8上一线调研卷数学答案(一线调研卷八上数学答案)

今天给各位同学分享8上一线调研卷数学答案的知识,其中也会对一线调研卷八上数学答案进行解释,如果能碰巧解决你现在面临的问题,别忘了分享本站,现在开始吧!

本文目录一览:

人教版八年级上数学期末考试试卷及答案

仔细读题,后难先易。驱除杂念,循规蹈矩。遭遇难题,冷静梳理。认真检查,多多有益。祝你八年级数学期末考试成功!我整理了关于人教版八年级上数学期末考试试卷,希望对大家有帮助!

人教版八年级上数学期末考试试题

一、选择题(本题共10个小题,每小题3分,共30分)

1.﹣ 的相反数是()

A.2 B.﹣2 C. D.﹣

2.下列计算正确的是()

A.3a+3b=6ab B.19a2b2﹣9ab=10ab

C.﹣2x2﹣2x2=0 D.5y﹣3y=2y

3.成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为()

A.18.1×105 B.1.81×106 C.1.81×107 D.181×104

4.下列方程中是一元一次方程的是()

A.4x﹣5=0 B.2x﹣y=3 C.3x2﹣14=2 D. ﹣2=3

5.用平面去截五棱柱,在所得的截面中,不可能出现的是()

A.八边形 B.四边形 C.六边形 D.三角形

6.下列说法中错误的是()

A.有理数可以分为正有理数、负有理数和零

B.0的相反数等于它本身

C.0既不是正数也不是负数

D.任何一个有理数的绝对值都是正数

7.某校七(3)班的同学进行了一次安全知识测试,测试成绩进行整理后分成四个组,并绘制如图所示的频数直方图,则第二组的频数是()

A.0.4 B.18 C.0.6 D.27

8.如图所示,OC平分∠AOB,OD平分∠AOC,且∠COD=25°,则∠AOB等于()

A.50° B.75° C.100° D.20°

9.已知a+b=4,c+d=2,则(b﹣c)﹣(d﹣a)的值为()

A.6 B.﹣6 C.2 D.﹣2

10.某商场把一个双肩背书包按进价提高50%标价,然后再按八折出售,这样商场每卖出一个书包就可赢利8元.设每个双肩背书包的进价是x元,根据题意列一元一次方程,正确的是()

A.(1+50%)x•80%﹣x=8 B.50%x•80%﹣x=8

C.(1+50%)x•80%=8 D.(1+50%)x﹣x=8

二、填空题(本大题共5个小题,每小题3分,共15分)

11.为了调查一批灯泡的使用寿命,一般采用(选填抽样调查或普查)的方式进行.

12.在如图所示的运算流程中,若输入的数x=﹣4,则输出的数y=.

13.已知关于x的方程3a+x= 的解为2,则a的值是.

14.观察下列图形,它们是按一定规律排列的,依照此规律,第7个图形有个.

15.一个幻方中,每一行,每一列,及每一对角线上的三个数之和有相同的值,如图所示已知一个幻方中的三个数,x的值是.

三、解答下列各题(共20分,答案写在答题卡上)

16.(1)计算:﹣32+100÷(﹣2)2﹣(﹣2)×(﹣ )

(2)计算:(1 + ﹣2.75)×(﹣24)+(﹣1)2017﹣|﹣2|3.

17.(1)解方程: =1﹣

(2)先化简,再求值: (9ab2﹣3)+(7a2b﹣2)+2(ab2+1)﹣2a2b,其中a、b满足(a+2)2+|b﹣3|=0.

四、解下列各题(共22分)

18.(1)如图所示为一几何体的三视图:

①写出这个几何体的名称;

②画出这个几何体的一种表面展开图;

③若长方形的高为10cm,正三角形的边长为4cm,求这个几何体的侧面积.

(2)方程 [(a﹣ )x+ ]=1和方程 ﹣1= 的解相同,求a的值.

19.(1)已知多项式A=2x2﹣xy+my﹣8,B=﹣nx2+xy+y+7,A﹣2B中不含有x2项和y项,求nm+mn的值.

(2)如图,已知线段AB=20,C是AB上的一点,D为CB上的一点,E为DB的中点,DE=3.

①若CE=8,求AC的长;

②若C是AB的中点,求CD的长.

五、解下列各题(20题6分,21题7分,共13分)

20.为了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).

