.下列四个平面图形中,不能折叠成无盖的长方体盒子的是
A B C D
8.若代数式 的值与字母x的取值无关,则m的值是
A.2 B.-2 C.-3 D.0
9.某顾客以八折的优惠价买了一件商品,比标价少付了30元,那么他购买这件商品花了
A.70元 B.120元 C.150元 D.300元
10.如图, 则AC的取值范围
A.大于b
B.小于a
C.大于b且小于a
D.无法确定
二.填空题(每题3分,计30分)
得分 评卷人
11.写出一个比 大的负数: 。
12.某天温度最高是12℃,最低是-7℃,这一天温差是 ℃。
13.已知 ,则 的余角为 。
14.地球的表面积约是510 000 000km ,可用科学记数法表示为 km2。
15.若 ,则 。
16.若 与 是同类项,则 。
17.如图,已知正方形的边长为4cm,则图中阴影部分的
面积为 cm2。
18.小华和小明每天坚持跑步,小明每秒跑6米,小华每秒跑4米,如果他们同时从相距200米的两地相向起跑,那么几秒后两人相遇?若设x秒后两人相遇,可列方程 。
19.如图,点A在射线OX上,OA的长等于2cm。如果OA绕点O按逆时针方向旋转30°到 ,那么点 的位置可以用(2,30°)表示。如果将 再沿逆时针方向继续旋转45°,到 ,那么点 的位置可以用( , )表示。
20.已知线段AB=20cm,直线AB上有一点C,且BC=6cm, M是线段AC的中点,则AM= cm。
三.解答题(本大题共8题,满分90分)
得分 评卷人
21.(本题满分10分)
(1)计算: (x+1)=2- (x+2)
(2)化简: YX+2XY-2
得分 评卷人
22.(本题满分10分)
(1)解方程:
(2)解方程:
得分 评卷人
23.(本题满分10分)
(1)如图1,在方格纸中有三个格点三角形(顶点在小正方形的顶点上),把三角形ABC绕A点顺时针旋转90°,可以得到三角形ADE,再将三角形ADE向左平移5格,得到三角形FHG。图中,直线AB、AD、FH两两之间有怎样的位置关系?
(2)如图2,用直尺过点A画AD⊥AB,过点C画CF⊥AB,垂足为F,并在图中标出直线AD、CF经过的格点。
图1 图2
得分 评卷人
24.(本题满分12分)
(1)根据下列条件,分别求代数式 的值:(9分)
①
②
③
(2)观察上述计算结果,请你给出一组 的值,使得上述代数式的值与(1)中①的计算结果相同。(3分)
得分 评卷人
25.(本题满分12分)
如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD。
(1)图中∠AOF的余角是 (把符合条件的角都填出来)。(3分)
(2)图中除直角相等外,还有相等的角,请写出三对:
① ;② ;③ 。(3分)
(3)①如果∠AOD=140°.那么根据 ,可得∠BOC= 度。(3分)
②如果 ,求∠EOF的度数。(3分)
得分 评卷人
26.(本题满分12分)
某校的一间阶梯教室,第1排的座位数为12,从第2排开始,每一排都比前一排增加a个座位。
(1)请你在下表的空格里填写一个适当的代数式:(6分)
第1排的座位数 第2排的座位数 第3排的座位数 第4排的座位数 … 第n排的座位数
12 12+a …
(2)已知第15排座位数是第5排座位数的2倍,求a的值,并计算第21排有多少个座位?(6分)
27.(本题满分12分)
在平整的地面上,有若干个完全相同的棱长为10cm的小正方体堆成一个几何体,如图所示。
(1)这个几何体由 个小正方体组成,请画出这个几何体的三视图。(5分)
主视图 左视图 俯视图
(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有 个正方体只有一个面是黄色,有 个正方体只有两个面是黄色,有 个正方体只有三个面是黄色。(3分)
(3)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加几个小正方体?这时如果要重新给这个几何体表面喷上红漆,需要喷漆的面积比原几何体增加还是减少了?增加或减少了多少cm2?(4分)
扬州某中学组织七年级学生秋游,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜。
(1)两同学向公司经理了解租车的价格。公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元。”王老师说:“我们学校八年级昨天在这个公司租了2辆60座和5辆45座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗?”甲、乙两同学想了一下,都说知道了价格。
你知道45座和60座的客车每辆每天的租金各是多少元?(6分)
(2)公司经理问:“你们准备怎样租车?”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在一旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗?”如果是你,你该如何设计租车方案,并说明理由。(6分)
28.(本题满分12分)
七年级数学
题号 一 二 三 总 分
11 12 13 14 15 16 17 18 19 20 21 22
得分
一、单项选择题(3分×5=15分)
1、下列大小关系正确的是 ( )
A.-5>-3 B.∣-5∣>∣-3∣
C.-(-3)>-(-5) D.∣-3∣>∣-5∣
2、下列图形中,不是正方体的平面展开图的是 ( )
