函数周测卷名校课堂(数学名校课堂试卷)

本篇文章给同学们谈谈函数周测卷名校课堂,以及数学名校课堂试卷对应的知识点,希望对各位同学有所帮助,不要忘记分享给你的朋友哦!

本文目录一览:

高中数学三角函数关于诱导公式方面的例题,越多越好,我会加分的

(一)高考试题统计分析

1、高考试卷中三角函数试题统计表

试卷 题次 题型 分值 考查内容

全国卷(一) (5) 选择题 5分 正切函数的单调性

(6) 选择题 5分 等比数列、余弦定理

(16) 填空题 4分 导数、三角函数的奇偶性、三角变换

(17) 解答题 12分 三角函数化简,三角函数的周期性与最值

全国卷(二) (2) 选择题 5分 倍角公式、三角函数的周期性

(10) 选择题 5分 诱导公式、三角函数表达式

(14) 填空题 4分 等差数列、余弦定理

(17) 解答题 12分 向量与三角综合题

表一:2006年全国卷、北京卷、上海卷横向统计

试卷 题次 题型 分值 考查内容

北京卷 (12) 填空题 5分 正弦定理、余弦定理

(15) 解答题 12分 三角函数的定义域、三角函数的化简、求值

上海卷 (6) 选择题 4分 三角函数的求值,

(17) 解答题 12分 三角变换、三角函数的值域和最小正周期

(18) 解答题 12分 利用正弦定理、余弦定理解决与测量有关的实际问题

表二:近三年广东卷纵向统计

年份 题次 题型 分值 考查内容

2004年 (5) 选择题 5分 三角变换、三角函数的周期性、奇偶性

(9) 选择题 5分 同角的三角函数的关系式、二次型三角函数的最值

(11) 选择题 5分 正切函数的图象与单调性

(17) 解答题 12分 等差中项、等比中项、倍角公式、关于三角函数的一元二次方程

2005年 (13) 填空题 5分 二项式定理、三角函数值

(15) 解答题 12分 三角函数的化简、求函数 的值域和最小正周期

2006年 (3) 选择题 5分 函数的奇偶性、单调性

(15) 解答题 14分 三角函数的最值、周期、三角函数值

2、高考试卷中三角函数试题统计分析

纵观广东近三年试题和2006年高考全国卷和有关省市自主命题卷,关于三角函数的命题有如下几个显著特点:

(1)考查的题型与分值:三角函数的试题一般是二个小题和一个解答题,属常规的题型,三角函数解答题,大都处在解答题第1题的位置,三角部分的分值平均在22分左右,约占15%;

(2)考查的难易程度:三角函数的解答题一般都为基础题,中档题,试题难度不大,且易出现课本中习题与例题的变形与组合;

(3)考查的热点:其一是三角函数的图象和性质,尤其是三角函数的周期、最值、单调性、图象变换;其二是通过三角恒等变换进行化简求值;其三是与向量、数列、二次函数等的综合问题;其四是利用正弦定理、余弦定理解决与测量、几何有关的实际问题。

(二)三角函数部分高考命题趋势

1、三角函数的命题趋于稳定。依然会保持原有的考试风格,尽管命题的背景上有所变化,但仍属基础题、中档题、常规题。

2、实施新课标后,三角的题量、分值会略有下降。这倒不是说三角函数失去原有的地位和重要性,而是新一轮基础教育的改革增添了与现代生活和科学技术发展相适应的许多全新的内容,它们会吸引命题者关注的目光。比如,上一轮的改革中,引进了导数、极限、向量和线性规划的内容,这些内容在2004年都有了充分的体现,因为包含这些知识点的试题分数加起来竟达40分之多。实际上,广东近两年的三角试题已经减少到了一道小题和一道解答题,2006年的第(3)小题还说不上是严格意义上的三角题,预计2007年会保持不变。

3、三角函数的图象和性质是考查的重点。因为三角函数的图象和性质是学生将来学习高等数学和应用技术学科的基础,又是解决实际生产问题的工具,而且近年来高考降低了对三角变换的考查要求,势必会加大对三角函数图象与性质的考查力度,从而使三角函数的图象和性质成为高考的一个热点,是三角解答题的主要题型,具有一定的灵活性和综合性。

4、三角函数的化简求值是常考题型。它往往出现在小题中,或者是作为解答题中的一小问,其中必然渗透着简单的三角恒等变换和三角函数的性质。着重考查三角函数的基础知识、基本技能和基本方法.

5、 考应用,建立三角模型

新教材中增设了三角函数模型的简单应用,且在课程标准中把“潮汐与港口水深”这一三角问题专门作为参考案例(在原来的教材中只是阅读材料),教材中有几处涉及到三角在物理学科中应用,如用函数 的物理意义刻画简谐振动、交流电等,说明三角函数是描述周期变化现象的重要函数模型。显示重视三角应用的意图。

融入三角形之中的实际问题也常出现。这种题型既能考查解三角形的知识与方法,又能考查运用三角公式进行恒等变换的技能,故近年来倍受命题者的青睐,如2003年全国卷中的台风侵袭问题,2006年上海卷中的渔船救援问题等。主要解法是充分利用三角形的内角和定理、正(余)弦定理、面积公式等,并结合三角公式进行三角变换,从而获解。

6、 考综合,体现三角的工具性

由于近年高考命题突出以能力立意,加强对知识综合性和应用性的考查,故常常在知识的交汇点设计题。对三角知识的考查常常与平面向量、数列、立体几何、解析几何等综合在一起,突出三角的工具性。特别是平面向量与三角的综合题出现的概率很大,因为新教材在内容的设置上非常关注如何利用向量处理三角问题,从近两年的各省市高考试题中也可明显地看到这一端倪,应引起老师们的高度重视。

三、立足教材,强化基础训练

我们老家流传着一句俗话:“课本不到位,复习活见鬼;大纲弄不对,考试见活鬼”。

因为高考三角试题的生长点多出现在课本上,因而,三角函数的复习要坚持源于课本,高于课本。那么怎样才能做到这一点呢?

