卷临天下高三数学答案(卷临天下高三数学答案2022)

今天给各位同学分享卷临天下高三数学答案的知识,其中也会对卷临天下高三数学答案2022进行解释,如果能碰巧解决你现在面临的问题,别忘了分享本站,现在开始吧!

本文目录一览:

卷临天下答案哪里有

衡水金卷答案网

衡水金卷答案网。卷临天下是著名的高三复习测试卷,由专家编写,考点齐全,答案在衡水金卷答案网,登录并输入试卷名称即可查看

[img]

高三数学数列测试题及答案

一、选择题:本大题共12小题,每小题5分,共60分.

1.在等差数列{an}中,若a1+a2+a12+a13=24,则a7为( )

A.6 B.7 C.8 D.9

解析:∵a1+a2+a12+a13=4a7=24,∴a7=6.

答案:A

2.若等差数列{an}的前n项和为Sn,且满足S33-S22=1,则数列{an}的公差是( )

A.12 B.1 C.2 D.3

解析:由Sn=na1+n(n-1)2d,得S3=3a1+3d,S2=2a1+d,代入S33-S22=1,得d=2,故选C.

答案:C

3.已知数列a1=1,a2=5,an+2=an+1-an(n∈N*),则a2 011等于( )

A.1 B.-4 C.4 D.5

解析:由已知,得a1=1,a2=5,a3=4,a4=-1,a5=-5,a6=-4,a7=1,a8=5,…

故{an}是以6为周期的数列,

∴a2 011=a6×335+1=a1=1.

答案:A

4.设{an}是等差数列,Sn是其前n项和,且S5<S6,S6=S7>S8,则下列结论错误的是( )

A.d<0 B.a7=0

C.S9>S5 D.S6与S7均为Sn的最大值

解析:∵S5<S6,∴a6>0.S6=S7,∴a7=0.

又S7>S8,∴a8<0.

假设S9>S5,则a6+a7+a8+a9>0,即2(a7+a8)>0.

∵a7=0,a8<0,∴a7+a8<0.假设不成立,故S9<S5.∴C错误.

答案:C

5.设数列{an}是等比数列,其前n项和为Sn,若S3=3a3,则公比q的值为( )

A.-12 B.12

C.1或-12 D.-2或12[

解析:设首项为a1,公比为q,

则当q=1时,S3=3a1=3a3,适合题意.

当q≠1时,a1(1-q3)1-q=3a1q2,

∴1-q3=3q2-3q3,即1+q+q2=3q2,2q2-q-1=0,

解得q=1(舍去),或q=-12.

综上,q=1,或q=-12.

答案:C

6.若数列{an}的通项公式an=5 252n-2-425n-1,数列{an}的最大项为第x项,最小项为第y项,则x+y等于( )

A.3 B.4 C.5 D.6

解析:an=5252n-2-425n-1=525n-1-252-45,

∴n=2时,an最小;n=1时,an最大.

此时x=1,y=2,∴x+y=3.

答案:A

7.数列{an}中,a1 =15,3an+1= 3an-2(n∈N *),则该数列中相邻两项的乘积是负数的是( )

A.a21a22 B.a22a23 C.a23a24 D.a24a25

解析:∵3an+1=3an-2,

∴an+1-an=-23,即公差d=-23.

∴an=a1+(n-1)d=15-23(n-1).

令an>0,即15-23(n-1)>0,解得n<23.5.

又n∈N*,∴n≤23,∴a23>0,而a24<0,∴a23a24<0.

答案:C

8.某工厂去年产值为a,计划今后5年内每年比上年产值增加10%,则从今年起到第5年,这个厂的总产值为( )

A.1.14a B.1.15a

C.11×(1.15-1)a D.10×(1.16-1)a

解析:由已知,得每年产值构成等比数列a1=a,w

an=a(1+10%)n-1(1≤n≤6).

∴总产值为S6-a1=11×(1.15-1)a.

答案:C

9.已知正数组成的等差数列{an}的前20项的和为100,那么a7a14的最大值为( )

A.25 B.50 C.1 00 D.不存在

解析:由S20=100,得a1+a20=10. ∴a7+a14=10.

又a7>0,a14>0,∴a7a14≤a7+a1422=25.

