今天给各位同学分享衡水同步周测卷数学答案的知识,其中也会对衡水中学同步月考卷进行解释,如果能碰巧解决你现在面临的问题,别忘了分享本站,现在开始吧!
本文目录一览:
- 1、初二数学试卷及答案解析
- 2、请问有谁有的衡水金卷《2017高三一轮复习周测卷》1-30 物理,化学,生物,答案的!!是周测卷
- 3、2012高考调研衡水重点中学同步精讲精练数学新课标必修一答案
- 4、求衡中同卷202年周测卷的答案
- 5、八年级下册数学测试卷及答案解析
- 6、衡水金券2016-2017年度高三一轮复习周测卷数学七答案
初二数学试卷及答案解析
一切知识都源于无知,一切无知都源于对知识的认知。最根深蒂固的无知,不是对知识的无知,而是对自己无知的无知。下面给大家分享一些关于初二数学试卷及答案解析,希望对大家有所帮助。
一、选择题(每小题3分,9小题,共27分)
1.下列图形中轴对称图形的个数是()
A.1个B.2个C.3个D.4个
【考点】轴对称图形.
【分析】根据轴对称图形的概念求解.
【解答】解:由图可得,第一个、第二个、第三个、第四个均为轴对称图形,共4个.
故选D.
【点评】本题考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.
2.下列运算不正确的是()
A.x2?x3=x5B.(x2)3=x6C.x3+x3=2x6D.(﹣2x)3=﹣8x3
【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.
【分析】本题考查的知识点有同底数幂乘法法则,幂的乘 方法 则,合并同类项,及积的乘方法则.
【解答】解:A、x2?x3=x5,正确;
B、(x2)3=x6,正确;
C、应为x3+x3=2x3,故本选项错误;
D、(﹣2x)3=﹣8x3,正确.
故选:C.
【点评】本题用到的知识点为:
同底数幂的乘法法则:底数不变,指数相加;
幂的乘方法则为:底数不变,指数相乘;
合并同类项,只需把系数相加减,字母和字母的指数不变;
积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘.
3.下列关于分式的判断,正确的是()
A.当x=2时,的值为零
B.无论x为何值,的值总为正数
C.无论x为何值,不可能得整数值
D.当x≠3时,有意义
【考点】分式的值为零的条件;分式的定义;分式有意义的条件.
【分析】分式有意义的条件是分母不等于0.
分式值是0的条件是分子是0,分母不是0.
【解答】解:A、当x=2时,分母x﹣2=0,分式无意义,故A错误;
B、分母中x2+1≥1,因而第二个式子一定成立,故B正确;
C、当x+1=1或﹣1时,的值是整数,故C错误;
D、当x=0时,分母x=0,分式无意义,故D错误.
故选B.
【点评】分式的值是正数的条件是分子、分母同号,值是负数的条件是分子、分母异号.
4.若多项式x2+mx+36因式分解的结果是(x﹣2)(x﹣18),则m的值是()
A.﹣20B.﹣16C.16D.20
【考点】因式分解-十字相乘法等.
【专题】计算题.
【分析】把分解因式的结果利用多项式乘以多项式法则计算,利用多项式相等的条件求出m的值即可.
【解答】解:x2+mx+36=(x﹣2)(x﹣18)=x2﹣20x+36,
可得m=﹣20,
故选A.
【点评】此题考查了因式分解﹣十字相乘法,熟练掌握十字相乘的方法是解本题的关键.
5.若等腰三角形的周长为26cm,一边为11cm,则腰长为()
A.11cmB.7.5cmC.11cm或7.5cmD.以上都不对
【考点】等腰三角形的性质.
【分析】分边11cm是腰长与底边两种情况讨论求解.
【解答】解:①11cm是腰长时,腰长为11cm,
②11cm是底边时,腰长=(26﹣11)=7.5cm,
所以,腰长是11cm或7.5cm.
故选C.
【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论.
6.如图,在△ABC中,AB=AC,∠BAC=108°,点D在BC上,且BD=AB,连接AD,则∠CAD等于()
A.30°B.36°C.38°D.45°
【考点】等腰三角形的性质.
【分析】根据等腰三角形两底角相等求出∠B,∠BAD,然后根据∠CAD=∠BAC﹣∠BAD计算即可得解.
【解答】解:∵AB=AC,∠BAC=108°,
∴∠B=(180°﹣∠BAC)=(180°﹣108°)=36°,
∵BD=AB,
∴∠BAD=(180°﹣∠B)=(180°﹣36°)=72°,
∴∠CAD=∠BAC﹣∠BAD=108°﹣72°=36°.
故选B.
【点评】本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等,等边对等角的性质,熟记性质并准确识图是解题的关键.
7.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()
A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE
【考点】全等三角形的性质.
【分析】根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.
【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,
∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,
故A、B、C正确;
AD的对应边是AE而非DE,所以D错误.
故选D.
【点评】本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.
8.计算:(﹣2)2015?()2016等于()
A.﹣2B.2C.﹣D.
【考点】幂的乘方与积的乘方.
【分析】直接利用同底数幂的乘法运算法则将原式变形进而求出答案.
