高一数学必修四试卷金太阳(高一金太阳数学卷答案)

今天给各位同学分享高一数学必修四试卷金太阳的知识,其中也会对高一金太阳数学卷答案进行解释,如果能碰巧解决你现在面临的问题,别忘了分享本站,现在开始吧!

本文目录一览:

求高一数学上学期期末综合试卷

新课程高一上期期末数学综合模拟试卷1(必修1.2)

一、选择题(每小题5分,共60分,每小题只有一个正确答案)

1、若 *** A={1,3,x},B={1, },A∪B={1,3,x},则满足条件的实数x的个数有( )

(A) 1个 (B) 2个 (C)3个 (D) 4个

2、右图所示的直观图,其原来平面图形的面积是( )

A,4 B.,4 C.,2 D.,8

3、下列图象中不能表示函数的图象的是 ( )

y y y

o x x o x o x

(A) (B) (C) (D)

4、有下列四个命题:

1)过三点确定一个平面 2)矩形是平面图形 3)三条直线两两相交则确定一个平面

4)两个相交平面把空间分成四个区域 其中错误命题的序号是( ).

(A)1)和2) (B)1)和3) (C)2)和4) (D)2)和3)

5、直线L1:ax+3y+1=0, L2:2x+(a+1)y+1=0, 若L1‖L2,则a=( )

A.-3 B.2 C.-3或2 D.3或-2

6、某工厂今年前五个月每月生产某种产品的数量C(件)关于时间 C

t(月)的函数图象如图所示,则这个工厂对这种产品来说( )

O 一 二 三 四 五 t

(A)一至三月每月生产数量逐月增加,四、五两月每月生产数量逐月减少

(B)一至三月每月生产数量逐月增加,四、五月每月生产数量与三月持平

(C)一至三月每月生产数量逐月增加,四、五两月均停止生产

(D)一至三月每月生产数量不变,四、五两月均停止生产

7、如图,平面不能用( ) 表示.

(A)平面α (B)平面AB

(C)平面AC (D)平面ABCD

8、设f(x)=3ax+1-2a 在(-1,1)内存在x0 使f(x0)=0 ,则a 的取值范围是

(A): -1<a<1/5 (B): a >1/5 (C): a>1/5 或a < -1 (D): a<-1

9、如图,如果MC⊥菱形ABCD所在的平面,

那么MA与BD的位置关系是( )

A.平行 B.垂直相交

C.异面 D.相交但不垂直

10、经过点M(1,1)且在两轴上截距相等的直线是( )

A.x+y=2 B.x+y=1 C.x=1或y=1 D.x+y=2或x=y

11、已知函数 ,其中n N,则f(8)=( )

(A)6 (B)7 (C) 2 (D)4

12、圆x2+y2+4x–4y+4=0关于直线l: x–y+2=0对称的圆的方程是( )

A.x2+y2=4 B.x2+y2–4x+4y=0

C.x2+y2=2 D.x2+y2–4x+4y–4=0

二、填空题(每小题4分,共4小题16分)

13、已知三点A(a,2) B(5,1) C(-4,2a)在同一条直线上,

则a= .

14、在边长为a的等边三角形ABC中,AD⊥BC于D,

沿AD折成二面角B-AD-C后,BC=12 a,

这时二面角B-AD-C的大小为

15、指数:函数y=(a+1)x 在R上是增函数,则a的取值范围是

16、有以下4个命题:

①函数f(x)= (a>0且a≠1)与函数g(x)= (a>0且a≠1)的定义域相同;

②函数f(x)=x3与函数g(x)= 的值域相同;

③函数f(x)= 与g(x)= 在(0,+∞)上都是增函数;

④如果函数f(x)有反函数f -1(x),则f(x+1)的反函数是f -1(x+1).

其中不正确的题号为 .

三、解答题

17、计算下列各式

(1)(lg2)2+lg5•lg20-1

(2)

18、定义在实数R上的函数y= f(x)是偶函数,当x≥0时, .

