今天给各位同学分享衡水名师高三联考数学题的知识,其中也会对衡水名师卷高考押题卷数学三进行解释,如果能碰巧解决你现在面临的问题,别忘了分享本站,现在开始吧!
本文目录一览:
- 1、高三数学解答题,求大神解答,谢谢
- 2、高三数学函数例题及解析(2)
- 3、高三数学第8题第二问求答案
- 4、河北衡水中学2020届全国高三第一次联合考试理科数学试题(含解析)
- 5、高三数学下册期中试题及答案
高三数学解答题,求大神解答,谢谢
圆方程化为 x²+y² - 2x=0,
将 x=ρcosθ,y=ρsinθ 分别代入圆方程和直线方程,可得
圆极坐标方程 ρ=2cosθ,
直线极坐标方程 ρ=2/sinθ。
[img]高三数学函数例题及解析(2)
高中数学函数知识点总结 一次函数
一、定义与定义式:
自变量x和因变量y有如下关系:
y=kx+b
则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)
二、一次函数的性质:
1.y的变化值与对应的x的变化值成正比例,比值为k
即:y=kx+b (k为任意不为零的实数 b取任何实数)
2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:
1.作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)
2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:
当k0时,直线必通过一、三象限,y随x的增大而增大;
当k0时,直线必通过二、四象限,y随x的增大而减小。
当b0时,直线必通过一、二象限;
当b=0时,直线通过原点
当b0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限。
四、确定一次函数的表达式:
已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b …… ① 和 y2=kx2+b …… ②
(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:
1.当时间t一定,距离s是速度v的一次函数。s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
六、常用公式:(不全,希望有人补充)
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:|x1-x2|/2
3.求与y轴平行线段的中点:|y1-y2|/2
4.求任意线段的长:√(x1-x2)^2+(y1-y2)^2 (注:根号下(x1-x2)与(y1-y2)的平方和)
二次函数
I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:
y=ax^2+bx+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]
交点式:y=a(x-x?)(x-x ?) [仅限于与x轴有交点A(x? ,0)和 B(x?,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2a k=(4ac-b^2)/4a x?,x?=(-b±√b^2-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=x^2的图像,
可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质
1.抛物线是轴对称图形。对称轴为直线
x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为
P ( -b/2a ,(4ac-b^2)/4a )
当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a0时,抛物线向上开口;当a0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab0),对称轴在y轴左;
当a与b异号时(即ab0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ= b^2-4ac0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
Δ= b^2-4ac0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)
V.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
解析式 顶点坐标 对 称 轴
y=ax^2 (0,0) x=0
y=a(x-h)^2 (h,0) x=h
y=a(x-h)^2+k (h,k) x=h
y=ax^2+bx+c (-b/2a,[4ac-b^2]/4a) x=-b/2a
当h0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,
当h0时,则向左平行移动|h|个单位得到.
当h0,k0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象;
当h0,k0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
当h0,k0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;
当h0,k0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
2.抛物线y=ax^2+bx+c(a≠0)的图象:当a0时,开口向上,当a0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).
3.抛物线y=ax^2+bx+c(a≠0),若a0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.
4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b^2-4ac0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的两根.这两点间的距离AB=|x?-x?|
当△=0.图象与x轴只有一个交点;
当△0.图象与x轴没有交点.当a0时,图象落在x轴的上方,x为任何实数时,都有y0;当a0时,图象落在x轴的下方,x为任何实数时,都有y0.
5.抛物线y=ax^2+bx+c的最值:如果a0(a0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
6.用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
y=ax^2+bx+c(a≠0).
(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).
7.二次函数知识很容易与 其它 知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的 热点 考题,往往以大题形式出现.
反比例函数
形如 y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:
反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
如图,上面给出了k分别为正和负(2和-2)时的函数图像。
当K0时,反比例函数图像经过一,三象限,是减函数
当K0时,反比例函数图像经过二,四象限,是增函数
反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
知识点:
1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为| k |。
2.对于双曲线y=k/x ,若在分母上加减任意一个实数 (即 y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)
对数函数
对数函数的一般形式为 ,它实际上就是指数函数 的反函数。因此指数函数里对于a的规定,同样适用于对数函数。
右图给出对于不同大小a所表示的函数图形:
可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
(3)函数总是通过(1,0)这点。
(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
(5)显然对数函数无界。
指数函数
指数函数的一般形式为 ,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得
如图所示为a的不同大小影响函数图形的情况。
可以看到:
(1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2) 指数函数的值域为大于0的实数集合。
(3) 函数图形都是下凹的。
(4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6) 函数总是在某一个方向上无限趋向于X轴,永不相交。
(7) 函数总是通过(0,1)这点。
(8) 显然指数函数无界。
奇偶性
注图:(1)为奇函数(2)为偶函数
1.定义
一般地,对于函数f(x)
(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
说明:①奇、偶性是函数的整体性质,对整个定义域而言
②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)
③判断或证明函数是否具有奇偶性的根据是定义
2.奇偶函数图像的特征:
定理 奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。
f(x)为奇函数《==》f(x)的图像关于原点对称
点(x,y)→(-x,-y)
奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
偶函数 在某一区间上单调递增,则在它的对称区间上单调递减。
3. 奇偶函数运算
(1) . 两个偶函数相加所得的和为偶函数.