【解答】解:(﹣2)2015?()2016
=[(﹣2)2015?()2015]×
=﹣.
故选:C.
【点评】此题主要考查了积的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键.
9.如图,直线a、b相交于点O,∠1=50°,点A在直线a上,直线b上存在点B,使以点O、A、B为顶点的三角形是等腰三角形,这样的B点有()
A.1个B.2个C.3个D.4个
【考点】等腰三角形的判定.
【分析】根据△OAB为等腰三角形,分三种情况讨论:①当OB=AB时,②当OA=AB时,③当OA=OB时,分别求得符合的点B,即可得解.
【解答】解:要使△OAB为等腰三角形分三种情况讨论:
①当OB=AB时,作线段OA的垂直平分线,与直线b的交点为B,此时有1个;
②当OA=AB时,以点A为圆心,OA为半径作圆,与直线b的交点,此时有1个;
③当OA=OB时,以点O为圆心,OA为半径作圆,与直线b的交点,此时有2个,
1+1+2=4,
故选:D.
【点评】本题主要考查了坐标与图形的性质及等腰三角形的判定;分类讨论是解决本题的关键.
二、填空题(共10小题,每小题3分,满分30分)
10.计算(﹣)﹣2+(π﹣3)0﹣23﹣|﹣5|=4.
【考点】实数的运算;零指数幂;负整数指数幂.
【专题】计算题;实数.
【分析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用乘方的意义化简,最后一项利用绝对值的代数意义化简,计算即可得到结果.
【解答】解:原式=16+1﹣8﹣5=4,
故答案为:4
【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
11.已知a﹣b=14,ab=6,则a2+b2=208.
【考点】完全平方公式.
【分析】根据完全平方公式,即可解答.
【解答】解:a2+b2=(a﹣b)2+2ab=142+2×6=208,
故答案为:208.
【点评】本题考查了完全平方公式,解决本题德尔关键是熟记完全平方公式.
12.已知xm=6,xn=3,则x2m﹣n的值为12.
【考点】同底数幂的除法;幂的乘方与积的乘方.
【分析】根据同底数幂的除法法则:底数不变,指数相减,进行运算即可.
【解答】解:x2m﹣n=(xm)2÷xn=36÷3=12.
故答案为:12.
【点评】本题考查了同底数幂的除法运算及幂的乘方的知识,属于基础题,掌握各部分的运算法则是关键.
13.当x=1时,分式的值为零.
【考点】分式的值为零的条件.
【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.
【解答】解:x2﹣1=0,解得:x=±1,
当x=﹣1时,x+1=0,因而应该舍去.
故x=1.
故答案是:1.
【点评】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.
14.(1999?昆明)已知一个多边形的内角和等于900°,则这个多边形的边数是7.
【考点】多边形内角与外角.
【分析】根据多边形的内角和计算公式作答.
【解答】解:设所求正n边形边数为n,
则(n﹣2)?180°=900°,
解得n=7.
故答案为:7.
【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.
15.如图,在ABC中,AP=DP,DE=DF,DE⊥AB于E,DF⊥AC于F,则下列结论:
①AD平分∠BAC;②△BED≌△FPD;③DP∥AB;④DF是PC的垂直平分线.
其中正确的是①③.
【考点】全等三角形的判定与性质;角平分线的性质;线段垂直平分线的性质.
【专题】几何图形问题.
【分析】根据角平分线性质得到AD平分∠BAC,由于题目没有给出能够证明∠C=∠DPF的条件,无法根据全等三角形的判定证明△BED≌△FPD,以及DF是PC的垂直平分线,先根据等腰三角形的性质可得∠PAD=∠ADP,进一步得到∠BAD=∠ADP,再根据平行线的判定可得DP∥AB.
【解答】解:∵DE=DF,DE⊥AB于E,DF⊥AC于F,
∴AD平分∠BAC,故①正确;
由于题目没有给出能够证明∠C=∠DPF的条件,只能得到一个直角和一条边对应相等,故无法根据全等三角形的判定证明△BED≌△FPD,以及DF是PC的垂直平分线,故②④错误;
∵AP=DP,
∴∠PAD=∠ADP,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠BAD=∠ADP,
∴DP∥AB,故③正确.
故答案为:①③.
【点评】考查了全等三角形的判定与性质,角平分线的性质,线段垂直平分线的性质,等腰三角形的性质和平行线的判定,综合性较强,但是难度不大.
16.用科学记数法表示数0.0002016为2.016×10﹣4.
【考点】科学记数法—表示较小的数.
【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【解答】解:0.0002016=2.016×10﹣4.
故答案是:2.016×10﹣4.
【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
17.如图,点A,F,C,D在同一直线上,AF=DC,BC∥EF,要判定△ABC≌△DEF,还需要添加一个条件,你添加的条件是EF=BC.
【考点】全等三角形的判定.
【专题】开放型.
【分析】添加的条件:EF=BC,再根据AF=DC可得AC=FD,然后根据BC∥EF可得∠EFD=∠BCA,再根据SAS判定△ABC≌△DEF.