(1)求f(x)在R上的表达式;

(2)求y=f(x)的最大值,并写出f(x)在R上的单调区间(不必证明).

19、如图,一个圆锥形的空杯子上面放着一个半球形

的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?

请用你的计算数据说明理由.

20、已知 三个顶点是 , , .

(Ⅰ)求BC边中线AD所在直线方程;

(Ⅱ)求点A到BC边的距离.

21、商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少.把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元.现在这种羊毛衫的成本价是100元/ 件,商场以高于成本价的相同价格(标价)出售. 问:

(Ⅰ)商场要获取最大利润,羊毛衫的标价应定为每件多少元?

(Ⅱ)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?

22、已知直线:y=x+b和圆x2+y2+2x―2y+1=0

(1)若直线和圆相切,求直线的方程;(2)若b=1,求直线和圆相交的弦长;

一CDDBA DBCCD BA

二3.5或2 60˚ (0,+∞ ) 2,3

三 17.(1)原式=0 —————— 6分

(2)原式=4*27+2-7-2-1

=100 --------------------12分

18(1)f(x)= -4x2+8x-3 x≥0

-4x2-8x-3 xV半球 ----------------10#

所以如果冰淇淋融化了,不会溢出杯子 ---------12#

20 解(1)BC中点D(0,1)

中线AD所在直线方程:y=-3x+1 ---------6#

(2) BC的方程为x-y+1=0

点A到BC边的距离=--------=2√2 ---------12#

21 (1)设羊毛衫的标价为每件x元,利润y元

则购买人数为 k(x-300) k

高一数学,求详细解答

D   

B      (AB-AC)-BC=CB-BC=CB-(-CB)=2CB

-1      a10=(-1)11=-1

4.145    由题可得d=3,a1=1,

所以an=1+3(n-1)=3n-2

a10=28

所以S10=(1+28)x10/2=145

5.x轴:1/3    y轴:-1         将x=0和y=0带入即可

加油鸭!!!

[img]

高一数学知识点梳理归纳

失败乃成功之母,重复是学习之母。学习,需要不断的重复重复,重复学过的知识,加深印象,其实任何科目的 学习 方法 都是不断重复学习。下面是我给大家整理的一些 高一数学 的知识点,希望对大家有所帮助。

高一数学必修四知识点梳理

方程的根与函数的零点

1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根,函数的图象与坐标轴有交点,函数有零点.

3、函数零点的求法:

(1)(代数法)求方程的实数根;

(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

4、二次函数的零点:

(1)△0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.

(2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

高 一年级数学 必修三知识点

1、概念:

(1)回归直线方程

(2)回归系数

2.最小二乘法

3.直线回归方程的应用

(1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系

(2)利用回归方程进行预测;把预报因子(即自变量x)代入回归方程对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间。

(3)利用回归方程进行统计控制规定Y值的变化,通过控制x的范围来实现统计控制的目标。如已经得到了空气中NO2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO2的浓度。

4.应用直线回归的注意事项

(1)做回归分析要有实际意义;

(2)回归分析前,先作出散点图;

(3)回归直线不要外延。

数学学习方法 技巧

答题少费时多办事

解题上要抓好三个字:数,式,形;阅读、审题和表述上要实现数学的三种语言自如转化(文字语言、符号语言、图形语言)。要重视和加强选择题的训练和研究。不能仅仅满足于答案正确,还要学会优化解题过程,追求解题质量,少费时,多办事,以赢得足够的时间思考解答高档题。要不断积累解选择题的 经验 ,尽可能小题小做,除直接法外,还要灵活运用特殊值法、排除法、检验法、数形结合法、估计法来解题。在做解答题时,书写要简明、扼要、规范,不要“小题大做”,只要写出“得分点”即可。

错一次 反思 一次

每次考试或多或少会发生一些错误,这并不可怕,要紧的是避免类似的错误在今后的考试中重现。

因此平时要注意把错题记下来,做错题笔记包括三个方面:

(1)记下错误是什么,用红笔划出。

(2)错误原因是什么,从审题、题目归类、重现知识和找出答案四个环节来分析。

(3)错误纠正方法及注意事项。根据错误原因的分析提出纠正方法并提醒自己下次碰到类似的情况应注意些什么。你若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么在高考时发生错误的概率就会大大减少。

分析试卷 总结 经验

每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。

(1)遗憾之错。就是分明会做,反而做错了的题。

(2)似非之错。记忆不准确,理解不够透彻,应用不够自如;回答不严密不完整等等。

(3)无为之错。由于不会答错了或猜错了,或者根本没有作答,这是无思路、不理解,更谈不上应用的问题。原因找到后就尽早消除遗憾、弄懂似非、力争有为。切实解决“会而不对、对而不全”的老大难问题。

优秀是一种习惯

柏拉图说:“优秀是一种习惯”。好的习惯终生受益,不好的习惯终生后悔、吃亏。如“审题之错”是否出在急于求成?可采取“一慢一快”战术,即审题要慢,要看清楚,步骤要到位,动作要快,步步为营,稳中求快,立足于一次成功,不要养成唯恐做不完,匆匆忙忙抢着做,寄希望于检查的坏习惯。

高一数学知识点梳理归纳相关 文章 :

★ 高一数学知识点全面总结

★ 高一数学知识点复习归纳

★ 高一数学知识点总结归纳

★ 高一数学知识点归纳总结

★ 高一数学重要知识点梳理

★ 高一数学知识点汇总大全

★ 高一数学知识点(考前必看)

★ 高一数学知识点小归纳

★ 高中阶段的高一数学课本知识点归纳

★ 高一数学必修一知识点梳理

高一数学必修4知识点总结

高一数学必修4知识点总结 1

第一章 三角函数

正角:按逆时针方向旋转形成的角

1、任意角负角:按顺时针方向旋转形成的角

零角:不作任何旋转形成的角

2、角的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,则称为第几象限角.

第二象限角的集合为k36090k360180,k

第三象限角的集合为k360180k360270,k第四象限角的集合为k360270k360360,k终边在x轴上的角的集合为k180,k

终边在y轴上的角的集合为k18090,k终边在坐标轴上的角的集合为k90,k

第一象限角的集合为k360k36090,k

3、与角终边相同的角的集合为k360,k

4、长度等于半径长的弧所对的圆心角叫做1弧度.

5、半径为r的圆的圆心角所对弧的长为l,则角的弧度数的绝对值是

l. r

180

6、弧度制与角度制的换算公式:2360,1,157.3. 180

7、若扇形的圆心角为

为弧度制,半径为r,弧长为l,周长为C,面积为S,则lr,C2rl,

1

11

Slrr2.

22

8

、设是一个任意大小的角,它与原点的距离是rr的终边上任意一点的坐标是x,y,则sin

0,

yxy

,cos,tanx0. rrx

9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,

第三象限正切为正,第四象限余弦为正.

10、三角函数线:sin,cos,tan.

2222

11、角三角函数的基本关系:1sin2cos21sin1cos,cos1sin

2

sin

tancos

sin

sintancos,cos.

tan

12、函数的诱导公式:

1sin2ksin,cos2kcos,tan2ktank. 2sinsin,coscos,tantan. 3sinsin,coscos,tantan. 4sinsin,coscos,tantan.

口诀:函数名称不变,符号看象限.

5sin

cos,cossin.6sincos,cossin. 2222

口诀:正弦与余弦互换,符号看象限.

13、①的图象上所有点向左(右)平移个单位长度,得到函数ysinx的图象;再将函数ysinx的图象上所有点的横坐标伸长(缩短)到原来的

1

倍(纵坐标不变),得到函数ysinx的图象;再将

函数ysinx的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数

ysinx的图象.