请你根据图中提供的信息,解答下列问题:

(1)计算被抽取的天数;

(2)请补全条形统计图,并求扇形统计图中表示“优”的扇形的圆心角度数;

(3)请估计该市这一年达到“优”和“良”的总天数.

21.某中学举行数学竞赛,计划用A、B两台复印机复印试卷.如果单独用A机器需要90分钟印完,如果单独用B机器需要60分钟印完,为了保密的需要,不能过早复印试卷,学校决定在考试前由两台复印机同时复印.

(1)两台复印机同时复印,共需多少分钟才能印完?

(2)若两台复印机同时复印30分钟后,B机出了故障,暂时不能复印,此时离发卷还有13分钟.请你算一下,如果由A机单独完成剩下的复印任务,会不会影响按时发卷考试?

(3)在(2)的问题中,B机经过紧急抢修,9分钟后修好恢复正常使用,请你再计算一下,学校能否按时发卷考试?

人教版八年级上数学期末考试试卷参考答案

一、选择题(本题共10个小题,每小题3分,共30分)

1.﹣ 的相反数是()

A.2 B.﹣2 C. D.﹣

【考点】相反数.

【分析】根据只有符号不同的两个数叫做互为相反数解答.

【解答】解:﹣ 的相反数是 .

故选C.

2.下列计算正确的是()

A.3a+3b=6ab B.19a2b2﹣9ab=10ab

C.﹣2x2﹣2x2=0 D.5y﹣3y=2y

【考点】合并同类项.

【分析】直接利用合并同类项法则分别判断得出答案.

【解答】解:A、3a+3b无法计算,故此选项错误;

B、19a2b2﹣9ab无法计算,故此选项错误;

C、﹣2x2﹣2x2=﹣4x2,故此选项错误;

D、5y﹣3y=2y,正确.

故选:D.

3.成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为()

A.18.1×105 B.1.81×106 C.1.81×107 D.181×104

【考点】科学记数法—表示较大的数.

【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数.

【解答】解:181万=181 0000=1.81×106,

故选:B.

4.下列方程中是一元一次方程的是()

A.4x﹣5=0 B.2x﹣y=3 C.3x2﹣14=2 D. ﹣2=3

【考点】一元一次方程的定义.

【分析】根据一元一次方程的定义得出即可.

【解答】解:A、是一元一次方程,故本选项正确;

B、不是一元一次方程,故本选项错误;

C、不是一元一次方程,故本选项错误;

D、不是一元一次方程,故本选项错误;

故选A.

5.用平面去截五棱柱,在所得的截面中,不可能出现的是()

A.八边形 B.四边形 C.六边形 D.三角形

【考点】截一个几何体.

【分析】用一个平面截一个几何体得到的面叫做几何体的截面,依此即可求解.

【解答】解:用一个平面去截五棱柱,边数最多的截面是七边形.

故选A.

6.下列说法中错误的是()

A.有理数可以分为正有理数、负有理数和零

B.0的相反数等于它本身

C.0既不是正数也不是负数

D.任何一个有理数的绝对值都是正数

【考点】有理数;相反数;绝对值.

【分析】根据有理数的含义和分类方法,绝对值的含义和求法,以及相反数的含义和求法,逐一判断即可.

【解答】解:∵有理数可以分为正有理数、负有理数和零,

∴选项A正确;

∵0的相反数等于它本身,

∴选项B正确;

∵0既不是正数也不是负数,

∴选项C正确;

∵任何一个有理数的绝对值是正数或0,

∴选项D不正确.

故选:D.

7.某校七(3)班的同学进行了一次安全知识测试,测试成绩进行整理后分成四个组,并绘制如图所示的频数直方图,则第二组的频数是()

A.0.4 B.18 C.0.6 D.27

【考点】频数(率)分布直方图.

【分析】根据频数分布直方图即可求解.

【解答】解:根据频数分布直方图可知,第二组的频数是18.

故选B.

8.如图所示,OC平分∠AOB,OD平分∠AOC,且∠COD=25°,则∠AOB等于()

A.50° B.75° C.100° D.20°

【考点】角平分线的定义.

【分析】根据角的平分线定义得出∠AOD=∠COD,∠AOB=2∠AOC=2∠BOC,求出∠AOD、∠AOC的度数,即可求出答案.