【解答】解:添加的条件:EF=BC,
∵BC∥EF,
∴∠EFD=∠BCA,
∵AF=DC,
∴AF+FC=CD+FC,
即AC=FD,
在△EFD和△BCA中,
∴△EFD≌△BCA(SAS).
故选:EF=BC.
【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
18.若x2﹣2ax+16是完全平方式,则a=±4.
【考点】完全平方式.
【分析】完全平方公式:(a±b)2=a2±2ab+b2,这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍.
【解答】解:∵x2﹣2ax+16是完全平方式,
∴﹣2ax=±2×x×4
∴a=±4.
【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.
19.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA2=4,则△AnBnAn+1的边长为2n﹣1.
【考点】等边三角形的性质.
【专题】规律型.
【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2…进而得出答案.
【解答】解:∵△A1B1A2是等边三角形,
∴A1B1=A2B1,
∵∠MON=30°,
∵OA2=4,
∴OA1=A1B1=2,
∴A2B1=2,
∵△A2B2A3、△A3B3A4是等边三角形,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴A2B2=2B1A2,B3A3=2B2A3,
∴A3B3=4B1A2=8,
A4B4=8B1A2=16,
A5B5=16B1A2=32,
以此类推△AnBnAn+1的边长为2n﹣1.
故答案为:2n﹣1.
【点评】本题主要考查等边三角形的性质及含30°角的直角三角形的性质,由条件得到OA5=2OA4=4OA3=8OA2=16OA1是解题的关键.
三、解答题(本大题共7小题,共63分)
20.计算
(1)(3x﹣2)(2x+3)﹣(x﹣1)2
(2)(6x4﹣8x3)÷(﹣2x2)﹣(3x+2)(1﹣x)
【考点】整式的混合运算.
【分析】(1)利用多项式乘多项式的法则进行计算;
(2)利用整式的混合计算法则解答即可.
【解答】解:(1)(3x﹣2)(2x+3)﹣(x﹣1)2
=6x2+9x﹣4x﹣6﹣x2+2x﹣1
=5x2+7x﹣7;
(2)(6x4﹣8x3)÷(﹣2x2)﹣(3x+2)(1﹣x)
=﹣3x2+4x﹣3x+3x2﹣2+2x
=3x﹣2.
【点评】本题考查了整式的混合计算,关键是根据多项式乘多项式的法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.
21.分解因式
(1)a4﹣16
(2)3ax2﹣6axy+3ay2.
【考点】提公因式法与公式法的综合运用.
【分析】(1)两次利用平方差公式分解因式即可;
(2)先提取公因式3a,再对余下的多项式利用完全平方公式继续分解.
【解答】解:(1)a4﹣16
=(a2+4)(a2﹣4)
=(a2+4)(a+2)(a﹣2);
(2)3ax2﹣6axy+3ay2
=3a(x2﹣2xy+y2)
=3a(x﹣y)2.
【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
22.(1)先化简代数式,然后选取一个使原式有意义的a的值代入求值.
(2)解方程式:.
【考点】分式的化简求值;解分式方程.
【专题】计算题;分式.
【分析】(1)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a=2代入计算即可求出值;
(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【解答】解:(1)原式=[+]?=?=,
当a=2时,原式=2;
(2)去分母得:3x=2x+3x+3,
移项合并得:2x=﹣3,
解得:x=﹣1.5,
经检验x=﹣1.5是分式方程的解.
【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
23.在边长为1的小正方形组成的正方形网格中建立如图片所示的平面直角坐标系,已知格点三角形ABC(三角形的三个顶点都在小正方形上)
(1)画出△ABC关于直线l:x=﹣1的对称三角形△A1B1C1;并写出A1、B1、C1的坐标.
(2)在直线x=﹣l上找一点D,使BD+CD最小,满足条件的D点为(﹣1,1).
提示:直线x=﹣l是过点(﹣1,0)且垂直于x轴的直线.
【考点】作图-轴对称变换;轴对称-最短路线问题.
【分析】(1)分别作出点A、B、C关于直线l:x=﹣1的对称的点,然后顺次连接,并写出A1、B1、C1的坐标;
(2)作出点B关于x=﹣1对称的点B1,连接CB1,与x=﹣1的交点即为点D,此时BD+CD最小,写出点D的坐标.
【解答】解:(1)所作图形如图所示:
A1(3,1),B1(0,0),C1(1,3);
(2)作出点B关于x=﹣1对称的点B1,
连接CB1,与x=﹣1的交点即为点D,
此时BD+CD最小,
点D坐标为(﹣1,1).
故答案为:(﹣1,1).
【点评】本题考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出对应点的位置,并顺次连接.
24.如图,已知:AD平分∠CAE,AD∥BC.
(1)求证:△ABC是等腰三角形.
(2)当∠CAE等于多少度时△ABC是等边三角形?证明你的结论.
【考点】等腰三角形的判定;等边三角形的判定.
【分析】(1)根据角平分线的定义可得∠EAD=∠CAD,再根据平行线的性质可得∠EAD=∠B,∠CAD=∠C,然后求出∠B=∠C,再根据等角对等边即可得证.