首先,我们老师要注意回归于教材。教材在第一轮复习中的重要性是不言而喻的,但要做到经常重温教材却并非易事,因为老师们手头有了配套的复习资料,往往把教材抛掷一边,有的甚至可能没有教材。我们不妨这样设想一下;如果我是一个命题人,我会怎么做?我当然会左手一只“鸡”(考纲),右手一只“鸭”(教材)。特别是现在新教材发生了很大的变化,我们更有必要去钻研教材了。

其次是教育学生注重教材。我想:无论我们怎样在学生面前强调教材的重要性都不为过。虽说是第一轮复习,但我们不可能去把教材重讲一遍,而学生又疲于做复习资料,无暇去观顾教材,这样会造成教材与资料失衡的现象。况且有很多学生“眼高手低”根本没有耐心去认真地阅读教材,那么我们怎么办?我们不得不采取一定的措施,比如我们可以原封不动地从教材中提炼出一份试题,让学生考一考,杀一杀他们的锐气;也可以在学案中有意识地渗透教材中比较典型的例题和习题,等等。

第三是充分发挥教材中典型例题和习题的作用。在集体备课中,负责每一章节备课的教师如果能从教材中挑选出比较典型的例题、习题,并能让学生以课外作业的形式把它们做一遍的话,那一定会收效非浅。当然,我们这一届的课本由于是第一次出版的实验教科书,因此难免会有一些不完善的地方,我把这一届的教材和下一届的教材作了一个对比,发现也作了一些微调,习题中删去了一些稍显杂、难、偏的题目,如:必修4 第三章三角恒等变换P161(A组)3、P162(B组)5,必修5第一章解三角形P11(B组)1、P23(A组)9、P29(B组)1等。

相对而言,在三角部分的高考中更有可能出现课本中习题和例题的变式题,组合题。这启示我们,在复习时应注意两个方面:一是“立足课本,着眼提高”,二是加强对常规题型的归纳与掌握,只有这样才能确保这部分试题在高考中成为主要得分题。

四、关注考纲和考试重点,提高复习效率

(一)紧扣大纲,把握高考命脉

《考试大纲》是数学高考试题的主要命题依据,是高中数学教学的纲领性和指导性文件,因此我们在复习时要认真研读考纲,准确把握复习的方向。

由于课时较紧(特别是理科),复习中应遵循大纲所规定的内容和要求,不要随意补充已被删简的知识点。例如,三角函数只讲正弦、余弦、正切三种;同角三角函数的基本关系式只讲 , 两个。

三角函数部分,不要求引入难度过高,计算过繁,技巧性过强的题目,重点应放在对知识理解的准确性、熟练性和灵活性上,复习时以中低档题目为主。

(二)切实掌握三角函数的概念、图象和性质

在三角函数的教学中,应发挥单位圆和三角函数线的作用。单位圆可以帮助学生直观地认识任意角、任意角的三角函数,理解三角函数的周期性、诱导公式、同角三角函数关系式以及三角函数的图象和基本性质。复习时要求学生能利用单位圆中的三角函数线推导诱导公式,能画出 、 的图像,了解参数 对函数图像变换的影响。三角函数的性质包括值域、周期性、奇偶性、单调性和最值,其中以单调性、最大和最小值最为突出。

既然近几年高考降低了对三角变换的考查要求,而加强了对三角函数的图象和性质的考查,因此三角函数的图象和性质是本章复习的一个重点,三角的复习应充分利用数形结合的思想方法,即借助于图象(或三角函数线)的直观性来获取三角函数的性质,同时利用三角函数的性质来描绘函数的图象,揭示图形的代数本质。

(三)切实掌握三角函数的基本变换思想

三角函数的恒等变形,不仅在三角函数的化简、求值问题中必考,而且在研究三角函数的图象与性质时、在解三角形中不可回避。解决三角函数的恒等变形问题,其关键在掌握基本变换思想,运用三角恒等变形的主要途径—变角,变函数,变结构,注意公式的灵活应用。

基本变换思想主要是:1、化成“三个一”:即化为一个角的一种三角函数的一次方的形式 ;2、化成“两个一”:即化为一个角的一种三角函数的二次型结构,再用配方法求解;3、“合二为一”: 对于形如 的式子,引入辅助角 并化成 的形式(注在这里不要增加难度,仅限于特殊值、特殊角即可);4、利用正弦定理和余弦定理及面积公式进行边与角的转换。

三角公式是三角变换的基本依据。在三角恒等变换的复习中,可以引导学生利用向量的数量积推导出两角差的余弦公式,并由此公式推导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,引导学生推导积化和差、和差化积、半角公式,以此作为三角恒等变换的基本训练。通过对这些公式的探求,以及利用这些公式进行三角变换,使学生学会预测变换的目标、选择变换的公式、设计变换的途径,帮助学生进一步提高推理能力和运算能力。

(四)切实加强三角函数的应用意识

三角函数是一类基本的、重要的函数,在数学、其他科学以及生产实践中有广泛的应用。新教材安排解三角形的应用举例和实习作业,涉及到测量与航海等实际问题,还增设了三角函数模型的简单应用,其立意昭然若揭:突出三角函数的应用。近几年高考中以三角函数为背景的应用试题已形成了一个亮点。

在复习三角函数时重视学科之间的联系。可联系物理、生物、自然界中的周期现象(如单摆运动、波的传播、交流电),通过具体实例让学生体会三角函数是刻画周期现象的重要模型。

解三角形的教学要重视正弦定理和余弦定理在探索三角形边角关系中的作用,引导学生认识它们是解决测量和几何计算有关的实际问题一种方法,不必在恒等变形上进行过于繁琐的训练。

(五)切实提高三角函数的综合能力

三角函数具有较强的渗透力,它可和其它的数学知识综合起来,特别是与向量、几何联系密切。注意三角与几何的综合试题,在几何中引入角度作为自变量建立函数模型或解几模型可化难为易,使问题获得简捷的解决(参见教材必修四P156例4);注意三角与向量的综合试题,平面向量有着极其丰富的实际背景,它是沟通代数、几何、与三角函数的一种工具,因此,我们应通过整合,将三角函数,平面向量,解斜三角形形成一个知识板块来复习,并进行三角与向量相融合的综合训练。

五、考点例析,为学生提供示范性的解题指导

【考点1】三角函数的图象

三角函数图象是支撑三角函数知识体系的框架,也是学生学好三角函数的有力杆杠。

【真题1】(05天津)函数 的部分图像如图所示,则函数表达式为

(A) (B)

(C) (D)

【解析】解法1:由函数图象可知,函数过点 ,振幅 ,

周期 ,频率 ,将函数 向右平移6个单位,得到

.选A

解法2:可将点的坐标分别代入进行筛选得到.选A.

【点评】1、本题考查正弦曲线的图象变换,图与形的等价转换能力。

2、一般地,如果由图象来求正弦曲线 的解析式时,其参数 、 、 的确定:由图象的最高点或最低点求振幅 ,由周期或半个周期(相邻最值点的横坐标间的距离)确定 ,考虑到 的唯一性,在确定 、 的基础上将最值点的坐标代入正弦函数的解析式,在给定的区间内求出 的值。

【考点2】三角函数的性质

如果说三角函数的图象是三角函数的骨胳,那么三角函数的性质就是三角函数的血肉。因而高考对三角函数的性质的考查一直是经久不衰。

三角函数的单调性和周期性

【真题2】(06年福建)已知函数

(I)求函数 的最小正周期和单调增区间;

(II)函数 的图象可以由函数 的图象经过怎样的变换得到?