②数ysinx的图象上所有点的横坐标伸长(缩短)到原来的

1

倍(纵坐标不变),得到函数

ysinx的图象;再将函数ysinx的图象上所有点向左(右)平移

个单位长度,得到函数

ysinx的图象;再将函数ysinx的图象上所有点的纵坐标伸长(缩短)到原来的倍(横

2

坐标不变),得到函数ysinx的图象. 14、函数ysinx0,0的性质: ①振幅:;②周期:

2

;③频率:f

1

;④相位:x;⑤初相:. 2

函数ysinx,当xx1时,取得最小值为ymin ;当xx2时,取得最大值为ymax,则

11

x2x1x1x2ymaxyminymaxymin

22,,2.

yASinx , A0 , 0 , T

2

15 周期问题

2

yACosx , A0 , 0 , T

yASinx, A0 , 0 , T

yACosx, A0 , 0 , T

yASinxb , A0 , 0 , b 0, T

2

2

yACosxb , A0 , 0 , b0 ,T

TyAcotx , A0 , 0 ,

yAtanx , A0 , 0 , T

yAcotx, A0 , 0 , T

yAtanx , A0 , 0 , T

3

第二章 平面向量

16、向量:既有大小,又有方向的量.数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.

相等向量:长度相等且方向相同的向量.

17、向量加法运算:

⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.

C

⑶三角形不等式:ababab.

⑷运算性质:①交换律:abba;

abcabc②结合律:;③a00aa.

a

b

abCC

4

⑸坐标运算:设ax1,y1,bx2,y2,则abx1x2,y1y2.

18、向量减法运算:

⑴三角形法则的特点:共起点,连终点,方向指向被减向量.

⑵坐标运算:设ax1,y1,bx2,y2,则abx1x2,y1y2.

设、两点的坐标分别为x1,y1,x2,y2,则x1x2,y1y2.

19、向量数乘运算:

⑴实数与向量a的积是一个向量的运算叫做向量的数乘,记作a. ①

aa;

②当0时,a的方向与a的方向相同;当0时,a的方向与a的方向相反;当0时,a0.

⑵运算律:①aa;②aaa;③abab.

⑶坐标运算:设ax,y,则ax,yx,y.

20、向量共线定理:向量aa0与b共线,当且仅当有唯一一个实数,使ba.

设ax1,y1,bx2,y2,其中b0,则当且仅当x1y2x2y10时,向量a、bb0共线.

21、平面向量基本定理:如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有

且只有一对实数1、2,使a1e12e2.(不共线的向量e1、e2作为这一平面内所有向量的一组基底) 22、分点坐标公式:设点是线段12上的一点,1、2的坐标分别是x1,y1,x2,y2,当12时,

点的坐标是

x1x2y1y2

时,就为中点公式。)(当1 ,.

11

23、平面向量的数量积:

⑴ababcosa0,b0,0180.零向量与任一向量的数量积为0.

⑵性质:设a和b都是非零向量,则①abab0.②当a与b同向时,abab;当a与b反向

2

时,abab;aaaa或a.③abab.

2

⑶运算律:①abba;②ababab;③abcacbc.

⑷坐标运算:设两个非零向量ax1,y1,bx2,y2,则abx1x2y1y2.

222

若ax,y,则axy,

或a设ax1,y1,则abxx12yy12bx2,y2,

0.

5

高一数学必修4知识点总结 2

第一章 三角函数

1.

正角:按逆时针方向旋转形成的角叫做正角。

按边旋转的方向分 零角:如果一条射线没有作任何旋转,我们称它形成了一个零角。 角负角:按顺时针方向旋转形成的角叫做负角。

的 第一象限角{α|k2360°<α<90°+k2360°,k∈Z}

分 第二象限角{α|90°+k2360°<α<180°+k2360°,k∈Z} 类 第三象限角{α|180°+k2360°<α<270°+k2360°,k∈Z} 第四象限角{α|270°+k2360°<α<360°+k2360°,k∈Z} 或{α|-90°+k2360°<α<k2360°,k∈Z} (象间角):当角的终边与坐标轴重合时叫轴上角,它不属于任何一个象限. 2.终边相同角的表示:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+ k2360°,k∈Z}即任一与角α终边相同的角,都可以表示成角α与整个周角的和。 3.几种特殊位置的角:

⑴终边在x轴上的非负半轴上的角:α= k2360°,k∈Z

⑵终边在x轴上的非正半轴上的角:α=180°+ k2360°,k∈Z ⑶终边在x轴上的角:α= k2180°,k∈Z

⑷终边在y轴上的角:α=90°+ k2180°,k∈Z ⑸终边在坐标轴上的角:α= k290°,k∈Z

⑹终边在y=x上的角:α=45°+ k2180°,k∈Z

⑺终边在y=-x上的角:α= -45°+ k2180°,k∈Z 或α=135°+ k2180°,k∈Z ⑻终边在坐标轴或四象限角平分线上的角:α= k245°,k∈Z

4.弧度:在圆中,把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad表示。 5.6.如果半径为r的圆的圆心角α所对弧的长为l,那么,角α 相关公式7.角度制与弧度制的换算 8.单位圆:在直角坐标系中,我们称以原点O为圆心,以单位长度为半径的圆为单位圆。

9.利用单位圆定义任意角的三角函数:设α是一个任意角,它的终边与单位圆交于点P(x,y)那么: ⑴y叫做α的正弦,记作sinα即⑵x叫做α的余弦,记作cosα⑶

y叫做α的正切,记作tanαx22

10.sincos1 sin;cos

同角三角函数的基本关系 α≠kπ+

11.三角函数的诱导公式:

πnis(k∈Z)】:ant2cos

公sink2sin式cosk2cos一tank2tan【注】其中kZ

公sinsin公sinsin式cos

cos

式coscos

公sinsin式coscos四tantan

公sincos

2

公sinsco

2

式cossin式cosn si

22

五tancot

2

六tantco

2

注意:ysinx周期为2π;y|sinx|周期为π;y|sinxk|周期为2π;ysin|x|不是周期函数。

13.得到函数yAsin(x)图像的方法:

y=sin(x+)ysin(x)y①y=sinx

周期变换

向左或向右平移||个单位

平移变换周期变换振幅变换

Asin(x)

②y=sinxysinxysin(x)yAsin(x) 14.简谐运动

①解析式:yAsin(x),x[0,+) ②振幅:A就是这个简谐运动的振幅。 ③周期:T④频率:f=

振幅变换

1

T2π

⑤相位和初相:x称为相位,x=0时的`相位称为初相。

第二章 平面向量

1.向量:数学中,我们把既有大小,又有方向的量叫做向量。数量:我们把只有大小没有方向的量称为数量。 2.有向线段:带有方向的线段叫做有向线段。有向线段三要素:起点、方向、长度。

3.向量的长度(模):向量AB的大小,也就是向量AB的长度(或称模),记作|AB|。

4.零向量:长度为0的向量叫做零向量,记作0,零向量的方向是任意的。

单位向量:长度等于1个单位的向量,叫做单位向量。

5.平行向量:方向相同或相反的非零向量叫做平行向量。若向量a、b是两个平行向量,那么通常记作a∥b。

平行向量也叫做共线向量。我们规定:零向量与任一向量平行,即对于任一向量a,都有0∥a。

6.相等向量:长度相等且方向相同的向量叫做相等向量。若向量a、b是两个相等向量,那么通常记作a=b。

BC=b,b,7.如图,已知非零向量a、在平面内任取一点A,作AB=a,则向量AC叫做a与b的和,记作ab,

即abABBCAC。

向量的加法:求两个向量和的运算叫做向量的加法。这种求向量的方法称为向量加法的三角形法则。

8.对于零向量与任一向量a,我们规定:a+0=0+a=a

9.公式及运算定律:①A1A2+A2A3+...+AnA1=0②|a+b|≤|a|+|b|

(a+b)+ca(b+c)③a+bba ④

10.相反向量:①我们规定,与a长度相等,方向相反的向量,叫做a的相反向量,记作-a。a和-a互为相反向

量。

②我们规定,零向量的相反向量仍是零向量。

③任一向量与其相反向量的和是零向量,即a+(-a)(=-a)+a=0。

④如果a、b是互为相反的向量,那么a= -b,b= -a,ab=0。

⑤我们定义a-b=a+,即减去一个向量等于加上这个向量的相反向量。 (-b)