(2)根据角平分线的定义可得∠EAD=∠CAD=60°,再根据平行线的性质可得∠EAD=∠B=60°,∠CAD=∠C=60°,然后求出∠B=∠C=60°,即可证得△ABC是等边三角形.
【解答】(1)证明:∵AD平分∠CAE,
∴∠EAD=∠CAD,
∵AD∥BC,
∴∠EAD=∠B,∠CAD=∠C,
∴∠B=∠C,
∴AB=AC.
故△ABC是等腰三角形.
(2)解:当∠CAE=120°时△ABC是等边三角形.
∵∠CAE=120°,AD平分∠CAE,
∴∠EAD=∠CAD=60°,
∵AD∥BC,
∴∠EAD=∠B=60°,∠CAD=∠C=60°,
∴∠B=∠C=60°,
∴△ABC是等边三角形.
【点评】本题考查了等腰三角形的判定,角平分线的定义,平行线的性质,比较简单熟记性质是解题的关键.
25.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要的时间与原计划生产450台机器所需要的时间相同,现在平均每天生产多少台机器?
【考点】分式方程的应用.
【专题】应用题.
【分析】本题考查列分式方程解实际问题的能力,因为现在生产600台机器的时间与原计划生产450台机器的时间相同.所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.
【解答】解:设:现在平均每天生产x台机器,则原计划可生产(x﹣50)台.
依题意得:.
解得:x=200.
检验:当x=200时,x(x﹣50)≠0.
∴x=200是原分式方程的解.
答:现在平均每天生产200台机器.
【点评】列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.而难点则在于对题目已知条件的分析,也就是审题,一般来说应用题中的条件有两种,一种是显性的,直接在题目中明确给出,而另一种是隐性的,是以题目的隐含条件给出.本题中“现在平均每天比原计划多生产50台机器”就是一个隐含条件,注意挖掘.
26.如图,△ACB和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点C、D、E三点在同一直线上,连结BD.求证:
(1)BD=CE;
(2)BD⊥CE.
【考点】全等三角形的判定与性质;等腰直角三角形.
【专题】证明题.
【分析】(1)由条件证明△BAD≌△CAE,就可以得到结论;
(2)根据全等三角形的性质得出∠ABD=∠ACE.根据三角形内角和定理求出∠ACE+∠DFC=90°,求出∠FDC=90°即可.
【解答】证明:(1)∵△ACB和△ADE都是等腰直角三角形,
∴AE=AD,AB=AC,∠BAC=∠DAE=90°,
∴∠BAC+∠CAD=∠EAD+∠CAD,
即∠BAD=∠CAE,
在△BAD和△CAE中,
,
∴△BAD≌△CAE(SAS),
∴BD=CE;
(2)如图,
∵△BAD≌△CAE,
∴∠ABD=∠ACE,
∵∠CAB=90°,
∴∠ABD+∠AFB=90°,
∴∠ACE+∠AFB=90°,
∵∠DFC=∠AFB,
∴∠ACE+∠DFC=90°,
∴∠FDC=90°,
∴BD⊥CE.
【点评】本题考查了全等三角形的判定及性质的运用,垂直的判定及性质的运用,等腰直角三角形的性质的运用,勾股定理的运用,解答时运用全等三角形的性质求解是关键.
初二数学试卷及答案解析相关 文章 :
★ 初二数学期末考试试卷分析
★ 八年级下册数学测试卷及答案解析
★ 八年级下册数学试卷及答案
★ 八年级下数学测试卷及答案分析
★ 八年级数学月考试卷分析
★ 八年级上册数学考试试卷及参考答案
★ 八年级上册数学期末考试试卷及答案
★ 八年级下册期末数学试题附答案
★ 八年级数学试卷质量分析
★ 八年级下册数学练习题及答案
[img]请问有谁有的衡水金卷《2017高三一轮复习周测卷》1-30 物理,化学,生物,答案的!!是周测卷
1由点到面,构建知识网络
对所学的知识点分步地进行梳理、归纳和总结,理清知识脉络。从一个简单的语法点或一个核心句型开始延伸,理清它们的变化形式、变化规律以及与时态、语态等的关联。所谓由点到面,构建知识网络。
2由面到点,加深记忆,查漏补缺
回归课本,查缺补漏,打好基础。以单元为单位展开复习,回忆每单元所学的主要内容,包括核心单词、重点句型和语法,以及需要掌握的对话等。回忆时要有框架,由面到点,比如先通过目录页回忆每个单元的话题,然后再回忆细化的知识点。
3聚焦重难点,巩固易错点
对每单元中的重点内容(词汇、句型和语法)和在练习中易错的点作进一步的复习,解决重点、难点和疑点,加深理解。多看错题本,攻克错题。
4经典题目自测,检验复习效果
对复习效果进行检测,会产生成就感或紧张感,从而自觉主动地去学习,同时可以及时调整复习方法。在复习完成时,选取一定数量的题目进行检测非常有必要。多做典型题,摸清规律,学会举一反三,但不提倡题海战术。
想要考个好成绩,除了熟练掌握单词、语法、句型,还要有正确的答题技巧
2012高考调研衡水重点中学同步精讲精练数学新课标必修一答案
高中数学合集百度网盘下载
链接:
?pwd=1234
提取码:1234
简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。
求衡中同卷202年周测卷的答案
衡中同卷202年周测卷的答案,
这个题目太大了。
可询问学校教务处,
最直接的是问你的班主任。
八年级下册数学测试卷及答案解析
很多学生到了 八年级 数学成绩开始下降,其实很大一部分原因是没有掌握好课本的基础知识。下面是我整理的八年级下册数学测试卷及答案解析,欢迎阅读分享,希望对大家有所帮助。
八年级下册数学测试卷及答案
一、选择题:
1.下列各式从左到右,是因式分解的是()
A.(y﹣1)(y+1)=y2﹣1B.x2y+xy2﹣1=xy(x+y)﹣1
C.(x﹣2)(x﹣3)=(3﹣x)(2﹣x)D.x2﹣4x+4=(x﹣2)2
【考点】因式分解的意义.