【解析】(I)

的最小正周期

由题意得 即

的单调增区间为

(II)方法一:先把 图象上所有点向左平移 个单位长度,得到 的图象,再把所得图象上所有的点向上平移 个单位长度,就得到 的图象。

方法二:把 图象上所有的点按向量 平移,就得到 的图象。

【点评】本题主要考查三角函数的基本公式、三角恒等变换、三角函数的性质和图象的变换,以及推理和运算能力。

三角函数的最值

【真题3】(04全国)求 的最小正周期、最大值和最小值。

【解析】 , 所以

【点评】1、灵活应用y=sinx,y=cosx的有界性研究某些类型的三角函数的最值(或值域)问题。

2、一般求三角函数的性质问题,如对称性、单调性、周期性、最值、值域、作图象等问题均可运用三角公式把所求函数变为 的形式,再根据已知条件及其性质求解。这类题在高考中自由几乎每年都考查。

【考点3】三角函数的求值

【真题4】(05天津)已知 ,求 及 .

【解析】解法一:由题设条件,应用两角差的正弦公式得

,即 ①

由题设条件,应用二倍角余弦公式得

故 ②,由①和②式得 , 因此, ,由两角和的正切公式

解法二:由题设条件,应用二倍角余弦公式得 ,解得 ,即

由 可得 由于 ,且 ,故在第二象限 于是 ,从而 以下同解法一

【点评】1、本题以三角函数的求值问题考查三角变换能力和运算能力,可从已知角和所求角的内在联系(均含 )进行转换得到。

2、在求三角函数值时,必须灵活应用公式,注意隐含条件的使用,以防出现多解或漏解的情形。

【考点4】解三角形

【真题5】(05湖北)在△ABC中,已知 边上的中线BD= ,求sinA的值.

【解析】解法1:设E为BC的中点,连接DE,则DE//AB,且DE=

在△BDE中利用余弦定理可得:BD2=BE2+ED2-2BE•EDcosBED,

【点评】1、本小题主要考查正弦定理、余弦定理基础知识,同时考查利用三角公式进行恒等变形的技能和运算能力。

2、在解有关三角形的问题中,锐角三角函数的定义、勾股定理、正弦定理、余弦定理是常用的工具,注意三角形面积公式 , 的用处和三角形内角和 的制约。

【考点5】三角函数的综合问题

三角函数是一种重要的初等函数,由于其特殊的性质以及与其他代数、几何知识的密切联系,成为研究其他各部分知识的重要工具,成为高考考查双基的重要内容之一。

三角与向量

【真题6】(06四川)已知 是三角形 三内角,向量 ,且

(Ⅰ)求角 ;(Ⅱ)若 ,求

【解析】(Ⅰ)∵ ∴ , 即 , , ∵ ∴ ∴

(Ⅱ)由题知 ,整理得

∴ ∴ ∴ 或 ,而 使 ,舍去 ∴ ,∴

【点评】本题将向量的数量积的坐标运算融入三角函数中,主要考察利用三角函数概念、同角三角函数的关系、两角和与差的三角函数的公式、诱导公式和解方程求三角函数值。

三角与数列

【真题7】(06陕西)"等式sin(α+γ)=sin2β成立"是"α、β、γ成等差数列"的( )

A.必要而不充分条件 B.充分而不必要条件 C.充分必要条件 D.既不充分又不必要条件

【解析】若等式sin(α+γ)=sin2β成立,则α+γ=kπ+(-1)k•2β,此时α、β、γ不一定成等差数列,

解 若α、β、γ成等差数列,则2β=α+γ,等式sin(α+γ)=sin2β成立,所以“等式sin(α+γ)=sin2β成立”是“α、β、γ成等差数列”的.必要而不充分条件。选A.

【点评】本题处于三角与数列的交汇点上,数列起过渡作用,重心在三角上。在知识网络的交汇点上设计试题,易发挥考查数学能力的功效,是高考常见的命题形式,需重点留意。

三角与方程

【真题8】已知方程sinx+cosx=k在0≤x≤π上有两解,求k的取值范围

【解析】原方程sinx+cosx=k sin(x+ )=k,在同一坐标系内作函数y1= sin(x+ )与y2=k的图象.对于y= sin(x+ ),令x=0,得y=1.∴当k∈〔1, 〕时,观察知两曲线在〔0,π〕上有两交点,方程有两解.

【点评】本题是通过函数图象交点个数判断方程实数解的个数,应重视这种方法。

三角与二次函数

【真题9】(04广东)当 时,函数 的最值为( )

A. B. C. 2 D. 4

【解析】 ,选(D)。

【点评】转化为关于tanx的二次函数,利用配方法求最值

【考点6】三角函数的应用

【真题10】(06上海)如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30 ,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援(角度精确到 )?

【解析】 连接BC,由余弦定理得BC2=202+102-2×20×10COS120°=700.

于是,BC=10 . ∵ , ∴sin∠ACB= ,

∵∠ACB90° ∴∠ACB=41°∴乙船应朝北偏东71°方向沿直线前往B处救援.

【点评】将实际问题转化成数学模型,再运用正弦定理、余弦定理等解决测量、三角形度量问题。

三角函数测试卷(满分150分,考试时间120分钟)

一、 选择题(本大题共10题,每小题5分,共50分)

1、tan600°的值是( )

(A) (B) (C) (D)

2、函数y=sin(2x+ )的最小正周期是( )

(A) (B) (C) 2 (D) 4

3、“等式 成立”是“ 成等差数列”的( )

(A)充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不充分又不必要条件

4、当 的值域是( )

(A) (B) (C) (D)

5、若 的奇函数,则 可以是( )

(A) (B) (C) (D)

6、将函数 的图象按向量 平移,平移后的图象如图所示,则平移后的图象所对应函数的解析式是( )

(A) (B) (C) (D)

7、若△ABC面积S= 则∠C=( )

(A) (B) (C) (D)

8、在 中,若 ,则 一定是( )

(A)等腰三角形 (B)直角三角形 (C)等腰直角三角形 (D)等腰或直角三角形

9、 则 的最大值和最小值分别是( )

(A)7、5 (B)7、- (C)5、- (D)7、-5

10.已知向量 则 与 的夹角为( )

(A) (B) (C) (D)

二、填空题(本大题共4小题,每小题5分,共20分)

11. 如果 = ,且 是第四象限的角,那么 = ;

12. 已知 ,且 ,则 __________ ;

13. 已知 的三个内角A、B、C成等差数列,且 则边BC上的中线AD长为 ;

14. 若 是以5为周期的奇函数, =4,且cos ,则 = .

三、解答题(本大题共6小题,共70分)

15、(12分)已知 ,且 、 是方程 的两个根,求COS( )的值

16(14分) △ABC的三个内角A、B、C,求当A为何值时, 取得最大值,并求出这个最大值

17.(14分)已知函数 (Ⅰ)求 的最小正周期;

(Ⅱ)求 的最大值和最小值;(Ⅲ)若 ,求 的值.

18.(12分)如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘

渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30 ,相距10

海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援(角度精确到 )?