(2) . 两个奇函数相加所得的和为奇函数.
(3) . 一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.
(4) . 两个偶函数相乘所得的积为偶函数.
(5) . 两个奇函数相乘所得的积为偶函数.
(6) . 一个偶函数与一个奇函数相乘所得的积为奇函数.
定义域
(高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域;
值域
名称定义
函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合
常用的求值域的方法
(1)化归法;(2)图象法(数形结合),
(3)函数单调性法,
(4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等
关于函数值域误区
定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。
“范围”与“值域”相同吗?
“范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。“值域”是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。也就是说:“值域”是一个“范围”,而“范围”却不一定是“值域”。
猜你喜欢:
1. 高三数学函数例题及解析
2. 高三数学函数例题及解析
3. 高三数学函数专题训练题及答案
4. 高中文科数学函数试题及答案
5. 高中数学函数图象练习题及答案
6. 高三数学函数知识点梳理
高三数学第8题第二问求答案
分析:
(1)首先对f(x)求导,将a=4/3代入,令f′(x)=0,解出后判断根的两侧导函数的符号即可.
(2)因为a>0,所以f(x)为R上为增函数,f′(x)≥0在R上恒成立,转化为二次函数恒成立问题,只要△≤0即可.
解答:
解:对f(x)求导得f′(x)=[(1+ax^2−2ax)/(1+ax^2)^2]×e^x
(1)当a=4/3时,若f′(x)=0,则4x^2-8x+3=0,解得x1=3/2,x2=1/2
结合①,可知
所以,x1=3/2是极小值点,x1=1/2是极大值点.
(2)若f(x)为R上的单调函数,则f′(x)在R上不变号,结合①与条件a>0知ax^2-2ax+1≥0在R上恒成立,因此△=4a^2-4a=4a(a-1)≤0,由此并结合a>0,知0<a≤1.
河北衡水中学2020届全国高三第一次联合考试理科数学试题(含解析)
高中数学合集百度网盘下载
链接:
?pwd=1234
提取码:1234
简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。
高三数学下册期中试题及答案
第Ⅰ卷(选择题 60分)
一、选择题:(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的)
1.若复数 是纯虚数,则实数m的值为 ( )
A.1 B.2 C.-2 D.-1
2.下列有关命题的叙述错误的是 ( )
A.若p且q为假命题,则p,q均为假命题
B.若┐p是q的必要条件,则p是┐q的充分条件
C.命题0的否定是0
D.2是 的充分不必要条件
3. A(CUB)= ( )
A. B. C. D.
4.在样本的频率分布直方图中,一共有 个小矩形,第3个小矩形的面积等于其余m-1个小矩形面积和的 ,且样本容量为100,则第3组的频数是 ( )
A.10 B.25 C.20 D.40
5. ( )
A.[1,4] B.[2,8] C.[2,10] D.[3,9]
6. 内的正弦曲线y=sinx与x轴围成的区域记为D,随机往圆O内投一个点A,则点A落在区域D内的概率是 ( )
A. B. C. D.
f(x)的图像 ( )
A.向右平移 个单位长度
B.向右平移 个单位长度
C.向左平移 个单位长度
D.向左平移 个单位长度
8.将石子摆成的梯形形状.称数列5,9,14,20,为梯形数.根据图形的构成,此数列的第2012项与5的差,即a2012-5= ( )
A.20182012 B.20182011 C.10092012 D.10092011
9.将A,B,C,D,E五种不同的文件放入编号依次为1,2,3,4,5,6,7的七个抽屉内,每个抽屉至多放一种文件,若文件A、B必须放入相邻的抽屉内,文件C、D也必须放在相邻的抽屉内,则所有不同的放法有 ( )
A.192 B.144 C.288 D.240
10.右面是二分法解方程的流程图.在①~④处应填写的内容分别是 ( )
A.f (a) f (m)是;否
B.f (b) f (m)是;否
C.f (b) f (m)是;否
D.f (b) f (m)否;是
11.正四棱锥S-ABCD底面边长为2,高为1,E是边BC的中点,动点P在四棱锥表面上运动,并且总保持 ,则动点P的轨迹的周长为 ( )
A. B.
C. D.
12.,在等腰梯形ABCD中,AB∥CD,且AB=2CD,设 ,以A,B为焦点且过点D的双曲线离心率为e1,以C,DC,D为焦点且过点A的椭圆的离心率为e2,则
( )
A.随着兹角增大,e1增大,e1 e2为定值 B.随着兹角增大,e1减小,e1 e2为定值
C.随着兹角增大,e1增大,e1 e2也增大 D.随着兹角增大,e1减小,e1 e2也减小
第Ⅱ卷(非选择题 共90分)
注意事项:1.第Ⅱ卷共6页,用黑色签字笔在试题卷上答题19,考试结束后将答题卡和第Ⅱ
卷一并交上。2.答题前将密封线内的项目填写清楚,密封线内答题无效。
二、填空题:(本大题共4个小题,每小题4分,共16分.将答案填在题中横线上)
13.等差数列{an}中,a4+ a10+ a16=30,则a18-2a14的值为 .