【分析】根据因式分解就是把一个多项式变形成几个整式的积的形式的定义,利用排除法求解.
【解答】解:A、是多项式乘法,不是因式分解,故本选项错误;
B、结果不是积的形式,故本选项错误;
C、不是对多项式变形,故本选项错误;
D、运用完全平方公式分解x2﹣4x+4=(x﹣2)2,正确.
故选D.
【点评】这类问题的关键在于能否正确应用分解因式的定义来判断.
2.下列四个图形中,既是轴对称图形又是中心对称图形的是()
A.B.C.D.
【考点】中心对称图形;轴对称图形.
【分析】根据轴对称图形与中心对称图形的概念求解.
【解答】解:A、不是轴对称图形,是中心对称图形;
B、是轴对称图形,也是中心对称图形;
C、是轴对称图形,不是中心对称图形;
D、是轴对称图形,不是中心对称图形.
故选B.
【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.
3.下列多项式中不能用平方差公式分解的是()
A.a2﹣b2B.﹣x2﹣y2C.49x2﹣y2z2D.16m4n2﹣25p2
【考点】因式分解﹣运用公式法.
【分析】能用平方差公式分解的式子的特点是:两项都是平方项,符号相反.
【解答】解:A、符合平方差公式的特点;
B、两平方项的符号相同,不符和平方差公式结构特点;
C、符合平方差公式的特点;
D、符合平方差公式的特点.
故选B.
【点评】本题考查能用平方差公式分解的式子的特点,两平方项的符号相反是运用平方差公式的前提.
4.函数y=kx+b(k、b为常数,k≠0)的图象如图,则关于x的不等式kx+b0的解集为()
A.x0B.x0C.x2D.x2
【考点】一次函数与一元一次不等式.
【分析】从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式kx+b0的解集.
【解答】解:函数y=kx+b的图象经过点(2,0),并且函数值y随x的增大而减小,
所以当x2时,函数值小于0,即关于x的不等式kx+b0的解集是x2.
故选C.
【点评】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用,注意几个关键点(交点、原点等),做到数形结合.
5.使分式有意义的x的值为()
A.x≠1B.x≠2C.x≠1且x≠2D.x≠1或x≠2
【考点】分式有意义的条件.
【分析】根据分式有意义,分母不等于0列不等式求解即可.
【解答】解:由题意得,(x﹣1)(x﹣2)≠0,
解得x≠1且x≠2.
故选C.
【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义?分母为零;(2)分式有意义?分母不为零;(3)分式值为零?分子为零且分母不为零.
6.下列是最简分式的是()
A.B.C.D.
【考点】最简分式.
【分析】先将选项中能化简的式子进行化简,不能化简的即为最简分式,本题得以解决.
【解答】解:,无法化简,,,
故选B.
【点评】本题考查最简分式,解题的关键是明确最简分式的定义.
7.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()
A.6B.7C.8D.9
【考点】等腰三角形的判定.
【专题】分类讨论.
【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.
【解答】解:如上图:分情况讨论.
①AB为等腰△ABC底边时,符合条件的C点有4个;
②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.
故选:C.
【点评】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.
8.若不等式组的解集是x2,则a的取值范围是()
A.a2B.a≤2C.a≥2D.无法确定
【考点】解一元一次不等式组.
【专题】计算题.
【分析】解出不等式组的解集,与已知解集x2比较,可以求出a的取值范围.
【解答】解:由(1)得:x2
由(2)得:xa p=""
因为不等式组的解集是x2
∴a≥2
故选:C.
【点评】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.
9.下列式子:(1);(2);(3);(4),其中正确的有()
A.1个B.2个C.3个D.4个
【考点】分式的基本性质.
【分析】根据分式的基本性质作答.
【解答】解:(1),错误;
(2),正确;
(3)∵b与a的大小关系不确定,∴的值不确定,错误;
(4),正确.
故选B.
【点评】在分式中,无论进行何种运算,如果要不改变分式的值,则所做变化必须遵循分式基本性质的要求.
10.某煤矿原计划x天生存120t煤,由于采用新的技术,每天增加生存3t,因此提前2天完成,列出的方程为()
A.==﹣3B.﹣3
C.﹣3D.=﹣3
【考点】由实际问题抽象出分式方程.