19.(14分).已知 是三角形 三内角,向量 ,且

(Ⅰ)求角 ;(Ⅱ)若 ,求

20、( 14分)已知b、c是实数,函数f(x)= 对任意α、β R有: 且

(1)求f(1)的值;(2)证明:C ;(3)设 的最大值为10,求f(x)。

三角函数测试卷参考答案

一、选择题

DBBDB CCDDA

二、填空题

11、 12、 13、 14、—4

三、解答题

15、

16、解: 由A+B+C=π, 得B+C2 = π2 -A2 , 所以有cosB+C2 =sinA2 .

cosA+2cosB+C2 =cosA+2sinA2 =1-2sin2A2 + 2sinA2

=-2(sinA2 - 12)2+ 32

当sinA2 = 12 , 即A=π3 时, cosA+2cosB+C2取得最大值为32

17.解:

(Ⅰ) 的最小正周期为 ;

(Ⅱ) 的最大值为 和最小值 ;

(Ⅲ)因为 即 ,即

18、解 连接BC,由余弦定理得

BC2=202+102-2×20×10COS120°=700.

于是,BC=10 .

∵ , ∴sin∠ACB= ,

∵∠ACB90° ∴∠ACB=41°

∴乙船应朝北偏东71°方向沿直线前往B处救援.

19、解:(Ⅰ)∵ ∴

,

∵ ∴ ∴

(Ⅱ)由题知 ,

整理得

∴ ∴

∴ 或

而 使 ,舍去 ∴

20、解:(1)令α= ,得 令β= ,得 因此 ;

(2)证明:由已知,当 时,

当 时, 通过数形结合的方法可得: 化简得c ;

(3)由上述可知,[-1,1]是 的减区间,那么 又 联立方程组可得 ,

所以

[img]

图在钝角△abc中cd是哪条底上的高你能画出过b点的高吗

请输入关键字或者条形码进行搜索

搜索

题目内容

如图钝角△ABC,请画出:

(1)AB边上的高CD;

(2)BC边上的中线AE;

(3)∠BAC的角平分线AF;

(4)写出图中相等的线段;

(5)写出图中面积相等的三角形.

试题答案

考点:作图—复杂作图

专题:

分析:(1)根据延长BA,过C作CD⊥AB即可;

(2)找出BC的中点,连接AE即可;

(3)作∠BAF=∠CAF;

(4)根据中线定义可得BE=EC;

(5)根据三角形的中线平分三角形的面积可得答案.

解答:解:(1)(2)(3)如图所示:

(4)AE=EC;

(5)△ABE,△AEC的面积相等.

点评:此题主要考查了复杂作图,关键是掌握三角形的高、中线,角平分线定义.

一题一题找答案解析太慢了

下载作业精灵直接查看整书答案解析

立即下载

练习册系列答案

名校课堂系列答案西城学科专项测试系列答案小考必做系列答案小考实战系列答案小考复习精要系列答案小考总动员系列答案小升初必备冲刺48天系列答案68所名校图书小升初高分夺冠真卷系列答案伴你成长周周练月月测系列答案小升初金卷导练系列答案

相关题目

解方程

(1)-3(x-1)=6;

(2)3(x+1)-2(x+2)=2x+3;

(3)

2x+1

4

-1=x-

10x+1

12

某配件厂原计划每天生产60件产品,改进技术后,工作效率提高了20%,这样不仅提前5天完成了生产任务,并且比原计划多生产了48件产品.问:原计划要生产多少件产品?

把下列各式分解因式:

(1)15abc-3bc2;

(2)(x+y)2-4y(x+y).

解方程:(2x+1)(2x-1)+3(x+2)(x-2)=(7x+1)(x-1)

解答题

(1)解不等式组

1-

x+1

3

≥0

3-4(x-1)<1

(2)解不等式

2x-1

3

-

5x+1

2

≤1,并把它的解集在数轴上表示出来.

一个几何体由几个大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.请你画出从正面、左面看到的这个几何体的形状图.

如图,函数y=

k

x

(x>0,k是常数)的图象经过A(1,4),B(m,n),其中m>1.过点B作y轴的垂线,垂足为C,连接AB,AC.若△ABC的面积为4,求点B的坐标.

如图,AD、AE分别是△ABC的高和角平分线,∠B=20°,∠C=80°,求∠EAD的度数.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网

弯线加直线叫抛物线吗

抛物线是指平面内与一定点和一定直线(定直线不经过定点)的距离相等的点的轨迹,其中定点叫抛物线的焦点,定直线叫抛物线的准线。它有许多表示方法,例如参数表示,标准方程表示等等。 它在几何光学和力学中有重要的用处。 抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线。抛物线在合适的坐标变换下,也可看成二次函数图像。[3]

中文名

抛物线

外文名

Parabola

别名

圆锥抛物线曲线

表达式

y=ax^2+bx+c

提出者

阿波罗尼奥斯(Apollonius)

相关视频

5332播放|40:36

高中数学选择性必修一:3.3.1抛物线的标准方程课堂实录

李老师高考数学与心理

8166播放|44:37

高三《数学-抛物线焦点弦专题突破必刷题》

学而思的小思花

8108播放|29:26

高中数学选择性必修一:抛物线的几何性质训练题解析2

李老师高考数学与心理

5002播放|12:27

名校数学精选(十):清华大学能力检测~20~抛物线压轴,点点看!

数学大爆炸

5069播放|12:10

177抛物线切线与椭圆面积最大值

高中数学技巧讲座

5621播放|39:05

高中数学选择性必修一:抛物线的几何意义1+学与练抛物线标准方程

李老师高考数学与心理

5587播放|11:10

2022桂林中考数学第25题,抛物线动点题,掌握基本方法,很简单

数学大宇

5080播放|19:33

高中数学选择性必修一:高中阶段抛物线的常用二级结论

李老师高考数学与心理

5103播放|05:04

抛物线及其标准方程1

高中数学微课

5005播放|03:58

-抛物线上的不联立斜率双用 #高考数学 #三角函数 #高中数学

张老师的每日一题之路

查看更多

相关星图

数学曲线

共32个词条

15.7万阅读

在一个平面内,围绕一个点并以一定长度为距离旋转一周所形成的封闭曲线叫做圆(Circle)。在平面内,圆是到定点的距离等于定长的点的集合叫做圆(Circle)圆有无数条对称轴,对称轴经过圆心圆具有旋转不变性圆形是一种圆锥曲线,由平行于圆锥底面的平面截圆锥得到。圆形规定为360°,是古巴比伦人在观察地平线太阳升起的时候,大约每4分钟移动一个位置,一天24小时移动了360个位置,所以规定一个圆内角为360°。这个°,代表太阳。圆是一种几何图形。根据定义,通常用圆规来画圆。 同圆内圆的直径、半径的长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。 同时,圆又是“正无限多边形”,而“无限”只是一个概念。圆可以看成由无数个无限小的点组成的正多边形,当多边形的边数越多时,其形状、周长、面积就都越接近于圆。所以,世界上没有真正的圆,圆实际上只是一种概念性的图形。(当直线成为曲线即为无限点,因此也可以说有绝对意义的圆)