【解答】解:∵OC是∠AOB的平分线,OD是∠AOC的平分线,∠COD=25°,

∴∠AOD=∠COD=25°,∠AOB=2∠AOC,

∴∠AOB=2∠AOC=2(∠AOD+∠COD)=2×(25°+25°)=100°,

故选:C.

9.已知a+b=4,c+d=2,则(b﹣c)﹣(d﹣a)的值为()

A.6 B.﹣6 C.2 D.﹣2

【考点】整式的加减.

【分析】先将(b﹣c)﹣(d﹣a)变形为(b+a)﹣(c+d),然后将a+b=4,c+d=2代入求解即可.

【解答】解:∵a+b=4,c+d=2,

∴(b﹣c)﹣(d﹣a)

=(b+a)﹣(c+d)

=4﹣2

=2.

故选C.

10.某商场把一个双肩背书包按进价提高50%标价,然后再按八折出售,这样商场每卖出一个书包就可赢利8元.设每个双肩背书包的进价是x元,根据题意列一元一次方程,正确的是()

A.(1+50%)x•80%﹣x=8 B.50%x•80%﹣x=8

C.(1+50%)x•80%=8 D.(1+50%)x﹣x=8

【考点】由实际问题抽象出一元一次方程.

【分析】首先根据题意表示出标价为(1+50%)x,再表示出售价为(1+50%)x•80%,然后利用售价﹣进价=利润即可得到方程.

【解答】解:设每个双肩背书包的进价是x元,根据题意得:

(1+50%)x•80%﹣x=8.

故选:A.

二、填空题(本大题共5个小题,每小题3分,共15分)

11.为了调查一批灯泡的使用寿命,一般采用 抽样调查 (选填抽样调查或普查)的方式进行.

【考点】全面调查与抽样调查.

【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.

【解答】解:为了调查一批灯泡的使用寿命,一般采用 抽样调查的方式进行,

故答案为:抽样调查.

12.在如图所示的运算流程中,若输入的数x=﹣4,则输出的数y= ﹣8 .

【考点】有理数的混合运算.

【分析】根据有理数的混合运算的运算方法,求出若输入的数x=﹣4,则输出的数y是多少即可.

【解答】解:(﹣4)2÷(﹣2)

=16÷(﹣2)

=﹣8

∴若输入的数x=﹣4,则输出的数y=﹣8.

故答案为:﹣8.

13.已知关于x的方程3a+x= 的解为2,则a的值是 ﹣  .

【考点】一元一次方程的解.

【分析】把x=2代入方程3a+x= 得出3a+2= ,求出方程的解即可.

【解答】解:把x=2代入方程3a+x= 得:3a+2= ,

解得:a=﹣ ,

故答案为:﹣ .

14.观察下列图形,它们是按一定规律排列的,依照此规律,第7个图形有 71 个.

【考点】规律型:图形的变化类.

【分析】由图形可以看出:第一行小太阳的个数是从1开始连续的自然数,第二行小太阳的个数是1、2、4、8、…、2n﹣1,由此计算得出答案即可.

【解答】解:第一行小太阳的个数为1、2、3、4、…,第5个图形有5个太阳,

第二行小太阳的个数是1、2、4、8、…、2n﹣1,第5个图形有24=16个太阳,

所以第7个图形共有7+64=71个太阳.

故答案为:71.

15.一个幻方中,每一行,每一列,及每一对角线上的三个数之和有相同的值,如图所示已知一个幻方中的三个数,x的值是 26 .

【考点】一元一次方程的应用.

【分析】由题意可先得到右上角的数为28,由于要求每一行,每一列,及每一对角线上的三个数之和有相同的值,所以中央的数是右上角与左下角的数的平均数,故可求得x的值.

【解答】解:右上角的数为:22+27+x﹣x﹣21=28,

中央数为:(22+28)÷2=25,

故x+27+22=22+25+28,

解得:x=26.

故本题答案为:26.

三、解答下列各题(共20分,答案写在答题卡上)

16.(1)计算:﹣32+100÷(﹣2)2﹣(﹣2)×(﹣ )

(2)计算:(1 + ﹣2.75)×(﹣24)+(﹣1)2017﹣|﹣2|3.

【考点】有理数的混合运算.

【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;

(2)原式利用乘法分配律,乘方的意义,以及绝对值的代数意义计算即可得到结果.