A. B. C. D.
3、物体的形状如图1所示,则从正面看此物体看到的平面图形是 ( )
4、下列调查中,调查方式选择正确的是 ( )
A.为了统计全校学生人数,采用抽样调查。
B.为了了解某电视剧的收视率,采用全面调查。
C.为了了解一批炮弹的杀伤力,采用抽样调查。
D.为了了解某品牌食品是否含有防腐剂,采用全面调查。
5、下列说法正确的是 ( )
A.符号相反的数互为相反数 B.符号相反绝对值相等的数互为相反数
C.绝对值相等的数互为相反数 D.符号相反的数互为倒数
二、填空题(3分×5=15分)
6、5的相反数是 ;- 的倒数是 ;-3的绝对值是 .
7、计算:-4.2+5.7-8.4+10 = .
8、如果 ,那么 的余角等于_______________.
9、青藏高原是世界上海拔最高的高原,它的面积约为 平方千米.将 用科学记数法表示应为 .
10、为估计鱼塘中鱼的条数,先从鱼塘中捞出一网共85条,将这85条鱼做上记号放回鱼塘,等鱼儿在水中充分游动以后,再捞出一网共90条,其中做有记号的鱼有15条,据此可以估计鱼塘中大约有 条鱼.
三、解答题(共70分)
11、(5分)计算:
12、(5分)计算:3x-( 2x-4) +(2x-1)
13、(5分)计算:
14、(5分)解方程:
15、(5分)解方程:
16、(6分)如图,已知D是线段AC的中点,线段BD =7.5cm,线段BC = 6cm,求线段AB的长。
17、(6分)如图,平面上有A、B、C三点,
(1)作出下列图形:①线段AB;②射线BC;③直线AC.
(2)所画图形中互为补角的角有几对?标上数字并写出这几对角。
18、(6分)已知∠β的余角比∠β的 大 ,求∠β的度数。
19、(6分)如图,直线AB、CD相交于点O,OE平分∠AOC,∠AOE = ,求出图中其他几个角的度数.
20、(6分)设计调查问卷时,下列提问是否合适?如果不合适的话应该怎样改进?
(1)你上学时使用的交通工具是
A.汽车 B.摩托车 C.步行 D.其他
(2)你对老师的教学满意吗?
A.比较满意 B.满意 C.非常满意
21、(7分)从甲地到乙地的长途汽车原来需要行使7个小时,开通高速公路后,路程缩短了30千米,而车速平均每小时增加了30千米,只需4个小时即可到达,求甲、乙两地之间高速公路的路程。
22、(8分)某文艺团体为希望工程组织了一场募捐义演,共售出1 000张票,筹得票款6 950元,已知成人票每张10元,学生票每张5元.
(1)问成人票和学生票各售出多少张?(3分)
(2)如果票价和售出的总票数不变,所得票款能为6932元吗?说明你的理由.(3分)
(3)如果票价和售出的总票数不变,若想筹得票款8 000元,问至少要售出多少张成人票?(2分)
七年级下册数学试卷及答案
知识有重量,但成就有光泽。有人感觉到知识的力量,但更多的人只看到成就的光泽。下面给大家分享一些关于七年级下册数学试卷及答案,希望对大家有所帮助。
一、选择题(本题共10小题,每小题3分,共30分)
1.(3分)下列各数: 、 、0.101001…(中间0依次递增)、﹣π、 是无理数的有()
A. 1个 B. 2个 C. 3个 D. 4个
考点: 无理数.
分析: 根据无理数的定义(无理数是指无限不循环小数)判断即可.
解答: 解:无理数有 ,0.101001…(中间0依次递增),﹣π,共3个,
故选C.