14.二项式(1+sinx)n的展开式中,末尾两项的系数之和为7,且系数最大的一项的值为 ,则x在[0,2仔]内的值为 .
15.已知点C为y2=2px(p0)的准线与x轴的交点,点F为焦点,点A、B为抛物线上两个点,若 的夹角为 .
16.下列结论中正确的是 .
①函数y=f(x)是定义在R上的偶函数,且f(x+1)=- f(x),则函数y=f(x)的图像关于直线x=1对称;
②
③
④线性相关系数r的绝对值越接近于1,表明两个变量线性相关程度越弱.
三、解答题(本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤)
17.(本小题满分12分)已知向量
(Ⅰ)求f(x)的最小正周期T;
(Ⅱ)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角, 上的最大值,求A,b和△ABC的面积.
18.(本小题满分12分),四棱锥P-ABCD中,底面ABCD为平行四边形,AB=2AD=2,BD= ,PD底面ABC D.
(1)证明:平面PBC平面PBD;
(2)若二面角P-BC-D为 ,求AP与平面PBC所成角的正弦值.
19.(本小题满分12分),一个圆形游戏转盘被分成6个均匀的扇形区域.用力旋转转盘,转盘停止转动时,箭头A所指区域的数字就是每次游戏所得的分数(箭头指向两个区域的边界时重新转动),且箭头A指向每个区域的可能性都是相等的.在一次家庭抽奖的活动中,要求每个家庭派一位儿童和一位成人先后分别转动一次游戏转盘,得分情况记为(a,b)(假设儿童和成人的得分互不影响,且每个家庭只能参加一次活动).
(Ⅰ)求某个家庭得分为(5,3)的概率;
(Ⅱ)若游戏规定:一个家庭的得分为参与游戏的两人得分之和,且得分大于等于8的家庭可以获得一份奖品.求某个家庭获奖的概率;
(Ⅲ)若共有5个家庭参加家庭抽奖活动.在(Ⅱ)的条件下,记获奖的家庭数为X,求X的分布列及数学期望.
20.(本小题满分12分)已知数列{bn}是等差数列, b1=1, b1+b2+b3++b10=100.
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{an}的通项 记Tn是数列{an}的前n项之积,即Tn= b1b 2b 3bn,试证明:
21.(本小题满分12分)已知函数f(x)=lnx-ax-3(a0).
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若对于任意的a[1,2],函数 在区间(a,3)上有最值,求实数m的取值范围.
22.(本小题满分14分),曲线C1是以原点O为中心,F1、F2为焦点的椭圆的一部分,曲线C2是以原点O为顶点,F2为焦点的抛物线的一部分, 是曲线C1和C2的交点.
(Ⅰ)求曲线C1和C2所在的椭圆和抛物线的方程;
(Ⅱ)过F2作一条与x轴不垂直的直线,分别与曲线C1、C2依次交于B、C、D、E四点,若G为CD中点,H为BE中点,问 是否为定值,若是,求出定值;若不是,请说明理由.
理科数学试题参考答案
一、选择题:AABCB BADDD BB
二、填空题:13.-10 14. ; 15. ; 16.①②③
17.解:(Ⅰ) 2分
5分.
6分
(Ⅱ)由(Ⅰ)知:
8分
10分
12分
18.解:(1)
(2)
7分
分别以DA、DB、DP为x轴、y轴、z轴建立空间直角坐标系.
10分
可解得
12分
19.解:(Ⅰ)记事件A:某个家庭得分情况为(5,3).
所以某个家庭得分情况为(5,3)的概率为 . 2分
(Ⅱ)记事件B:某个家庭在游戏中获奖,则符合获奖条件的得分包括(5,3),(5,5),(3,5)共3类情况.所以
所以某个家庭获奖的概率为 . 4分
(Ⅲ)由(Ⅱ)可知,每个家庭获奖的概率都是 5分
所以X分布列为:
X 0 1 2 3 4
12分
20.(Ⅰ)设等差数列{bn}的公差为d,则 ,得d=2,
2分
(Ⅱ)
3分
,命题得证 4分
10分
即n=k+1时命题成立
12分
21.(Ⅰ) 1分
衡水名师高三联考数学题的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于衡水名师卷高考押题卷数学三、衡水名师高三联考数学题的信息别忘了在本站进行查找喔。