椭圆

椭圆(Ellipse)是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。其数学表达式为:|PF1|+|PF2|=2a(2a|F1F2|)。椭圆是圆锥曲线的一种,即圆锥与平面的截线。椭圆的周长等于特定的正弦曲线在一个周期内的长度。

双曲线

一般的,双曲线(希腊语“Υπερβολία”,字面意思是“超过”或“超出”)是定义为平面交截直角圆锥面的两半的一类圆锥曲线。它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的实半轴。焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处。

查看更多

简介发展历程标准方程相关参数术语解释几何性质切线的尺规作图解析式求法扩展公式二次函数图象相关结论TA说参考资料

简介

在数学中,抛物线是一个平面曲线,它是镜像对称的,并且当定向大致为U形(如果不同的方向,它仍然是抛物线)。它适用于几个表面上不同的数学描述中的任何一个,这些描述都可以被证明是完全相同的曲线。

抛物线的一个描述涉及一个点(焦点)和一条线(准线)。焦点并不在准线上。抛物线是该平面中与准线和焦点等距的点的轨迹。抛物线的另一个描述是作为圆锥截面,由圆锥形表面和平行于锥形母线的平面的交点形成。第三个描述是代数。

垂直于准线并通过焦点的线(即通过中间分解抛物线的线)被称为“对称轴”。与对称轴相交的抛物线上的点被称为“顶点”,并且是抛物线最锋利弯曲的点。沿着对称轴测量的顶点和焦点之间的距离是“焦距”。 “直线”是抛物线的平行线,并通过焦点。抛物线可以向上,向下,向左,向右或向另一个任意方向打开。任何抛物线都可以重新定位并重新定位,以适应任何其他抛物线 - 也就是说,所有抛物线都是几何相似的。

抛物线具有这样的性质,如果它们由反射光的材料制成,则平行于抛物线的对称轴行进并撞击其凹面的光被反射到其焦点,而不管抛物线在哪里发生反射。相反,从焦点处的点源产生的光被反射成平行(“准直”)光束,使抛物线平行于对称轴。声音和其他形式的能量也会产生相同的效果。这种反射性质是抛物线的许多实际应用的基础。

抛物线具有许多重要的应用,从抛物面天线或抛物线麦克风到汽车前照灯反射器到设计弹道导弹。它们经常用于物理,工程和许多其他领域。

发展历程

Apollonius 所著的八册《圆锥曲线》(Conics)集其大成,可以说是古希腊解析几何学一个登峰造极的精擘之作。今日大家熟知的 ellipse(椭圆)、parabola(抛物线)、hyperbola(双曲线)这些名词,都是 Apollonius 所发明的。当时对于这种既简朴又完美的曲线的研究,乃是纯粹从几何学的观点,研讨和圆密切相关的这种曲线;它们的几何乃是圆的几何的自然推广,在当年这是一种纯理念的探索,并不寄望也无从预期它们会真的在大自然的基本结构中扮演着重要的角色。

抛物线问题

标准方程

定义

右开口抛物线:

左开口抛物线:

上开口抛物线:

下开口抛物线:

[p为焦准距]

特点

在抛物线

中,焦点是

,准线的方程是

,离心率

,范围:

在抛物线

中,焦点是

,准线的方程是

,离心率

,范围:

在抛物线

中,焦点是

,准线的方程是

,离心率

,范围:

在抛物线

中,焦点是

,准线的方程是

,离心率

,范围:

抛物线

四种方程

抛物线四种方程的异同

共同点:

①原点在抛物线上,离心率e均为1 ②对称轴为坐标轴;

③准线与对称轴垂直,垂足与焦点分别对称于原点,它们与原点的距离都等于一次项系数的绝对值的1/4

不同点:

①对称轴为x轴时,方程右端为±2px,方程的左端为y^2;对称轴为y轴时,方程的右端为±2py,方程的左端为x^2;

②开口方向与x轴(或y轴)的正半轴相同时,焦点在x轴(y轴)的正半轴上,方程的右端取正号;开口方向与x(或y轴)的负半轴相同时,焦点在x轴(或y轴)的负半轴上,方程的右端取负号。

切线方程

抛物线y2=2px上一点(x0,y0)处的切线方程为:

抛物线y2=2px上过焦点斜率为k的方程为:y=k(x-p/2)。

相关参数

(对于向右开口的抛物线y2=2px)

离心率:e=1(恒为定值,为抛物线上一点与准线的距离以及该点与焦点的距离比)

二次函数的图像是一条抛物线

焦点:(p/2,0)

准线方程l:x=-p/2

顶点:(0,0)

定义域:对于抛物线y2=2px,p0时,定义域为x≥0,p0时,定义域为x≤0;对于抛物线x2=2py,定义域为R。

值域:对于抛物线y2=2px,值域为R,对于抛物线x2=2py,p0时,值域为y≥0,p0时,值域为y≤0。

术语解释

准线、焦点:抛物线是平面内到一定点和到一条不过此点的定直线的距离相等的点的轨迹。这一定点叫做抛物线的焦点,定直线叫做抛物线的准线。

轴:抛物线是轴对称图形,它的对称轴简称轴。

焦准距:焦点到准线的距离称为焦准距,长度为p。

焦半径:连接抛物线上任意一点与抛物线焦点得到的线段。对于抛物线y2=2px,P(x0,y0),则|PF|=x0+p/2。

弦:抛物线的弦是连接抛物线上任意两点的线段。

焦弦:抛物线的焦弦是经过抛物线焦点的弦。对于抛物线y2=2px,A(x1,y1),B(x2,y2),则|AB|=x1+x2+p=2p/sin2θ(θ是AB的倾斜角)

正焦弦:抛物线的正焦弦是垂直于轴的焦弦,又叫通径。通径长为2p。

直径:抛物线的直径是抛物线一组平行弦中点的轨迹。这条直径也叫这组平行弦的共轭直径。所有的直径都与轴平行,因此也可以定义抛物线的直径为过抛物线上任意一点作轴的平行线(射线)

主要直径:抛物线的主要直径是抛物线的轴的一部分(在抛物线内部的射线)。

抛物线即把物体抛掷出去,落在远处地面,这物体在空中经过的曲线。

几何性质

有关切线、法线的几何性质

(1)设抛物线上一点P的切线与准线相交于Q,F是抛物线的焦点,则PF⊥QF。且过P作PA垂直于准线,垂足为A,那么PQ平分∠APF。

(2)过抛物线上一点P作准线的垂线PA,则∠APF的平分线与抛物线切于P。〈为性质(1)第二部分的逆定理〉从这条性质可以得出过抛物线上一点P作抛物线的切线的尺规作图方法。

(3)设抛物线上一点P(P不是顶点)的切线与法线分别交轴于A、B,则F为AB中点。这个性质可以推出抛物线的光学性质,即经焦点的光线经抛物线反射后的光线平行于抛物线的对称轴。各种探照灯、汽车灯即利用抛物线(面)的这个性质,让光源处在焦点处以发射出(准)平行光。