答案:A

10.设数列{an}是首项为m,公比为q(q≠0)的等比数列,Sn是它的前n项和,对任意的n∈N*,点an,S2nSn( )

A.在直线mx+qy-q=0上

B.在直线qx-my+m=0上

C.在直线qx+my-q=0上

D.不一定在一条直线上

解析:an=mqn-1=x, ①S2nSn=m(1-q2n)1-qm(1-qn)1-q=1+qn=y, ②

由②得qn=y-1,代入①得x=mq(y-1), 即qx-my+m=0.

答案:B

11.将以2为首项的偶数数列,按下列分组:(2),(4,6),(8,10,12),…,第n组有n个数,则第n组的首项为( )

A.n2-n B.n2+n+2

C.n2+n D.n2-n+2

解析:因为前n-1组占用了数列2,4,6,…的前1+2+3+…+(n-1)=(n-1)n2项,所以第n组的首项为数列2,4,6,…的第(n-1)n2+1项,等于2+(n-1)n2+1-12=n2-n+2.

答案:D

12.设m∈N*,log2m的整数部分用F(m)表示,则F(1)+F(2)+…+F(1 024)的值是( )

A.8 204 B.8 192

C.9 218 D.以上都不对

解析:依题意,F(1)=0,

F(2)=F(3)=1,有2 个

F(4)=F(5)=F(6)=F(7)=2,有22个.

F(8)=…=F(15)=3,有23个.

F(16)=…=F(31)=4,有24个.

F(512)=…=F(1 023)=9,有29个.

F(1 024)=10,有1个.

故F(1)+F(2)+…+F(1 024)=0+1×2+2×22+3×23+…+9×29+10.

令T=1×2+2×22+3×23+…+9×29,①

则2T=1×22+2×23+…+8×29+9×210.②

①-②,得-T=2+22+23+…+29-9×210 =

2(1-29)1-2-9×210=210-2-9×210=-8×210-2,

∴T=8×210+2=8 194, m]

∴F(1)+F(2)+…+F(1 024)=8 194+10=8 204.

答案:A

第Ⅱ卷 (非选择 共90分)

二、填空题:本大题共4个小题,每小题5分 ,共20分.

13.若数列{an} 满足关系a1=2,an+1=3an+2,该数 列的通项公式为__________.

解析:∵an+1=3an+2两边加上1得,an+1+1=3(an+1),

∴{an+1}是以a1+1=3为首项,以3为公比的等比数列,

∴an+1=33n-1=3n,∴an=3n-1.

答案:an=3n-1

14.已知公差不为零的等差数列{an}中,M=anan+3,N=an+1an+2,则M与N的大小关系是__________.

解析:设{an}的公差为d,则d≠0.

M-N=an(an+3d)-[(an+d)(an+2d)]

=an2+3dan-an2-3dan-2d2=-2d2<0,∴M<N.

答案:M<N

15.在数列{an}中,a1=6,且对任意大于1的正整数n,点(an,an-1)在直线x-y=6上,则数列{ann3(n+1)}的前n项和Sn=__________.

解析:∵点(an,an-1)在直线x-y=6上,

∴an-an-1=6,即数列{an}为等差数列.

∴an=a1+6(n-1)=6+6(n-1)=6n,

∴an=6n2.

∴ann3(n+1)=6n2n3(n+1)=6n(n+1)=61n-1n+1

∴Sn=61-12+12-13+…+1n-1n+1.=61-1n+1=6nn+1.

答案:6nn+1

16.观察下表:

1

2 3 4

3 4 5 6 7

4 5 6 7 8 9 10

则第__________行的各数之和等于2 0092.

解析:设第n行的各数之和等于2 0092,

则此行是一个首项a1=n,项数为2n-1,公差为1的等差数列.

故S=n×(2n-1)+(2n-1)(2n-2)2=2 0092, 解得n=1 005.

答案:1 005

三、解答题:本大题共6小题,共70分.

17.(10分)已知数列{an}中,a1=12,an+1=12an+1(n∈N*),令bn=an-2.

(1)求证:{bn}是等比数列,并求bn;

(2)求通项an并求{an}的前n项和Sn.

解析:(1)∵bn+1bn=an+1-2an-2=12an+1-2an-2=12an-1an-2=12,

∴{bn}是等比数列.

∵b1=a1-2=-32,

∴bn=b1qn-1=-32×12n-1=-32n.

(2)an=bn+2=-32n+2,

Sn=a1+a2+…+an

=-32+2+-322+2+-323+2+…+-32n+2

=-3×12+122+…+12n+2n=-3×12×1-12n1-12+2n=32n+2n-3.