【分析】设原计划x天生存120t煤,则实际(x﹣2)天生存120t煤,等量关系为:原计划工作效率=实际工作效率﹣3,依此可列出方程.
【解答】解:设原计划x天生存120t煤,则实际(x﹣2)天生存120t煤,
根据题意得,=﹣3.
故选D.
【点评】本题考查由实际问题抽象出分式方程,关键设出天数,以工作效率作为等量关系列方程.
二、填空题:
11.分解因式x2(x﹣y)+(y﹣x)=(x﹣y)(x+1)(x﹣1).
【考点】提公因式法与公式法的综合运用.
【分析】把(x﹣y)看作一个整体并提取,然后再利用平方差公式继续分解因式即可.
【解答】解:x2(x﹣y)+(y﹣x)
=x2(x﹣y)﹣(x﹣y)
=(x﹣y)(x2﹣1)
=(x﹣y)(x+1)(x﹣1).
故答案为:(x﹣y)(x+1)(x﹣1).
【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他 方法 进行因式分解,同时因式分解要彻底,直到不能分解为止.
12.当x=﹣2时,分式无意义.若分式的值为0,则a=﹣2.
【考点】分式的值为零的条件;分式有意义的条件.
【分析】根据分母为零,分式无意义;分母不为零,分式有意义,分子为零分母不为零分式的值为零,可得答案.
【解答】解:∵分式无意义,
∴x+2=0,
解得x=﹣2.
∵分式的值为0,
∴,
解得a=﹣2.
故答案为:=﹣2,﹣2.
【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义?分母为零;分式有意义?分母不为零;分式值为零?分子为零且分母不为零.
13.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为6.
【考点】线段垂直平分线的性质.
【专题】计算题;压轴题.
【分析】运用线段垂直平分线定理可得BE=CE,再根据已知条件“△EDC的周长为24,△ABC与四边形AEDC的周长之差为12”表示出线段之间的数量关系,联立关系式后求解.
【解答】解:∵DE是BC边上的垂直平分线,
∴BE=CE.
∵△EDC的周长为24,
∴ED+DC+EC=24,①
∵△ABC与四边形AEDC的周长之差为12,
∴(AB+AC+BC)﹣(AE+ED+DC+AC)=(AB+AC+BC)﹣(AE+DC+AC)﹣DE=12,
∴BE+BD﹣DE=12,②
∵BE=CE,BD=DC,
∴①﹣②得,DE=6.
故答案为:6.
【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.
14.若4a4﹣ka2b+25b2是一个完全平方式,则k=±20.
【考点】完全平方式.
【分析】根据4a4﹣ka2b+25b2是一个完全平方式,利用此式首末两项是2a2和5b这两个数的平方,那么中间一项为加上或减去2a2和5b积的2倍,进而求出k的值即可.
【解答】解:∵4a4﹣ka2b+25b2是一个完全平方式,
∴4a4﹣ka2b+25b2=(2a2±5b)2,
=4a4±20a2b+25b2.
∴k=±20,
故答案为:±20.
【点评】此题主要考查的是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.
15.如图,在△ABC中,∠C=90°,AC=BC,斜边AB=2,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为﹣.
【考点】扇形面积的计算.
【分析】连接OC,作OM⊥BC,ON⊥AC,证明△OMG≌△ONH,则S四边形OGCH=S四边形OMCN,求得扇形FOE的面积,则阴影部分的面积即可求得.
【解答】解:连接OC,作OM⊥BC,ON⊥AC.
∵CA=CB,∠ACB=90°,点O为AB的中点,
∴OC=AB=1,四边形OMCN是正方形,OM=.
则扇形FOE的面积是:=.
∵OA=OB,∠AOB=90°,点D为AB的中点,
∴OC平分∠BCA,
又∵OM⊥BC,ON⊥AC,
∴OM=ON,
∵∠GOH=∠MON=90°,
∴∠GOM=∠HON,
则在△OMG和△ONH中,
,
∴△OMG≌△ONH(AAS),
∴S四边形OGCH=S四边形OMCN=()2=.
则阴影部分的面积是:﹣.
故答案为:﹣.
【点评】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△OMG≌△ONH,得到S四边形OGCH=S四边形OMCN是解题的关键.
三、解答题
16.(21分)(2016春?成都校级期中)(1)因式分解:2x2y﹣4xy2+2y3;
(2)解方程:=+;
(3)先化简,再求值(﹣x+1)÷,其中;
(4)解不等式组,把解集在数轴上表示出来,且求出其整数解.
【考点】分式的化简求值;提公因式法与公式法的综合运用;解分式方程;在数轴上表示不等式的解集;解一元一次不等式组;一元一次不等式组的整数解.
【分析】(1)先提公因式,然后根据完全平方公式解答;
(2)去分母后将原方程转化为整式方程解答.
(3)将括号内统分,然后进行因式分解,化简即可;
(4)分别求出不等式的解集,找到公共部分,在数轴上表示即可.