11.向量的数乘:一般地,我们规定实数λ与向量a的积是一个向量,这种运算叫做向量的数乘。记作a,它的

长度与方向规定如下:①|a||||a| ②当λ>0时,a的方向与a的方向相同;当λ<0时,的方向与a的

方向相反;λ=0时,a=0

(a)()a 12.运算定律:①

②()aaa

③(ab)=ab

()a(a)(a)(ab)=ab ④⑤

13.定理:对于向量a(a≠0)、b,如果有一个实数λ,使b=a,那么a与b共线。相反,已知向量a与b

共线,a≠0,且向量b的长度是向量a的长度的μ倍,即|b|=μ|a|,那么当a与b同方向时,有b=a;当a

与b反方向时,有b= a。则得如下定理:向量向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使b=a。

14.平面向量基本定理:如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且

只有一对实数1、2,使a1e12e2。我们把不共线的向量e1、e2叫做表示这一平面内所有向量的一组基

底。

15.向量a与b的夹角:已知两个非零向量a和b。作OAa,OBb,则AOB(0°≤θ≤180°)叫

做向量a与b的夹角。当θ=0°时,a与b同向;当θ=180°时,a与b反向。如果a与b的夹角是90°,我们说a与b垂直,记作ab。

16.补充结论:已知向量a、b是两个不共线的两个向量,且m、n∈R,若manb0,则m=n=0。

17.正交分解:把一个向量分解为两个互相垂直的向量,叫做把向量正交分解。

18.两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差)。即若a(x1,y1),b(x2,y2),则

ab(x1x2,y1y2),ab(x1x2,y1y2)

19.实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标。即若a(x1,y1),则a(x1,y1)

20.当且仅当x1y2-x2y1=0时,向量a、b(b≠0)共线

x1x2y1y2

21.定比分点坐标公式:当P1PPP2时,P点坐标为(,)

11

①当点P在线段P1P2上时,点P叫线段P1P2的内分点,λ>0 ②当点P在线段P1P2的延长线上时,P叫线段P1P2的外分点,λ<-1; 当点P在线段P1P2的反向延长线上时,P叫线段P1P2的外分点,-1<λ<0. 22. 从一点引出三个向量,且三个向量的终点共线,

B

则OCOAOB,其中λ+μ=1

23.数量积(内积):已知两个非零向量a与b,我们把数量|a||b|cos叫做a与b 的数量积(或内积),记作a2b即a2b=|a||b|cos。其中θ是a与b的夹角,

|a|cos(|b|cos)叫做向量a在b方向上(b在a方向上)的投影。我们规定,零向量与任一向量的数量

积为0。

24. a2b的几何意义:数量积a2b等于a的长度|a|与b在a的方向上的投影|b|cos的乘积。

25.数量积的运算定律:①a2b=b2a ②(λa)2b=λ(a2b)=a2(λb) ③(a+b)2c=a2c+b2c 22222222④(ab)a2abb ⑤(ab)a2abb ⑥(ab)(ab)ab

26.两个向量的数量积等于它们对应坐标的乘积的和。即abx1x2y1y2。则:

22

2

①若a(x,y),则|a|xy,或|a|。如果表示向量a的有向线段的起点和中点的坐标分别为(x2x1,y2y1)

(x1,y1)(x2,y2)、,那么a,|a|

(x1,y1)(x2,y2)②设a,b,则abx1x2y1y20ab0

(x1,y1)(x2,y2)27.设a、b都是非零向量,a,b,θ是a与b的夹角,根据向量数量积的定义及坐标表

ab

示可得:cos

|a||b|

第三章 三角恒等变换

cs1.两角和的余弦公式【简记C(α+β)】:oos2.两角差的余弦公式【简记C(α-β)】:c

csocsnisniso

coscosnisnis

3.两角和(差)余弦公式的公式特征:①左加号,右减号。②同名函数之积的和与差。③α、β叫单角,α±β

叫复角,通过单角的正、余弦求和(差)的余弦值。④“正用”、“逆用”、“变用”

is4.两角和的正弦公式【简记S(α+β)】:nis5.两角差的正弦公式【简记S(α-β)】:n

isoscosnisnc

nisoscosnisc

6.两角和(差)正弦公式的公式特征及用途:①左右运算符号相同。②右方是异名函数之积的和与差,且正弦值

篇三:高中数学人教版必修四常见公式及知识点系统总结(全)