【解答】解:(1)原式=﹣9+25﹣5=11;

(2)原式=﹣32﹣3+66﹣1﹣8=22.

17.(1)解方程: =1﹣

(2)先化简,再求值: (9ab2﹣3)+(7a2b﹣2)+2(ab2+1)﹣2a2b,其中a、b满足(a+2)2+|b﹣3|=0.

【考点】解一元一次方程;非负数的性质:绝对值;非负数的性质:偶次方;整式的加减—化简求值.

【分析】(1)首先去分母,然后去括号、移项、合并同类项、系数化成1即可求解;

(2)去括号、合并同类项即可化简,然后根据非负数的性质求得a和b的值,代入化简后的式子即可求值.

【解答】解:(1)去分母,得5(x﹣1)=15﹣3(3x+2),

去括号,得5x﹣5=15﹣9x﹣6,

移项,得5x+9x=15﹣6+5,

合并同类项,得14x=14,

系数化成1得x=1;

(2)原式=3ab2﹣1+7ab2+2﹣2a2b

=10ab2﹣2a2b+1,

∵(a+2)2+|b﹣3|=0,

∴a+2=0,b﹣3=0,

∴a=﹣2,b=3.

则原式=10×(﹣2)×9﹣2×4×3+1=﹣180﹣24+1=﹣203.

四、解下列各题(共22分)

18.(1)如图所示为一几何体的三视图:

①写出这个几何体的名称;

②画出这个几何体的一种表面展开图;

③若长方形的高为10cm,正三角形的边长为4cm,求这个几何体的侧面积.

(2)方程 [(a﹣ )x+ ]=1和方程 ﹣1= 的解相同,求a的值.

【考点】由三视图判断几何体;同解方程;几何体的展开图.

【分析】(1)①如图所示,根据三视图的知识来解答;②根据几何体画出这个几何体的一种表面展开图即可;③根据求图形的面积的方法即可得到结果;

(2)根据题意即可得到结论.

【解答】解:(1)①根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为三棱柱;

②如图所示,

③这个几何体的侧面积=3×10×4=120cm2;

(2)解 [(a﹣ )x+ ]=1得x=﹣ ,

解 ﹣1= 得x= ,

∵方程 [(a﹣ )x+ ]=1和方程 ﹣1= 的解相同,

∴﹣ = ,

∴a= .

19.(1)已知多项式A=2x2﹣xy+my﹣8,B=﹣nx2+xy+y+7,A﹣2B中不含有x2项和y项,求nm+mn的值.

(2)如图,已知线段AB=20,C是AB上的一点,D为CB上的一点,E为DB的中点,DE=3.

①若CE=8,求AC的长;

②若C是AB的中点,求CD的长.

【考点】两点间的距离;整式的加减.

【分析】(1)根据题意列出关系式,去括号合并后由结果不含有x2,y项,求出m与n的值,代入代数式即可得到结论;

(2)①由E为DB的中点,得到BD=DE=3,根据线段的和差即可得到结论;②由E为DB的中点,得到BD=2DE=6,根据C是AB的中点,得到BC= AB=10,根据线段的和差即可得到结论.

【解答】解:(1)根据题意得:A﹣2B=2x2﹣xy+my﹣8﹣2(﹣nx2+xy+y+7)=(2+2n)x2﹣3xy+(m﹣2)y﹣22,

∵和中不含有x2,y项,

∴2+2n=0,m﹣2=0,

解得:m=2,n=﹣1,

∴nm+mn=﹣1;

(2)①∵E为DB的中点,

∴BD=DE=3,

∵CE=8,

∴BC=CE+BE=11,

∴AC=AB﹣BC=9;

②∵E为DB的中点,

∴BD=2DE=6,

∵C是AB的中点,

∴BC= AB=10,

∴CD=BC﹣BD=10﹣6=4.

五、解下列各题(20题6分,21题7分,共13分)

20.为了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).

请你根据图中提供的信息,解答下列问题:

(1)计算被抽取的天数;

(2)请补全条形统计图,并求扇形统计图中表示“优”的扇形的圆心角度数;

(3)请估计该市这一年达到“优”和“良”的总天数.

【考点】条形统计图;用样本估计总体;扇形统计图.