(4)设抛物线上除顶点外的点P的切线交轴于A,交顶点O的切线于B,则FB垂直平分PA,且FB与准线的交点M恰好是P在准线上的射影(即PM垂直于准线)。

(5)抛物线的三条切线所围成的三角形,其外接圆经过焦点。即:若AB、AC、BC都是抛物线的切线,则ABCF四点共圆。

(6)过抛物线外一点P作抛物线的两条切线,连接切点的弦与轴相交于A。又设P在轴上的射影为B,则O是AB中点。

(7)若抛物线与一个三角形的三条边(所在直线)都相切,则准线通过该三角形的垂心。

有关弦的几何性质

(8)焦点弦两端的切线互相垂直,并且垂足在准线上。

(9)过焦点弦的端点A、B作准线的垂线,垂足分别为M、N。设A、B处的切线相交于P,则P是MN中点,并且以AB为直径的圆切准线于P。

(10)若抛物线的两条焦点弦相等,连接这两条焦点弦的中点,则连线与轴垂直。

(11)抛物线的一条弦AB与轴相交于P(不一定是焦点F),过A、B分别作轴的垂线AM、BN,抛物线顶点为O,则OP2=AM*BN。

证明

以上性质均可以用坐标法来证明,在此以

为例给出性质(1)、(3)、(4)、(9)的证明。

(1)焦点

,准线

,设

,则过P的切线方程为:

,得

,所以

于是

易证二者数量积为0,因此有PF⊥QF。

要证PQ平分∠APF,可通过全等三角形的判定方法HL证明Rt△APQ≌Rt△FPQ,得到对应角∠APQ=∠FPQ即可。HL是显然的,因为根据抛物线的定义,有PF=PA,而斜边PQ是公共边,因此两个三角形全等。

根据这个性质,我们还能得出一个推论:AF被PQ垂直平分,并且四边形PAQF内接于圆,PQ为直径。

(3)设抛物线上除了顶点之外的某一点

,则过P的切线l的方程为:

将其整理成

的形式,根据直线的点法式方程可以知道,l的一个法向量为

,且经过点

,即

对于在P点的法线m来说,l的法向量

是m的方向向量。又根据直线的点向式方程,m的方程为

。令y=0,解得x=x0+p,即

由中点坐标公式可知,

是AB的中点。

作PQ∥x轴,要证明抛物线的光学性质,由光的反射定律可知只要证明反射角∠QPB等于入射角∠FPB,即PB平分∠FPQ即可。

利用平面几何,根据直角三角形斜边中线定理可知,PF=BF

∴∠FPB=∠FBP(等边对等角)

∴∠PFA=∠FPB+∠FBP=2∠FBP(外角定理)

∵PQ∥AB

∴∠PFA=∠FPQ,∠FBP=∠BPQ(两直线平行,内错角相等)

∴∠FPQ=2∠BPQ

∴PB平分∠FPQ,命题得证。

(4)根据已知条件,A在x轴上,B在y轴上。

PA方程为:

,令x和y等于0,解得

容易验证B就是AP中点

,它们的数量积为0,因此BF⊥AP,即BF垂直平分AP。

要证PM与准线垂直,只要证M的纵坐标与P相同,都为y0即可。

容易写出直线BF:

,令

,解得

,命题得证。

(9)设

联立AB与抛物线方程,消去x得

由韦达定理,

又PA与PB都为切线,根据切线方程,

联立PA与PB的表达式可解得

,根据中点坐标公式和韦达定理可知P是MN中点。

设AB中点为E,则E的纵坐标

,与P的纵坐标相同,

因此PE∥x轴,PE⊥MN

而根据性质(8)可知PA⊥PB,即△PAB为直角三角形

所以E是△PAB的外心,所以PE是半径

根据切线的判定定理可知,MN是⊙E的切线,切点为P。

切线的尺规作图

根据几何性质(2)可以得到过抛物线上一点或抛物线外一点P作抛物线的切线的尺规作图方法。

(1)P在抛物线上

①过P作准线的垂线,设A为垂足

②连接PF(F是焦点)

③作∠APF的平分线PQ

则根据性质(2),直线PQ为切线

(2)P在抛物线外

①连接PF

②以P为圆心,PF为半径画弧,弧与准线分别交于A、B

③过A、B分别作准线的垂线,垂线和抛物线分别交于M、N

④连接PM、PN,则PM、PN为所求切线(有两条)

这是因为,若连接MF,则在△PAM和△PFM中

∵PA=PF(圆的定义),PM=PM(公共边),MA=MF(抛物线的定义)

∴△PAM≌△PFM(SSS)

∴∠AMP=∠FMP(全等三角形的对应角相等)

∴MP平分∠AMF(角平分线的定义)

∴MP为切线(性质(2))

同理可证NP是另一条切线

解析式求法

以焦点在X轴上为例

知道P(x0,y0)

令所求为y1=2px

则有y01=2px0

故2p=y01/x0

故抛物线为y1=(y01/x0)x

现总结如下:

(1)知道抛物线过三个点(x1,y1)(x2,y2)(x3,y3)设抛物线方程为y=ax2+bx+c,

将各个点的坐标代进去得到一个三元一次方程组,解得a,b,c的值即得解析式。

(2)知道抛物线的与x轴的两个交点(x1,0),(x2,0),并知道抛物线过某一个点(m,n),

设抛物线的方程为y=a(x-x1)(x-x2),然后将点(m,n)代入去求得二次项系数a。

(3)知道对称轴x=k,

设抛物线方程是y=a(x-k)2+b,再结合其它条件确定a,c的值。

(4)知道二次函数的最值为p,

设抛物线方程是y=a(x-k)2+p,a,k要根据其它条件确定。

扩展公式

抛物线:y = ax2 + bx + c (a≠0)

就是y等于ax 的平方加上 bx再加上 c;

a 0时开口向上;

a 0时开口向下;

c = 0时抛物线经过原点;

b = 0时抛物线对称轴为y轴。

还有顶点式y = a(x-h)1 + k

h是顶点坐标的x;

k是顶点坐标的y;

一般用于求最大值与最小值。

抛物线标准方程:y1=2px

它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2。

由于抛物线的焦点可在任意半轴,故共有标准方程y1=2px,y1=-2px,x1=2py,x1=-2py。

二次函数图象

在平面直角坐标系中作出二次函数y=ax2+bx+c的图像,可以看出,在没有特定定义域的二次函数图像是一条永无止境的抛物线。 如果所画图形准确无误,那么二次函数图像将是由

平移得到的。

二次函数图像是轴对称图形,对称轴为直线

对称轴与二次函数图像唯一的交点为二次函数图象的顶点P。

特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0),是顶点的横坐标(即x=?)。

a,b同号,对称轴在y轴左侧

a,b异号,对称轴在y轴右侧

二次函数图像有一个顶点P,坐标为P(h,k)。

当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)1+k(a≠0)

二次项系数a决定二次函数图像的开口方向和大小。

当a0时,二次函数图象向上开口;当a0时,抛物线向下开口。

|a|越大,则二次函数图像的开口越小。

一次项系数b和二次项系数a共同决定对称轴的位置。

当a0,与b同号时(即ab0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a0,所以 b/2a要大于0,所以a、b要同号。