18.(12分)若数列{an}的前n项和Sn=2n.

(1)求{an}的通项公式;

(2)若数列{bn}满足b1=-1,bn+1=bn+(2n-1),且cn=anbnn,求数列{cn}的通项公式及其前n项和Tn.

解析:(1)由题意Sn=2n,

得Sn-1=2n-1(n≥2),

两式相减,得an=2n-2n-1=2n-1(n≥2).

当n=1时,21-1=1≠S1=a1=2.

∴an=2 (n=1),2n-1 (n≥2).

(2)∵bn+1=bn+(2n-1),

∴b2-b1=1,

b3-b2=3,

b4-b3=5,

bn-bn-1=2n-3.

以上各式相加,得

bn-b1=1+3+5+…+(2n-3)

=(n-1)(1+2n-3)2=(n-1)2.

∵b1=-1,∴bn=n2-2n,

∴cn=-2 (n=1),(n-2)×2n-1 (n≥2),

∴Tn=-2+0×21+1×22+2×23+…+(n-2)×2n-1,

∴2Tn=-4+0×22+1×23+2×24+…+(n-2)×2n.

∴-Tn=2+22+23+…+2n-1-(n-2)×2n

=2(1-2n-1)1-2-(n-2)×2n

=2n-2-(n-2)×2n

=-2-(n-3)×2n.

∴Tn=2+(n-3)×2n.

19.(12分)已知等差数列{an}的前n项和为Sn,公差d≠0,且S3+S5=50,a1,a4,a13成等比数列.

(1)求数列{an}的通项公式;

(2)若从数列{an}中依次取出第2项,第4项,第8项,…,第2n项,…,按原来顺序组成一个新数列{bn},记该数列的前n项和为Tn,求Tn的表达式.

解析:(1)依题意,得

3a1+3×22d+5a1+5×42d=50,(a1+3d)2=a1(a1+12d),解得a1=3,d=2.

∴an=a1+(n-1)d=3+2(n-1)=2n+1,

即an=2n+1.

(2)由已知,得bn=a2n=2×2n+1=2n+1+1,

∴Tn=b1+b2+…+bn

=(22+1)+(23+1)+…+(2n+1+1)

=4(1-2n)1-2+n=2n+2-4+n.

20.(12分)设数列{an}的前n项和为Sn,且ban-2n=(b-1)Sn.

(1)证明:当b=2时,{an-n2n-1}是等比数列;

(2)求通项an. 新 课 标 第 一 网

解析:由题意知,a1=2,且ban-2n=(b-1)Sn,

ban+1-2n+1=(b-1)Sn+1,

两式相减,得b(an+1-an)-2n=(b-1)an+1,

即an+1=ban+2n.①

(1)当b=2时,由①知,an+1=2an+2n.

于是an+1-(n+1)2n=2an+2n-(n+1)2n

=2an-n2n-1.

又a1- 120=1≠0,

∴{an-n2n-1}是首项为1,公比为2的等比数列.

(2)当b=2时,

由(1)知,an-n2n-1=2n-1,即an=(n+1)2n-1

当b≠2时,由①得

an +1-12-b2n+1=ban+2n-12-b2n+1=ban-b2-b2n

=ban-12-b2n,

因此an+1-12-b2n+1=ban-12-b2n=2(1-b)2-bbn.

得an=2, n=1,12-b[2n+(2-2b)bn-1], n≥2.

21.(12分)某地在抗洪抢险中接到预报,24小时后又一个超最高水位的洪峰到达,为保证万无一失,抗洪指挥部决定在24小时内另筑起一道堤作为第二道防线.经计算,如果有 20辆大型翻斗车同时作业25小时,可以筑起第二道防线,但是除了现有的一辆车可以立即投入作业外,其余车辆需从各处紧急抽调,每隔20分钟就有一辆车到达并投入.问指挥部至少还需组织多少辆车这样陆续,才能保证24小时内完成第二道防线,请说明理由.

解析:设从现有这辆车投入工作算起,各车的工作时间依次组成数列{an},则an-an-1=-13.

所以各车的工作时间构成首项为24,公差为-13的等差数列,由题知,24小时内最多可抽调72辆车.

设还需组织(n-1)辆车,则

a1+a2+…+an=24n+n(n-1)2×-13≥20×25.

所以n2-145n+3 000≤0,

解得25≤n≤120,且n≤73.