【解答】解:(1)原式=2y(x2﹣2xy+y2)
=2y(x﹣y)2;
(2)去分母,得(x﹣2)2=(x+2)2+16
去括号,得x2﹣4x+4=x2+4x+4+16
移项合并同类项,得﹣8x=16
系数化为1,得x=﹣2,
当x=﹣2时,x+2=0,则x=﹣2是方程的增根.
故方程无解;
(3)原式=[﹣]?
=?
=?
=﹣,
当时,原式=﹣=﹣=﹣;
(4)
由①得x2,
由②得x≥﹣1,
不等式组的解集为﹣1≤x2,
在数轴上表示为
.
【点评】本题考查的是分式的化简求值、因式分解、解一元一次不等式组、在数轴上表示不等式组的解集,考查内容较多,要细心解答.
17.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).
(1)将△ABC沿y轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标;
(2)画出△A1B1C1以点O为旋转中心、顺时针方向旋转90度的△A2B2C2,并求出点C1经过的路径的长度.
【考点】作图﹣旋转变换;作图﹣平移变换.
【分析】(1)分别作出点A、B、C沿y轴正方向平移3个单位得到对应点,顺次连接即可得;
(2)分别作出点A、B、C以点O为旋转中心、顺时针方向旋转90度得到对应点,顺次连接即可得,再根据弧长公式计算即可.
【解答】解:(1)如图,△A1B1C1即为所求作三角形,点B1坐标为(﹣2,﹣1);
(2)如图,△A2B2C2即为所求作三角形,
∵OC==,
∴==π.
【点评】本题考查了平移作图、旋转作图,解答本题的关键是熟练平移的性质和旋转的性质及弧长公式.
18.小明和同学一起去书店买书,他们先用15元买了一种科普书,又用15元买了一种文学书,科普书的价格比文学书的价格高出一半,因此他们买的文学书比科普书多一本,这种科普和文学书的价格各是多少?
【考点】分式方程的应用.
【专题】应用题.
【分析】根据题意,设科普和文学书的价格分别为x和y元,则根据“科普书的价格比文学书的价格高出一半,买的文学书比科普书多一本“列方程组即可求解.
【解答】解:设科普和文学书的价格分别为x和y元,
则有:,
解得:x=7.5,y=5,
即这种科普和文学书的价格各是7.5元和5元.
【点评】本题考查分式方程的应用,同时考查学生理解题意的能力,关键是根据“科普书的价格比文学书的价格高出一半,买的文学书比科普书多一本“列出方程组.
19.已知关于x的方程=3的解是正数,求m的取值范围.
【考点】解分式方程;解一元一次不等式.
【专题】计算题.
【分析】先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围.
【解答】解:原方程整理得:2x+m=3x﹣6,
解得:x=m+6.
因为x0,所以m+60,即m﹣6.①
又因为原式是分式方程,所以x≠2,即m+6≠2,所以m≠﹣4.②
由①②可得,m的取值范围为m﹣6且m≠﹣4.
【点评】本题主要考查了分式方程的解法及其增根产生的原因.解答本题时,易漏掉m≠4,这是因为忽略了x﹣2≠0这个隐含的条件而造成的,这应引起同学们的足够重视.
20.(12分)(2016?河南模拟)问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.
【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.
【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足∠BAD=2∠EAF关系时,仍有EF=BE+FD.
【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:=1.41,=1.73)
【考点】四边形综合题.
【分析】【发现证明】根据旋转的性质可以得到△ADG≌△ABE,则GF=BE+DF,只要再证明△AFG≌△AFE即可.
【类比引申】延长CB至M,使BM=DF,连接AM,证△ADF≌△ABM,证△FAE≌△MAE,即可得出答案;
【探究应用】利用等边三角形的判定与性质得到△ABE是等边三角形,则BE=AB=80米.把△ABE绕点A逆时针旋转150°至△ADG,只要再证明∠BAD=2∠EAF即可得出EF=BE+FD.
【解答】【发现证明】证明:如图(1),∵△ADG≌△ABE,
∴AG=AE,∠DAG=∠BAE,DG=BE,
又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,
∴∠GAF=∠FAE,
在△GAF和△FAE中,
,
∴△AFG≌△AFE(SAS),
∴GF=EF,
又∵DG=BE,
∴GF=BE+DF,
∴BE+DF=EF;
【类比引申】∠BAD=2∠EAF.
理由如下:如图(2),延长CB至M,使BM=DF,连接AM,
∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,
∴∠D=∠ABM,
在△ABM和△ADF中,
,
∴△ABM≌△ADF(SAS),
∴AF=AM,∠DAF=∠BAM,
∵∠BAD=2∠EAF,
∴∠DAF+∠BAE=∠EAF,
∴∠EAB+∠BAM=∠EAM=∠EAF,
在△FAE和△MAE中,
,
∴△FAE≌△MAE(SAS),
∴EF=EM=BE+BM=BE+DF,
即EF=BE+DF.
故答案是:∠BAD=2∠EAF.
【探究应用】如图3,把△ABE绕点A逆时针旋转150°至△ADG,连接AF,过A作AH⊥GD,垂足为H.
∵∠BAD=150°,∠DAE=90°,
∴∠BAE=60°.
又∵∠B=60°,
∴△ABE是等边三角形,
∴BE=AB=80米.