点评: 考查了无理数的应用,注意:无理数是指无限不循环小数,无理数包括三方面的数:①含π的,②开方开不尽的根式,③一些有规律的数.
2.(3分)(2001?北京)已知:如图AB∥CD,CE平分∠ACD,∠A=110°,则∠ECD等于()
A. 110° B. 70° C. 55° D. 35°
考点: 平行线的性质;角平分线的定义.
专题: 计算题.
分析: 本题主要利用两直线平行,同旁内角互补,再根据角平分线的概念进行做题.
解答: 解:∵AB∥CD,
根据两直线平行,同旁内角互补.得:
∴∠ACD=180°﹣∠A=70°.
再根据角平分线的定义,得:∠ECD= ∠ACD=35°.
故选D.
点评: 考查了平行线的性质以及角平分线的概念.
3.(3分)下列调查中,适宜采用全面调查方式的是()
A. 了解我市的空气污染情况
B. 了解电视节目《焦点访谈》的收视率
C. 了解七(6)班每个同学每天做家庭作业的时间
D. 考查某工厂生产的一批手表的防水性能
考点: 全面调查与抽样调查.
分析: 由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
解答: 解:A、不能全面调查,只能抽查;
B、电视台对正在播出的某电视节目收视率的调查因为普查工作量大,适合抽样调查;
C、人数不多,容易调查,适合全面调查;
D、数量较大,适合抽查.
故选C.
点评: 本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
4.(3分)一元一次不等式组 的解集在数轴上表示为()
A. B. C. D.
考点: 在数轴上表示不等式的解集;解一元一次不等式组.
分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.
解答: 解: ,由①得,x2,由②得,x≥0,
故此不等式组的解集为:0≤x2,
在数轴上表示为:
故选B.
点评: 本题考查的是在数轴上表示不等式组的解集,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
5.(3分)二元一次方程2x+y=8的正整数解有()
A. 2个 B. 3个 C. 4个 D. 5个
考点: 解二元一次方程.
专题: 计算题.
分析: 将x=1,2,3,…,代入方程求出y的值为正整数即可.
解答: 解:当x=1时,得2+y=8,即y=6;当x=2时,得4+y=8,即y=4;当x=3时,得6+y=8,即y=2;
则方程的正整数解有3个.
故选B
点评: 此题考查了解二元一次方程,注意x与y都为正整数.
6.(3分)若点P(x,y)满足xy0,x0,则P点在()
A. 第二象限 B. 第三象限 C. 第四象限 D. 第二、四象限
考点: 点的坐标.
分析: 根据实数的性质得到y0,然后根据第二象限内点的坐标特征进行判断.
解答: 解:∵xy0,x0,
∴y0,
∴点P在第二象限.
故选A.
点评: 本题考查了点的坐标平面内的点与有序实数对是一一对应的关系.坐标:直角坐标系把平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.
7.(3分)如图,AB∥CD,∠A=125°,∠C=145°,则∠E的度数是()
A. 10° B. 20° C. 35° D. 55°
考点: 平行线的性质.
分析: 过E作EF∥AB,根据平行线的性质可求得∠AEF和∠CEF的度数,根据∠E=∠AEF﹣∠CEF即可求得∠E的度数.
解答: 解:过E作EF∥AB,
∵∠A=125°,∠C=145°,
∴∠AEF=180°﹣∠A=180°﹣125°=55°,
∠CEF=180°﹣∠C=180°﹣145°=35°,
∴∠E=∠AEF﹣∠CEF=55°﹣35°=20°.
故选B.
点评: 本题考查了平行线的性质,解答本题的关键是作出辅助线,要求同学们熟练掌握平行线的性质:两直线平行,同旁内角互补.
8.(3分)已知 是方程组 的解,则 是下列哪个方程的解()
A. 2x﹣y=1 B. 5x+2y=﹣4 C. 3x+2y=5 D. 以上都不是
考点: 二元一次方程组的解;二元一次方程的解.
专题: 计算题.
分析: 将x=2,y=1代入方程组中,求出a与b的值,即可做出判断.
解答: 解:将 方程组 得:a=2,b=3,
将x=2,y=3代入2x﹣y=1的左边得:4﹣3=1,右边为1,故左边=右边,
∴ 是方程2x﹣y=1的解,
故选A.
点评: 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.