所以nmin=25,n-1=24.

故至少还需组织24辆车陆续工作,才能保证在24小时内完成第二道防线.

22.(12分)已知点集L={(x,y)y=mn},其中m=(2x-2b,1),n=(1,1+2b),点列Pn(an,bn)在点集L中,P1为L的轨迹与y轴的交点,已知数列{an}为等差数列,且公差为1,n∈N*.

(1)求数列{an},{bn}的通项公式;

(3)设cn=5nanPnPn+1(n≥2),求c2+c3+c4+…+cn的值.

解析:(1)由y=mn,m=(2x-2b,1),n=(1,1+2b),

得y=2x+1,即L:y=2x+1.

∵P1为L的轨迹与y轴的交点,

∴P1(0,1),则a1=0,b1=1.

∵数列{an}为等差数列,且公差为1,

∴an=n-1(n∈N*) .

代入y=2x+1,得bn=2n-1(n∈N*).

(2)∵Pn(n-1,2n-1),∴Pn+1(n,2n+1).

=5n2-n-1=5n-1102-2120.

∵n∈N*,

(3)当n≥2时,Pn(n-1,2n-1),

∴c2+c3+…+cn

=1-12+12-13+…+1n-1-1n=1-1n.

高三数学下册期中试题及答案

第Ⅰ卷(选择题 60分)

一、选择题:(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的)

1.若复数 是纯虚数,则实数m的值为 ( )

A.1 B.2 C.-2 D.-1

2.下列有关命题的叙述错误的是 ( )

A.若p且q为假命题,则p,q均为假命题

B.若┐p是q的必要条件,则p是┐q的充分条件

C.命题0的否定是0

D.2是 的充分不必要条件

3. A(CUB)= ( )

A. B. C. D.

4.在样本的频率分布直方图中,一共有 个小矩形,第3个小矩形的面积等于其余m-1个小矩形面积和的 ,且样本容量为100,则第3组的频数是 ( )

A.10 B.25 C.20 D.40

5. ( )

A.[1,4] B.[2,8] C.[2,10] D.[3,9]

6. 内的正弦曲线y=sinx与x轴围成的区域记为D,随机往圆O内投一个点A,则点A落在区域D内的概率是 ( )

A. B. C. D.

f(x)的图像 ( )

A.向右平移 个单位长度

B.向右平移 个单位长度

C.向左平移 个单位长度

D.向左平移 个单位长度

8.将石子摆成的梯形形状.称数列5,9,14,20,为梯形数.根据图形的构成,此数列的第2012项与5的差,即a2012-5= ( )

A.20182012 B.20182011 C.10092012 D.10092011

9.将A,B,C,D,E五种不同的文件放入编号依次为1,2,3,4,5,6,7的七个抽屉内,每个抽屉至多放一种文件,若文件A、B必须放入相邻的抽屉内,文件C、D也必须放在相邻的抽屉内,则所有不同的放法有 ( )

A.192 B.144 C.288 D.240

10.右面是二分法解方程的流程图.在①~④处应填写的内容分别是 ( )

A.f (a) f (m)是;否

B.f (b) f (m)是;否

C.f (b) f (m)是;否

D.f (b) f (m)否;是

11.正四棱锥S-ABCD底面边长为2,高为1,E是边BC的中点,动点P在四棱锥表面上运动,并且总保持 ,则动点P的轨迹的周长为 ( )

A. B.

C. D.

12.,在等腰梯形ABCD中,AB∥CD,且AB=2CD,设 ,以A,B为焦点且过点D的双曲线离心率为e1,以C,DC,D为焦点且过点A的椭圆的离心率为e2,则

( )

A.随着兹角增大,e1增大,e1 e2为定值 B.随着兹角增大,e1减小,e1 e2为定值

C.随着兹角增大,e1增大,e1 e2也增大 D.随着兹角增大,e1减小,e1 e2也减小

第Ⅱ卷(非选择题 共90分)

注意事项:1.第Ⅱ卷共6页,用黑色签字笔在试题卷上答题19,考试结束后将答题卡和第Ⅱ

卷一并交上。2.答题前将密封线内的项目填写清楚,密封线内答题无效。

二、填空题:(本大题共4个小题,每小题4分,共16分.将答案填在题中横线上)

13.等差数列{an}中,a4+ a10+ a16=30,则a18-2a14的值为 .