根据旋转的性质得到:∠ADG=∠B=60°,
又∵∠ADF=120°,
∴∠GDF=180°,即点G在CD的延长线上.
易得,△ADG≌△ABE,
∴AG=AE,∠DAG=∠BAE,DG=BE,
又∵AH=80×=40,HF=HD+DF=40+40(﹣1)=40
故∠HAF=45°,
∴∠DAF=∠HAF﹣∠HAD=45°﹣30°=15°
从而∠EAF=∠EAD﹣∠DAF=90°﹣15°=75°
又∵∠BAD=150°=2×75°=2∠EAF
∴根据上述推论有:EF=BE+DF=80+40(﹣1)≈109(米),即这条道路EF的长约为109米.
【点评】此题主要考查了四边形综合题,关键是正确画出图形,证明∠BAD=2∠EAF.此题是一道综合题,难度较大,题目所给例题的思路,为解决此题做了较好的铺垫.
八年级数学怎么快速提高
一、做好数学 课前预习 工作
很多学生在数学课前预习的习惯,这样会造成课上学的不太懂、课后翻书找不到的这样的情况。要有针对性的 数学 学习方法 。根据自己的情况 总结 不足,有针对性的调整学习方法。总之,只要有了认真的 学习态度 ,有了学习的决心,再加上正确务实的数学学习方法,快速提高数学成绩不是问题。
二、学会记笔记
记笔记可能很多家长觉得不难,而且学生是有记笔记的,那么为什么数学成绩还是不好呢?要注重思考和归纳总结。老师讲过的题目不能仅仅是听懂,还要会;另外对于上课没听懂的数学题一定要记在数学笔记上。
1、课前预习不会的要记在数学笔记上,课上可以与老师交流;
2、上课时,记下老师讲的重点,也可把模糊的数学知识点记住。
3、课后笔记则是对课上不理解的知识点进行整理,并且先根据自己的笔记去尝试是否能解开不懂的地方,若不能则需要及时的询问老师,养成不懂就问的好习惯。
三、能找出错误的数学点
学生们在提高数学成绩时,会找出学生作业或考试中的错误点,让自己能清楚知道自己哪里做错了,并且能够改正自己的错误。
初二数学学习技巧
技巧1:要熟记数学题型
初二数学大大小小有几十个知识点,每个知识点都有对应的题目。相关的题目无非就是这个知识点的灵活运用,掌握了题型就可以做到举一反三。与其做十道题,还不如熟练掌握一道题,如果你对数学不那么感兴趣,背题可以使你免受练习之苦,还能更有效率的增强考试成绩。只要记下足够的题型,就可以使你的分数上一个层次。
技巧2:注重课本知识要点
要吃透课本,课本上重要的定义,以及想数学公式的由来和演变、知识点的应用。这是较起码的要求,为下一步做题“回归课本”打好基础。基础差先记数学的知识点。手边常备一本小手册,用零碎时间看一看,只有大脑记住那个知识点,遇到有关这个知识点的题才能解决。所以基础差的同学还是要下点功夫。只要坚持,有耐心,努力的话,两个月时间之内数学成绩会有大幅度增强的。
技巧3:对错题进行纠错整理
如果你的数学成绩不是太差,也就是说考试能及格的可以把注意力放在背题上,但遇到想不出来的知识点,还是要巩固一下。对于经常出错的题目,可以整理成一个纠错本,对错误的点,错误原因标注清楚。同时提醒自己以后遇到这种类型的题目应该注意什么细节,进步其实就是减小自己犯错的概率,把该拿的分数要拿下来。
初二数学注意事项
1、按部就班。初二数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。
2、强调理解。概念、定理、公式要在理解的基础上记忆。我的 经验 是,每新学一个定理,便尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。
3、基本训练。学习初二数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉常考的题型,训练要做到有的放矢。
八年级下册数学测试卷及答案解析相关 文章 :
★ 八年级下册数学期末试卷及答案华师版
★ 八年级下册数学期末卷子及答案
★ 初二数学试卷及答案解析
★ 人教版八年级下册数学期末试卷及答案
★ 八年级下册数学期末考试卷及答案
★ 人教版初二数学下册期末试题及答案
★ 八年级数学下册期末试卷
★ 下学期八年级数学期末试卷
★ 八年级数学下学期期末试卷
★ 八年级下册数学期末考试试卷
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
衡水金券2016-2017年度高三一轮复习周测卷数学七答案
作业最好是自己做哦,这样对学习中的学生来说才能提高成绩。如果手机是安卓手机,就请在各应用市场更新最新版本作业帮,在拍照搜题页面上方点击“作业答案”,即可进行扫码搜索
我目前有办法给你的是,第一,加班上群里找同学的抄(当然并不建议你这么做;第二,就是自己好好做,提高自己。当然,最好的办法还是自己做,对成绩有好处。
作业怎么能发到网上来问答案呢,这样对你学习成绩没什么用。多问问老师才对学习成绩能提高,多思考一下,一般的练习题并不难的。
衡水同步周测卷数学答案的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于衡水中学同步月考卷、衡水同步周测卷数学答案的信息别忘了在本站进行查找喔。