必修四常考公式及高频考点

第一部分 三角函数与三角恒等变换

考点一 角的表示方法 1.终边相同角的表示方法:

所有与角终边相同的角,连同角在内可以构成一个集合:{β|β= k2360 °+α,k∈Z } 2.象限角的表示方法: 第一象限角的集合为{α第二象限角的集合为{α第三象限角的集合为{α第四象限角的集合为{α

| k2360 °αk2360 °+90 °,k∈Z }

| k2360 °+90 °αk2360 °+180 °,k∈Z } | k2360 °+180 °αk2360 °+270 °,k∈Z } | k2360 °+270 °αk2360 °+360 °,k∈Z }

3.终边在某条射线、某条直线或两条垂直的直线上(如轴线角)的表示方法:

(1)若所求角β的终边在某条射线上,其集合表示形式为{β|β= k2360 °+α,k∈Z },其中α为射线与x轴非负半轴形成的夹角

(2)若所求角β的终边在某条直线上,其集合表示形式为{β|β= k2180 °+α,k∈Z },其中α为直线与x轴非负半轴形成的任一夹角

(3)若所求角β的终边在两条垂直的直线上,其集合表示形式为{β|β= k290 °+α,k∈Z },其中α为直线与x轴非负半轴形成的任一夹角 例:

终边在y轴非正半轴上的角的集合为{α|α= k2360 °+270 °,k∈Z }

终边在第二、第四象限角平分线上的集合为{α|α= k2180 °+135 °,k∈Z } 终边在四个象限角平分线上的角的集合为{α|α= k290 °+45 °,k∈Z } 易错提醒:

区别锐角、小于90度的角、第一象限角、0~90、小于180度的角

考点二 弧度制有关概念与公式 1.弧度制与角度制互化

180,1

180

57.3,1弧度

180

2.扇形的弧长和面积公式(分别用角度制、弧度制表示方法)

nR

R, 其中为弧所对圆心角的弧度数 180

1nR21

lR2||, 其中为弧所对圆心角的弧度数 扇形面积公式:S

23602

弧长公式:l

12

易错提醒:利用S= R||求解扇形面积公式时,为弧所对圆心角的弧度数,不可用角度数

2

规律总结:“扇形周长、面积、半径、圆心角”4个量,“知二求二”,注意公式选取技巧

考点三 任意角的三角函数 1.任意角的三角函数定义

设是一个任意角,它的终边与单位圆交于点Px,y,那么siny,cosx,tan

y(r|OP|

rrx化简为siny,cosx,tan2.三角函数值符号

y

. x

规律总结:利用三角函数定义或“一全正、二正弦、三正切、四余弦”口诀记忆象限角或轴线角的三角函数值符号. 3.特殊角三角函数值

除此之外,还需记住150、750的正弦、余弦、正切值 4.三角函数线

经典结论: (1)若x(0,(2)若x

(0,

2

),则sinxxtanx

),则1sinxcosx2

(3)|sinx||cosx|1

例:

11

在单位圆中分别画出满足sinα=cosα=、tanα=-1的角α的终边,并求角α的取值集合

22考点四 三角函数图像与性质

考点五 正弦型(y=Asin(ωx+φ))、余弦型函数(y=Acos(ωx+φ))、正切性函数(y=Atan(ωx+φ))图像与性质 1.解析式求法

(1)y=Asin(ωx+φ)+B 或y=Acos(ωx+φ)+B解析式确定方法

A、B通过图像易求,重点讲解φ、ω求解思路: ①φ求解思路:

代入图像的确定点的坐标.如带入最高点(x1,y1)或最低点坐标(x

2,y2),则x1

2

2k(kZ)或

x2

3

2k(kZ),求值. 2

易错提醒:y=Asin(ωx+φ),当ω0,且x=0时的相位(ωx+φ=φ)称为初相.如果不满足ω0,先利用诱导公式进行变形,使之满足上述条件,再进行计算.如y=-3sin(-2x+60)的初相是-60

②ω求解思路:

利用三角函数对称性与周期性的关系,解ω.相邻的对称中心之间的距离是周期的一半;相邻的对称轴之间的距离是周期的一半;相邻的对称中心与对称轴之间的距离是周期的四分之一. 2.“一图、两域、四性” “一图”:学好三角函数,图像是关键。

易错提醒:“左加右减、上加下减”中“左加右减”仅仅针对自变量x,不可针对-x或2x等. 例:

“两域”: (1) 定义域

求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象或数轴法来求解. (2) 值域(最值): a.直接法(有界法):利用sinx,cosx的值域.

b.化一法:化为y=Asin(ωx+φ)+k的形式逐步分析ωx+φ的范围,根据正弦函数单调性写出函数的值域(最值). c.换元法:把sinx或cosx看作一个整体,化为求一元二次函数在给定区间上的值域(最值)问题. 例:

1.y=asinx+bsinx+c

2

2.y=asinx+bsinxcosx+ccosx 3.y=(asinx+c)/(bcosx+d)

4.y=a(sinx±cosx)+bsinxcosx+c “四性”: (1)单调性

ππ

①函数y=Asin(ωx+φ)(A0, ω0)图象的单调递增区间由2kπ-ωx+φ2kπ+,k∈Z解得, 单调递减区间由

22π

2kπωx+φ2 kπ+1.5π,k∈Z解得;

2

②函数y=Acos(ωx+φ)(A0, ω0)图象的单调递增区间由2kπ+πωx+φ2kπ+2π,k∈Z解得, 单调递减区间由2kπωx+φ2 kπ+π,k∈Z解得;

ππ

③函数y=Atan(ωx+φ)(A0, ω0)图象的单调递增区间由kπ-ωx+φkπ+k∈Z解得,.

22规律总结:注意ω、A为负数时的处理技巧. (2)对称性

π

①函数y=Asin(ωx+φ)的图象的对称轴由ωx+φ= kπ+(k∈Z)解得,对称中心的横坐标由ωx+φ= kπ(k∈Z)解得;

②函数y=Acos(ωx+φ)的图象的对称轴由ωx+φ= kπ(k∈Z)解得,对称中心的横坐标由ωx+φ=kπ+(k∈Z) 解得;

2③函数y=Atan(ωx+φ)的图象的对称中心由ωx+φ= kπ(k∈Z)解得. 规律总结:φ可以是单个角或多个角的代数式.无需区分ω、A符号. (3)奇偶性

π

①函数y=Asin(ωx+φ),x∈R是奇函数φ=kπ(k∈Z),函数y=Asin(ωx+φ),x∈R是偶函数φ=kπ2∈Z);

②函数y=Acos(ωx+φ),x∈R是奇函数φ=kπ∈Z);

③函数y=Atan(ωx+φ),x∈R是奇函数φ=(k∈Z).

2规律总结:φ可以是单个角或多个角的代数式.无需区分ω、A符号. (4)周期性

函数y=Asin(ωx+φ)或y=Acos(ωx+φ))的最小正周期T=,

|ω|y=Atan(ωx+φ) 的最小正周期T=

考点六 常见公式

常见公式要做到“三用”:正用、逆用、变形用 1.同角三角函数的基本关系

π. |ω|

π

∈Z);函数y=Acos(ωx+φ),x∈R是偶函数φ=kπ(k2

22

关于高一数学必修四试卷金太阳和高一金太阳数学卷答案的介绍到此就结束了,不知道同学们从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

本文转载自互联网,如有侵权,联系删除