【分析】(1)根据扇形图中空气为优所占比例为20%,条形图中空气为优的天数为12天,即可得出被抽取的总天数;

(2)轻微污染天数是60﹣36﹣12﹣3﹣2﹣2=5天;利用360°乘以优所占的份额即可得优的扇形的圆心角度数;

(3)利用样本中优和良的天数所占比例乘以一年即可求出达到优和良的总天数.

【解答】解:(1)扇形图中空气为优所占比例为20%,条形图中空气为优的天数为12天,

∴被抽取的总天数为:12÷20%=60(天);

(2)轻微污染天数是60﹣36﹣12﹣3﹣2﹣2=5天;

表示优的圆心角度数是 360°=72°,

如图所示:

;

(3)样本中优和良的天数分别为:12,36,

一年达到优和良的总天数为: ×365=292(天).

故估计本市一年达到优和良的总天数为292天.

21.某中学举行数学竞赛,计划用A、B两台复印机复印试卷.如果单独用A机器需要90分钟印完,如果单独用B机器需要60分钟印完,为了保密的需要,不能过早复印试卷,学校决定在考试前由两台复印机同时复印.

(1)两台复印机同时复印,共需多少分钟才能印完?

(2)若两台复印机同时复印30分钟后,B机出了故障,暂时不能复印,此时离发卷还有13分钟.请你算一下,如果由A机单独完成剩下的复印任务,会不会影响按时发卷考试?

(3)在(2)的问题中,B机经过紧急抢修,9分钟后修好恢复正常使用,请你再计算一下,学校能否按时发卷考试?

【考点】一元一次方程的应用.

【分析】(1)设共需x分钟才能印完,依题意得( + )x=1,解方程即可;

(2)设由A机单独完成剩下的复印任务需要y分钟才能印完,依题意得( + )×30+ =1,求解与13分进行比较即可;

(3)当B机恢复使用时,两机又共同复印了z分钟印完试卷,依题意得( + )×30+ +( + )z=1,求解后加9再与13进行比较

【解答】解:(1)设共需x分钟才能印完,( + )x=1,解得x=36

答:两台复印机同时复印,共需36分钟才能印完;

(2)设由A机单独完成剩下的复印任务需要y分钟才能印完,

( + )×30+ =1,解得y=1513

答:会影响学校按时发卷考试;

(3)当B机恢复使用时,两机又共同复印了z分钟印完试卷,

( + )×30+ +( + )z=1

解得z=2.4

则有9+2.4=11.413.

答:学校可以按时发卷考试.

[img]

初二上册华师大版数学一线调研答案。求角边角到斜边直角边的答案。谢谢

证明步骤[1]:

已知:Rt△ABC和Rt△DEF中,∠B=∠DEF=90°,AC=DF,AB=DE.

求证:△ABC≌△DEF.

证明:在Rt△DEF左侧做一个Rt△DEG,使DE重合,GE=BC.

∵AB=DE, ∠B=∠DEG, BC=GE.

∴△ABC≌△DEG(SAS)

∴AC=DG.

又∵AC=DF,

∴DG=DF.

∴等腰三角形DGF.

∴∠G=∠F

又∵∠B=∠DEF, DE=DE,

∴△ABC≌△DEF.

∴HL可以用来证明直角三角形全等。

Q.E.D.

八年级上册数学试卷附带答案

八年级上期数学期中试卷

(考试时间:120分钟) 出卷:新中祝毅

填空题(1~10题 每空1分,11~14题 每空2分,共28分)

1、(1)在□ABCD中,∠A=44,则∠B= ,∠C= 。

(2)若□ABCD的周长为40cm, AB:BC=2:3, 则CD= , AD= 。

2、若一个正方体棱长扩大2倍,则体积扩大 倍。

要使一个球的体积扩大27倍,则半径扩大 倍。

3、对角线长为2的正方形边长为 ;它的面积是 。

4、化简:(1) (2) , (3) = ______。

5、估算:(1) ≈_____(误差小于1),(2) ≈_____(精确到0.1)。

6、5的平方根是 , 的平方根是 ,-8的立方根是 。

7、如图1,64、400分别为所在正方形的面积,则图中字母所代表的正方形面积是 。

8、如图2,直角三角形中未知边的长度 = 。

9、已知 ,则由此 为三边的三角形是 三角形。

10、钟表上的分针绕其轴心旋转,分针经过15分后,分针转过的角度是 。

11、如图3,一直角梯形,∠B=90°,AD‖BC,AB=BC=8,CD=10,则梯形的面积是 。

12、如图4,已知 ABCD中AC=AD,∠B=72°,则∠CAD=_________。

13、图5中,甲图怎样变成乙图:__ __ ___________________________ _。

14、用两个一样三角尺(含30°角的那个),能拼出______种平行四边形。

二、选择题(15~25题 每题2分,共22分)