当a0,与b异号时(即ab0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a0, 所以b/2a要小于0,所以a、b要异号。

可简单记忆为左同右异,即当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时(即ab0 ),对称轴在y轴右。

事实上,b有其自身的几何意义:二次函数图象与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。[1]

二次函数图像

相关结论

A(x1,y1),B(x2,y2),A,B在抛物线y1=2px上,则有:

① 直线AB过焦点时,x1x2 = p2/4 , y1y2 = -p2;

(当A,B在抛物线x2=2py上时,则有x1x2 = -p2 , y1y2 = p2/4 , 要在直线过焦点时才能成立)

② 焦点弦长:|AB| = x1+x2+P = 2P/[(sinθ)2];

③ (1/|FA|)+(1/|FB|)= 2/P;(其中长的一条长度为P/(1-cosθ),短的一条长度为P/(1+cosθ))

④若OA垂直OB则AB过定点M(2P,0);

⑤焦半径:|FP|=x+p/2 (抛物线上一点P到焦点F的距离等于P到准线L的距离);

⑥弦长公式:AB=√(1+k1)*│x1-x2│;

⑦△=b1-4ac;

⑴△=b1-4ac0有两个实数根;

⑵△=b1-4ac=0有两个一样的实数根;

⑶△=b1-4ac0没实数根。

⑧由抛物线焦点到其切线的垂线的距离是焦点到切点的距离与到顶点距离的比例中项;

⑨标准形式的抛物线在(x0,y0 )点的切线是:yy0=p(x+x0)

(注:圆锥曲线切线方程中x2=x*x0 , y2 =y*y0 , x=(x+x0)/2 , y=(y+y0)/2 )[2

数学问题

三角函数

本章教学目标

1.(1)任意角的概念以及弧度制.正确表示象限角、区间角、终边相同的角,熟练地进行角度制与弧度制的换算.

(2)任意角的三角函数定义,三角函数的符号变化规律,三角函数线的意义.

2.(1)同角三角函数的基本关系和诱导公式.

(2)已知三角函数值求角.

3.函数y=sinx、y=cosx、y=tanx以及y=Asin(ωx+φ)的图像和“五点法”作图、图像法变换,理解A、ω、φ的物理意义.

4.三角函数的定义域、值域、奇偶性、单调性、周期性.

5.两角和与差的三角函数、倍角公式,能正确地运用三角公式进行简单的三角函数式的化简、求值和恒等证明.

本章包括任意角的三角函数、两角和与差的三角函数、三角函数的图像和性质三部分.

三角函数是中学数学的重要内容,它是解决生产、科研实际问题的工具,又是进一步学习其他相关知识和高等数学的基础,它在物理学、天文学、测量学以及其他各种应用技术学科中有着广泛的应用.

核心知识

一、本章主要内容是任意角的概念、弧度制、任意角的三角函数的概念,同角三角函数之间的基本关系,正弦、余弦的诱导公式,两角和与差及二倍角的正弦、余弦、正切,正弦、余弦、正切函数的图像和性质,以及已知三角函数值求角.

二、根据生产实际和进一步学习数学的需要,我们引入了任意大小的正、负角的概念,采用弧度制来度量角,实际上是在角的集合与实的集合R这间建立了这样的一一对应关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(角的弧度数等于这个实数)与它对应.采用弧度制时,弧长公式十分简单:l=|α|r(l为弧长,r为半径,α为圆弧所对圆心角的弧度数),这就使一些与弧长有关的公式(如扇形面积公式等)得到了简化.

三、在角的概念推广后,我们定义了任意角的正弦、余弦、正切、余切、正割、余割的六种三角函数.它们都是以角为自变量,以比值为函数值的函数.由于角的集合与实数集之间可以建立一一对应关系,三角函数可以看成是以实数为自变量的函数.

四、同角三角函数的基本关系式是进行三角变换的重要基础之一,它们在化简三角函数式和证明三角恒等式等问题中要经常用到,必须熟记,并能熟练运用.

五、掌握了诱导公式以后,就可以把任意角的三角函数化为0°~90°间角的三角函数.

六、以两角和的余弦公式为基础推导得出两角和与差的正弦、余弦、正切公式,以及二倍角的正弦、余弦、正切公式,掌握这些公式的内在联系及推导的线索,能够帮助我们理解和记忆这些公式,这也是学好本单元知识的关键.

七、利用正弦线、余弦线可以比较精确地作出正弦函数、余弦函数的图像,可以看出,因长度在一个周期的闭区间上有五个点(即函数值最大和最小的点以及函数值为零的点)在确定正弦函数、余弦函数图像的形状时起着关键的作用.

学习本章知识,要从两个方面加以注意:一是三角函数的图像及性质,函数图像是函数的一种直观表示方法,它能形象地反映函数的各类基本性质,因此对三个基本三角函数的的图像要掌握,它能帮助你记忆三角函数的性质,此外还要弄清y=Asin(ωx+φ)的图像与y=sinx图像的关系,掌握“A”、“ω”、“φ”的确切含义.对于三角函数的性质,要紧扣定义,从定义出发,导出各三角函数的定义域、值域、符号、最值、单调区间、周期性及奇偶性等.二是三角函数式的变换.三角函数式的变换涉及公式较多,掌握这些公式要做到如下几点:一要把握各自的结构特征,由特征促记忆,由特征促联想,由特征促应用;二是要从这些公式的导出过程抓内在联系,抓变化规律,这样才能在选择公式时灵活准确.同时还要善于观察三角函数式在代数结构、函数名称、角的形式等三个方面的差异,根据差异选择公式,根据差异确定变换方向和变换方法.

有关"第四章 三角函数" 的阶段测试】

阶段测试试卷名称:第四章 综合检测 A级

背景说明:

第四章 综合检测 A级

试卷内容:

一、选择题

1.在直角坐标系中,若角α与角β的终边关于x轴对称,则α与β的关系一定是( )

A.α=-β B.α+β=k·360°(k∈Z)

C.α-β=k·360°(k∈Z) D.以上答案都不对

2.圆内一条弦的长等于半径,这条弦所对的圆心角是( )

A.等于1弧度 B.大于1弧度

C.小于1弧度 D.无法判断

3.在△ABC中,如果sinA+cosA= ,则△ABC是( )

A.直角三角形 B.锐角三角形

C.钝角三角形 D.等腰三角形

4.已知:sinα+cosα=-1,则tanα+cotα的值是( )

A.1 B.-1 C.0 D.不存在

5.y=cos|x|-cosx的值域是( )

A.〔-1,1〕 B.0 C.〔-2,0〕 D.〔0,2〕

6.下列各函数中,奇函数的个数是( )

(1)y=sinx (2)y=cosx

(3)y=tanx (4)y=secx

(5)y=lg(sinx+ )

(6)y=lg(cosx+ )

A.1 B.2 C.3 D.4

7.若y=sin( -α)= ,则y=sin( π+α)的值是( )

A. B.- C. D.-

8.方程sinx=lgx的实根的个数是( )

A.1 B.2个 C.3个 D.3个以上

9.若sin(α+β)= ,sin(α-β)= ,则 的值是( )

A. B.- C.5 D.-5

10.若x=cos36°-cos72°,则x的值为( )

A. B. C. D.-

11.函数y=3sin(2x+ )的图像可以看成把函数y=3sin2x的图像经过下列平移而得到的( )

A.向左平移 个单位 B.向右平移 个单位

C.向左平移 个单位 D.向右平移 个单位

12.下列四命题中正确的应当是( )

①y=tan恒为增函数;②y=cotx在x∈(-π,0)∪(0,π)上是周期函数;③y=cosx在(-π,π)上为偶函数;④y=sinx在x∈〔- , 〕上为奇函数.