14.二项式(1+sinx)n的展开式中,末尾两项的系数之和为7,且系数最大的一项的值为 ,则x在[0,2仔]内的值为 .

15.已知点C为y2=2px(p0)的准线与x轴的交点,点F为焦点,点A、B为抛物线上两个点,若 的夹角为 .

16.下列结论中正确的是 .

①函数y=f(x)是定义在R上的偶函数,且f(x+1)=- f(x),则函数y=f(x)的图像关于直线x=1对称;

④线性相关系数r的绝对值越接近于1,表明两个变量线性相关程度越弱.

三、解答题(本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤)

17.(本小题满分12分)已知向量

(Ⅰ)求f(x)的最小正周期T;

(Ⅱ)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角, 上的最大值,求A,b和△ABC的面积.

18.(本小题满分12分),四棱锥P-ABCD中,底面ABCD为平行四边形,AB=2AD=2,BD= ,PD底面ABC D.

(1)证明:平面PBC平面PBD;

(2)若二面角P-BC-D为 ,求AP与平面PBC所成角的正弦值.

19.(本小题满分12分),一个圆形游戏转盘被分成6个均匀的扇形区域.用力旋转转盘,转盘停止转动时,箭头A所指区域的数字就是每次游戏所得的分数(箭头指向两个区域的边界时重新转动),且箭头A指向每个区域的可能性都是相等的.在一次家庭抽奖的活动中,要求每个家庭派一位儿童和一位成人先后分别转动一次游戏转盘,得分情况记为(a,b)(假设儿童和成人的得分互不影响,且每个家庭只能参加一次活动).

(Ⅰ)求某个家庭得分为(5,3)的概率;

(Ⅱ)若游戏规定:一个家庭的得分为参与游戏的两人得分之和,且得分大于等于8的家庭可以获得一份奖品.求某个家庭获奖的概率;

(Ⅲ)若共有5个家庭参加家庭抽奖活动.在(Ⅱ)的条件下,记获奖的家庭数为X,求X的分布列及数学期望.

20.(本小题满分12分)已知数列{bn}是等差数列, b1=1, b1+b2+b3++b10=100.

(Ⅰ)求数列{bn}的通项公式;

(Ⅱ)设数列{an}的通项 记Tn是数列{an}的前n项之积,即Tn= b1b 2b 3bn,试证明:

21.(本小题满分12分)已知函数f(x)=lnx-ax-3(a0).

(Ⅰ)讨论f(x)的单调性;

(Ⅱ)若对于任意的a[1,2],函数 在区间(a,3)上有最值,求实数m的取值范围.

22.(本小题满分14分),曲线C1是以原点O为中心,F1、F2为焦点的椭圆的一部分,曲线C2是以原点O为顶点,F2为焦点的抛物线的一部分, 是曲线C1和C2的交点.

(Ⅰ)求曲线C1和C2所在的椭圆和抛物线的方程;

(Ⅱ)过F2作一条与x轴不垂直的直线,分别与曲线C1、C2依次交于B、C、D、E四点,若G为CD中点,H为BE中点,问 是否为定值,若是,求出定值;若不是,请说明理由.

理科数学试题参考答案

一、选择题:AABCB BADDD BB

二、填空题:13.-10 14. ; 15. ; 16.①②③

17.解:(Ⅰ) 2分

5分.

6分

(Ⅱ)由(Ⅰ)知:

8分

10分

12分

18.解:(1)

(2)

7分

分别以DA、DB、DP为x轴、y轴、z轴建立空间直角坐标系.

10分

可解得

12分

19.解:(Ⅰ)记事件A:某个家庭得分情况为(5,3).

所以某个家庭得分情况为(5,3)的概率为 . 2分

(Ⅱ)记事件B:某个家庭在游戏中获奖,则符合获奖条件的得分包括(5,3),(5,5),(3,5)共3类情况.所以

所以某个家庭获奖的概率为 . 4分

(Ⅲ)由(Ⅱ)可知,每个家庭获奖的概率都是 5分

所以X分布列为:

X 0 1 2 3 4

12分

20.(Ⅰ)设等差数列{bn}的公差为d,则 ,得d=2,

2分

(Ⅱ)

3分

,命题得证 4分

10分

即n=k+1时命题成立

12分

21.(Ⅰ) 1分

关于卷临天下高三数学答案和卷临天下高三数学答案2022的介绍到此就结束了,不知道同学们从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

本文转载自互联网,如有侵权,联系删除