9.(3分)下列各式不一定成立的是()
A. B. C. D.
考点: 立方根;算术平方根.
分析: 根据立方根,平方根的定义判断即可.
解答: 解:A、a为任何数时,等式都成立,正确,故本选项错误;
B、a为任何数时,等式都成立,正确,故本选项错误;
C、原式中隐含条件a≥0,等式成立,正确,故本选项错误;
D、当a0时,等式不成立,错误,故本选项正确;
故选D.
点评: 本题考查了立方根和平方根的应用,注意:当a≥0时, =a,任何数都有立方根
10.(3分)若不等式组 的整数解共有三个,则a的取值范围是()
A. 5a6 p="" 5≤a≤6="" d.="" 5≤a6="" c.="" 5
考点: 一元一次不等式组的整数解.
分析: 首先确定不等式组的解集,利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.
解答: 解:解不等式组得:2x≤a, p=""
∵不等式组的整数解共有3个,
∴这3个是3,4,5,因而5≤a6.
故选C.
点评: 本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
二、填空题(本题共8小题,每小题3分,共24分)
11.(3分)(2009?恩施州)9的算术平方根是 3 .
考点: 算术平方根.
分析: 如果一个非负数x的平方等于a,那么x是a的算术平方根,根据此定义即可求出结果.
解答: 解:∵32=9,
∴9算术平方根为3.
故答案为:3.
点评: 此题主要考查了算术平方根的等于,其中算术平方根的概念易与平方根的概念混淆而导致错误.
12.(3分)把命题“在同一平面内,垂直于同一条直线的两条直线互相平行”写出“如果…,那么…”的形式是:在同一平面内,如果 两条直线都垂直于同一条直线 ,那么 这两条直线互相平行 .
考点: 命题与定理.
分析: 根据命题题设为:在同一平面内,两条直线都垂直于同一条直线;结论为这两条直线互相平行得出即可.
解答: 解:“在同一平面内,垂直于同一条直线的两条直线互相平行”改写成“如果﹣﹣﹣,那么﹣﹣﹣”的形式为:“在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行”.
故答案为:两条直线都垂直于同一条直线,这两条直线互相平行.
点评: 本题考查了命题与定理:判断事物的语句叫命题,命题由题设和结论两部分组成;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.
13.(3分)将方程2x+y=25写成用含x的代数式表示y的形式,则y= 25﹣2x .
考点: 解二元一次方程.
分析: 把方程2x+y=25写成用含x的式子表示y的形式,需要把含有y的项移到方程的左边, 其它 的项移到另一边即可.
解答: 解:移项,得y=25﹣2x.
点评: 本题考查的是方程的基本运算技能,表示谁就该把谁放到方程的左边,其它的项移到另一边.
此题直接移项即可.
14.(3分)不等式x+40的最小整数解是 ﹣3 .
考点: 一元一次不等式的整数解.
分析: 首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.
解答: 解:x+40,
x﹣4,
则不等式的解集是x﹣4,
故不等式x+40的最小整数解是﹣3.
故答案为﹣3.
点评: 本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.
15.(3分)某校在“数学小论文”评比活动中,共征集到论文60篇,并对其进行了评比、整理,分成组画出频数分布直方图(如图),已知从左到右5个小长方形的高的比为1:3:7:6:3,那么在这次评比中被评为优秀的论文有(分数大于或等于80分为优秀且分数为整数) 27 篇.
考点: 频数(率)分布直方图.
分析: 根据从左到右5个小长方形的高的比为1:3:7:6:3和总篇数,分别求出各个方格的篇数,再根据分数大于或等于80分为优秀且分数为整数,即可得出答案.
解答: 解:∵从左到右5个小长方形的高的比为1:3:7:6:3,共征集到论文60篇,
∴第一个方格的篇数是: ×60=3(篇);
第二个方格的篇数是: ×60=9(篇);
第三个方格的篇数是: ×60=21(篇);
第四个方格的篇数是: ×60=18(篇);
第五个方格的篇数是: ×60=9(篇);
∴这次评比中被评为优秀的论文有:9+18=27(篇);
故答案为:27.
点评: 本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
16.(3分)我市A、B两煤矿去年计划产煤600万吨,结果A煤矿完成去年计划的115%,B煤矿完成去年计划的120%,两煤矿共产煤710万吨,求去年A、B两煤矿原计划分别产煤多少万吨?设A、B两煤矿原计划分别产煤x万吨,y万吨;请列出方程组 .