A.① B.①② C.②③ D.④

二、填空题

1.如果函数y=sin2x+acos2x的图像关于直线x=- 对称,那么a= .

2.函数y= sin2x-3cos2x的单调递减区间为 .

3.arctan1+arctan2+arctan3的值是 .

4.若函数y=2cosx(0≤x≤2π)的图像和直线y=2围成一个封闭的平面图形,则这个封闭图形的面积为 .

三、解答题

1.设α+β=150°,求sin2α+sin2β- sinαsinβ的值.

2.设x∈(- , ),f(x)= sin(x- )cos( -x)+ sin2(x- ),求f(x)的最大值和最小值.

3.已知sinα和cosα是方程x2-kx+k+1=0的两根,且0<α<2π,求k与α的值.

4.设关于sinx的方程sin2x-(a2+2a)sinx+a3+a2=0有实数解,求实数a的范围.

5.设0<α<π,0<β<π,且cosα+cosβ-cos(α+β)= ,求α,β的值.

6.求函数y= 的值域.

试卷答案:

一、1.B 2.B 3.C 4.D 5.B 6.C 7.A 8.C 9.C 10.C 11.C 12.D

二、1.-1 2.〔kπ+ ,kπ+ π〕(k∈Z) 3.π 4.4π

三、1. 2.x= 时,最大值为 ,x= 时,最小值为- 3.k=-1,α=π或 或 4. ≤a≤1 5.α=β= 6.〔- ,-1〕∪(-1, )

阶段测试试卷名称:第四章 综合检测 AA级

背景说明:

第四章 综合检测 AA级

试卷内容:

一、选择题

1.角的集合M={x|x= ,k∈Z},N={x|x= ± ,k∈Z},则M与N的关系是( )

A.M N B.M N C.M=N D.不能确定

2.若集合A=R,B=R,则下列对应f:x→y是A到B的映射的是( )

A.y=tanx B.y=cotx C.y=secx D.y=cosx

3.若θ是第三象限的角,且cos <0,那么 是( )

A.第一象限的角 B.第二象限的角

C.第三象限的角 D.第四象限的角

4.函数y= 的定义域为( )

A.〔2kπ- ,2kπ+ 〕(k∈Z) B.〔2kπ,2kπ+ 〕(k∈Z)

C.〔2kπ,2kπ+π〕(k∈Z) D.R

5.在△ABC中,若sin(A+B-C)=sin(A-B+C),则△ABC必是( )

A.等腰三角形 B.直角三角形

C.等腰或直角三角形 D.等腰直角三角形

6.函数y=lgsinx+ 的定义域是( )

A.2kπ<x≤2kπ+ (k∈Z) B.2kπ≤x≤2kπ+ (k∈Z)

C.2kπ<x≤2kπ+π(k∈Z) D.2kπ<x≤2kπ+ (k∈Z)

7.把函数y=sin2x的图像在y轴方向压缩一半,沿y轴正方向平移 个单位,再沿x轴正方向平移 个单位,所得图像的函数表达式是( )

A.y= + sin2(x- ) B.y= sin(2x- )-

C.y= sin2(x- ) D.y= sin2(x+ )

8.已知函数:①f(x)=sinx2;②f(x)=sin2x;③f(x)=tan ;④f(x)= 其中周期函数是( )

A.①和③ B.①和④ C.②和③ D.②和④

9.设α、β为锐有,则sin(α+β)与sinα+sinβ的值满足关系式( )

A.sin(α+β)>sinα+sinβ B.sin(α+β)<sinα+sinβ

C.sin(α+β)=sinα+sinβ D.以上结论都不对

10.已知cosα= ,cos(α+β)= ,且α、β为锐有,那么sinβ的值是( )

A. B. C. D.

11.方程 cos( x+ )=1的解集是( )

A.{x|x=4kπ,k∈Z} B.{x|x=4kπ± - ,k∈Z}

C.{x|x=kπ± - ,k∈Z} D.

12.在区间(0,π)上满足cos5x=cos2x的值的个数是( )

A.3 B.4 C.5 D.6

二、填空题

1.函数y=arctan 的值域是为 .

2.两弧度的圆心角所对的弦长为2,这个圆心角所夹的扇形的面积为 .

3.函数y=2|sin(4x- )|的最小正周期是 .

4.若sinx+cosx= ,x∈〔0,π〕,那么tanx= .

三、解答题

1.设6sin3β-cos22α=6,求α、β.

2.已知关于x的方程

(2cosθ-1)x2-4x+4cosθ+2=0有两个不相等的正根,且θ为锐角,求θ的范围.

3.设cos(α- )=- ,sin( -β)= ,且 <α<π,0<β< ,求cos(α+β)的值.

4.求函数y=sin2x+9cos2x-8sinxcosx的最值及其相对应的x的值.

5.已知AB=2a,在以AB为直径的半圆上有一点C,设AB中点为O,∠AOC=60°.

(1)在 上取一点P,若∠BOP=2θ,把PA+PB+PC表示成θ的函数;

(2)设f(θ)=PA+PB+PC,当θ为何值时f(θ)有最大值,最大值是多少?

6.已知sinα+sinβ=m,cosα+cosβ= .

(1)求实数m的范围.

(2)当m取最小值时,求sin(α+β)的值.

试卷答案:

一、1.B 2.D 3.B 4.D 5.C 6.A 7.A 8.D 9.B 10.B 11.D 12.C

二、1.〔arccot ,π-arccot 〕

2. 3. 4.-

三、1.α=kπ± ,β= + ,(k,n∈Z)

2.30°<θ<60° 3.- 4.x=kπ- arctan ,(k∈Z)时,ymax=11

x=kπ+ - arctan (k∈Z)时ymin=1

5.(1)f(θ)=2acosθ+2asinθ+2asin(60°-θ)

(2)当θ=15°时,f(θ)max=( + )a

6.(1)m∈〔- , 〕 (2)m=- 时,sin(α+β)=-1

函数周测卷名校课堂的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于数学名校课堂试卷、函数周测卷名校课堂的信息别忘了在本站进行查找喔。

本文转载自互联网,如有侵权,联系删除