15、下列运动是属于旋转的是( )

A.滚动过程中的篮球 B.钟表的钟摆的摆动

C.气球升空的运动 D.一个图形沿某直线对折过程

16、如图6,是我校的长方形水泥操场,如果一学生要从A角走到C角,至少走( )

A.140米 B.120米 C.100米 D.90米

17、下列说法正确的是( )

A. 有理数只是有限小数 B. 无理数是无限小数

C. 无限小数是无理数 D. 是分数

18、下列条件中,不能判定四边形ABCD为平行四边形的条件是( )

A. AB‖CD,AB=CD B. AB‖CD,AD‖BC

C. AB=AD, BC=CD D. AB=CD AD=BC

19、下列数组中,不是勾股数的是( )

A 3、4、5 B 9、12、15 C 7、24、25 D 1.5、2、2.5

20、和数轴上的点成一一对应关系的数是( )

A.自然数 B.有理数 C.无理数 D. 实数

21、小丰的妈妈买了一部29英寸(74cm)的电视机,下列对29英寸的说法

中正确的是( )

A. 小丰认为指的是屏幕的长度; B 小丰的妈妈认为指的是屏幕的宽度;

C. 小丰的爸爸认为指的是屏幕的周长;D. 售货员认为指的是屏幕对角线的长度.

22、小刚准备测量一段河水的深度,他把一根竹竿插到离岸边1.5m远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为( )

A. 2m; B. 2.5m; C. 2.25m; D. 3m.

23、对角线互相垂直且相等的四边形一定是( )

A、正方形 B、矩形 C、菱形 D、无法确定其形状

24、下列说法不正确的是( )

A. 1的平方根是±1 B. –1的立方根是-1

C. 是2的平方根 D. –3是 的平方根

25、平行四边形的两条对角线和一边的长可依次取( )

A. 6,6,6 B. 6,4,3 C. 6,4,6 D. 3,4,5

三、解答题(26~33题 共50分)

26、(4分)把下列各数填入相应的集合中(只填序号)

(1)3.14(2)- (3)- (4) (5)0

(6)1.212212221… (7) (8)0.15

无理数集合{ … };

有理数集合{ … }

27、化简(每小题3分 共12分)

(1). (2).

(3). (4).

28、作图题(6分)

如图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可得到一些线段。请在图中画出 这样的线段。

29、(5分)用大小完全相同的250块正方形地板砖铺一间面积为40平方米的客厅,请问每一块正方形地板砖的边长是多少厘米?

30、(5分)一高层住宅大厦发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口如图,已知云梯长15米,云梯底部距地面2米,问发生火灾的住户窗口距离地面多高?

31、(6分)小珍想出了一个测量池塘宽度AB的方法:先分别从池塘的两端A、B引两条直线AC、BC相交于点C,然后在BC上取两点E、G,使BE=CG,再分别过E、G作EF‖GH‖AB,交AC于F、H。测量出EF=10 m,GH=4 m(如图),于是小珍就得出了结论:池塘的宽AB为14 m 。你认为她说的对吗?为什么?

32、(5分)已知四边形ABCD,从下列条件中任取3个条件组合,使四边形ABCD为矩形,把所有的情况写出来:(只填写序号即可)

(1)AB‖CD (2)BC‖AD (3)AB=CD (4)∠A=∠C (5)∠B=∠D

(6)∠A=90 (7)AC=BD (8)∠B=90(9)OA=OC (10)OB=OD

请你写出5组 、 、 、 、 。

33、(7分)小东在学习了 后, 认为 也成立,因此他认为一个化简过程: = 是正确的。

(3分)你认为他的化简对吗?如果不对,请写出正确的化简过程;

(2分)说明 成立的条件;

(3) (2分)问 是否成立,如果成立,说明成立的条件。

8上一线调研卷数学答案的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于一线调研卷八上数学答案、8上一线调研卷数学答案的信息别忘了在本站进行查找喔。

本文转载自互联网,如有侵权,联系删除