考点: 由实际问题抽象出二元一次方程组.
分析: 利用“A、B两煤矿去年计划产煤600万吨,结果A煤矿完成去年计划的115%,B煤矿完成去年计划的120%,两煤矿共产煤710万吨”列出二元一次方程组求解即可.
解答: 解:设A矿原计划产煤x万吨,B矿原计划产煤y万吨,根据题意得:
,
故答案为:: ,
点评: 本题考查了由实际问题抽象出二元一次方程组的知识,解题的关键是从题目中找到两个等量关系,这是列方程组的依据.
17.(3分)在平面直角坐标系中,已知线段AB∥x轴,端点A的坐标是(﹣1,4)且AB=4,则端点B的坐标是 (﹣5,4)或(3,4) .
考点: 坐标与图形性质.
分析: 根据线段AB∥x轴,则A,B两点纵坐标相等,再利用点B可能在A点右侧或左侧即可得出答案.
解答: 解:∵线段AB∥x轴,端点A的坐标是(﹣1,4)且AB=4,
∴点B可能在A点右侧或左侧,
则端点B的坐标是:(﹣5,4)或(3,4).
故答案为:(﹣5,4)或(3,4).
点评: 此题主要考查了坐标与图形的性质,利用分类讨论得出是解题关键.
18.(3分)若点P(x,y)的坐标满足x+y=xy,则称点P为“和谐点”,如:和谐点(2,2)满足2+2=2×2.请另写出一个“和谐点”的坐标 (3, ) .
考点: 点的坐标.
专题: 新定义.
分析: 令x=3,利用x+y=xy可计算出对应的y的值,即可得到一个“和谐点”的坐标.
解答: 解:根据题意得点(3, )满足3+ =3× .
故答案为(3, ).
点评: 本题考查了点的坐标平面内的点与有序实数对是一一对应的关系.坐标:直角坐标系把平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.
三、解答题(本大题共46分)
19.(6分)解方程组 .
考点: 解二元一次方程组.
分析: 先根据加减消元法求出y的值,再根据代入消元法求出x的值即可.
解答: 解: ,
①×5+②得,2y=6,解得y=3,
把y=3代入①得,x=6,
故此方程组的解为 .
点评: 本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.
20.(6分)解不等式: ,并判断 是否为此不等式的解.
考点: 解一元一次不等式;估算无理数的大小.
分析: 首先去分母、去括号、移项合并同类项,然后系数化成1即可求得不等式的解集,然后进行判断即可.
解答: 解:去分母,得:4(2x+1)12﹣3(x﹣1)
去括号,得:8x+412﹣3x+3,
移项,得,8x+3x12+3﹣4,
合并同类项,得:11x11,
系数化成1,得:x1,
∵ 1,
∴ 是不等式的解.
点评: 本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.
解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.
21.(6分)学着说点理,填空:
如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC.
理由如下:
∵AD⊥BC于D,EG⊥BC于G,(已知)
∴∠ADC=∠EGC=90°,( 垂直定义 )
∴AD∥EG,( 同位角相等,两直线平行 )
∴∠1=∠2,( 两直线平行,内错角相等 )
∠E=∠3,(两直线平行,同位角相等)
又∵∠E=∠1(已知)
∴ ∠2 = ∠3 (等量代换)
∴AD平分∠BAC( 角平分线定义 )
考点: 平行线的判定与性质.
专题: 推理填空题.
分析: 根据垂直的定义及平行线的性质与判定定理即可证明本题.
解答: 解:∵AD⊥BC于D,EG⊥BC于G,(已知)
∴∠ADC=∠EGC=90°,(垂直定义)
∴AD∥EG,(同位角相等,两直线平行)
∴∠1=∠2,(两直线平行,内错角相等)
∠E=∠3,(两直线平行,同位角相等)
又∵∠E=∠1(已知)
∴∠2=∠3(等量代换)
∴AD平分∠BAC(角平分线定义 ).
点评: 本题考查了平行线的判定与性质,属于基础题,关键是注意平行线的性质和判定定理的综合运用.
22.(8分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的坐标分别为(﹣4,5),(﹣1,3).
(1)请在如图所示的网格平面内作出平面直角坐标系;
(2)请把△ABC先向右移动5个单位,再向下移动3个单位得到△A′B′C′,在图中画出△A′B′C′;
(3)求△ABC的面积.
考点: 作图-平移变换.
分析: (1)根据A点坐标,将坐标轴在A点平移到原点即可;
(2)利用点的坐标平移性质得出A,′B′,C′坐标即可得出答案;
(3)利用矩形面积减去周围三角形面积得出即可.
解答: 解:(1)∵点A的坐标为(﹣4,5),
∴在A点y轴向右平移4个单位,x轴向下平移5个单位得到即可;(2)如图所示:△A′B′C′即为所求;(3)△ABC的面积为:3×4﹣ ×3×2﹣ ×1×2﹣ ×2×4=4.
点评: 此题主要考查了平移变换以及三角形面积求法和坐标轴确定 方法 ,正确平移顶点是解题关键.
23.(10分)我市中考体育测试中,1分钟跳绳为自选项目.某中学九年级共有若干名女同学选考1分钟跳绳,根据测试评分标准,将她们的成绩进行统计后分为A、B、C、D四等,并绘制成下面的频数分布表(注:5~10的意义为大于等于5分且小于10分,其余类似)和扇形统计图(如图).
等级 分值 跳绳(次/1分钟) 频数
A 12.5~15 135~160 m
B 10~12.5 110~135 30
C 5~10 60~110 n
D 0~5 0~60 1
(1)m的值是 14 ,n的值是 30 ;
(2)C等级人数的百分比是 10% ;
(3)在抽取的这个样本中,请说明哪个分数段的学生最多?
(4)请你帮助老师计算这次1分钟跳绳测试的及格率(10分以上含10分为及格).
考点: 扇形统计图;频数(率)分布表.
分析: (1)首先根据B等级的人数除以其所占的百分比即可求得总人数,然后乘以28%即可求得m的值,总人数减去其他三个小组的频数即可求得n的值;
(2)用n值除以总人数即可求得其所占的百分比;
(3)从统计表的数据就可以直接求出结论;
(4)先计算10分以上的人数,再除以50乘以100%就可以求出结论.
解答: 解:(1)观察统计图和统计表知B等级的有30人,占60%,
∴总人数为:30÷60%=50人,
∴m=50×28%=14人,
n=50﹣14﹣30﹣1=5;(2)C等级所占的百分比为: ×100%=10%;(3)B等级的人数最多;(4)及格率为: ×100%=88%.
点评: 本题考查了频数分布表的运用,扇形统计图的运用,在解答时看懂统计表与统计图得关系式关键.
24.(10分)(2012?益阳)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.
(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?
(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.
考点: 一元一次不等式的应用;一元一次方程的应用.
专题: 压轴题.
分析: (1)假设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,利用购进A、B两种树苗刚好用去1220元,结合单价,得出等式方程求出即可;
(2)结合(1)的解和购买B种树苗的数量少于A种树苗的数量,可找出方案.
解答: 解:(1)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,根据题意得:
80x+60(17﹣x )=1220,
解得:x=10,
∴17﹣x=7,
答:购进A种树苗10棵,B种树苗7棵;(2)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,
根据题意得:
17﹣xx, p=""
解得:x ,
购进A、B两种树苗所需费用为80x+60(17﹣x)=20x+1020,
则费用最省需x取最小整数9,
此时17﹣x=8,
这时所需费用为20×9+1020=1200(元).
答:费用最省方案为:购进A种树苗9棵,B种树苗8棵.这时所需费用为1200元.
点评: 此题主要考查了一元一次不等式组的应用以及一元一次方程应用,根据一次函数的增减性得出费用最省方案是解决问题的关键.
七年级下册数学试卷及答案相关 文章 :
★ 七年级数学下册复习题答案
★ 七年级数学下册期末试卷题
★ 人教版七年级下数学期末试卷
★ 七年级下册苏科版数学期末测试卷
★ 2020七年级下数学复习重点试题
★ 七年级下数学练习册答案
★ 人教版七年级数学下册课本练习题答案
★ 七年级数学单元测试题
★ 七年级数学下册练习册参考答案
★ 2020七年级下册数学复习题
智慧上进七年级数学试卷的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于智慧上进2020答案大全七年级上册数学、智慧上进七年级数学试卷的信息别忘了在本站进行查找喔。