周测卷数学九年级上册(九年级数学周周练全一册的答案)

本篇文章给同学们谈谈周测卷数学九年级上册,以及九年级数学周周练全一册的答案对应的知识点,希望对各位同学有所帮助,不要忘记分享给你的朋友哦!

本文目录一览:

九年级数学上册期末质量检测试卷

同学们只要在九年级的数学期末复习过程中,抓住重点和常考点,数学测试中你一定会得心应手。

九年级数学上册期末质量检测试题

一.选择题(本大题共l2小题.在每小题给出的四个选项中.只有一项是正确的.请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.)

1.下列图形是中心对称图形但不是轴对称图形的是( )

2、视力表对我们来说并不陌生.如图是视力表的一部分,其中开口向上的两个E之间的变换是( )

A.平移 B.旋转

C.对称 D.位似

3、计算:tan45°+sin30°=( )

(A)2 (B) (C) (D)

4.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为( )

A. B. C. D.

5、如图,在 的正方形网格中, 绕某点旋转 ,得到 ,则其旋转中心可以是( )

A.点E B.点F

C.点G D.点H

6.把抛物线 向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为

A. B.

C. D.

7. 如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于(  )

A、 B、 C、 D、

8、二次函数y=ax2+bx+c的图象如图所示,若点A(1,y1)、B(-6,y2)是它图象上的两点,则y1与y2的大小关系是( )

A.y1y2 D.不能确定

9.如图,AC是⊙O的直径,BD是⊙O的弦,EC∥AB交⊙O于E,则图中与 ∠BOC相等的角共有( )

A. 2个 B. 3个 C. 4个 D. 5个

10.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中 相似的是 ( )

11.如图,⊙ 是△ABC的内切圆,切点分别是 、 、 ,已知∠ ,则∠ 的度数是( )

A.35° B.40°

C.45° D.70°

12.如图,半圆 的直径 ,与半圆 内切的小圆 ,与 切于点 ,设⊙ 的半径为 , ,则 关于 的函数关系式是( )

A. B.

C. D.

一 二 三 总分

19 20 21 22 23 24 25 26

二.填空题(本大题共5小题,共20分,只要求填写最后结果.每小题填对得4分.)

13.从1至9这9个自然数中任取一个数,这个数能被2整除的概率是.

14、如图,工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的直径 是 mm.

15.已知圆锥的母线长为5 ,底面半径为3 ,则它的侧面积是 。

16、如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为_____m.

17、二次函数 的图象如图所示,则① ,② ,③ 这3个式子中,值为正数的有_______________(序号)

三、解答题(本大题共7小题.共64分。解答要写出必要的文字说明、证明过程或演算步骤。)

18、(第(1)题4分、第(2)题5分,共9分)

(1) 计算: + .

(2). 抛物线 的部分图象如图所示,

(1)求出函数解析式;

(2)写出与图象相关的2个正确结论:

, .

(对称轴方程,图象与x正半轴、y轴交点坐标例外)

19.(本题满分7分)如图,热气球的探测器显示,从热气球看一栋高楼的顶部B的仰角为45°,看这栋高楼底部C的俯角为60°,热气球与高楼的水平距离AD为50m,求这栋楼的高度.( 取1.414, 取1.732)

(1)请用适当方式写出首场比赛出场的两个队的所有可能情况(用代码A、B、C、D、E、F表示);

(2)求首场比赛出场的两个队都是部队文工团的概率P.

21.(本题满分9分) 如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB.

(1)求证:AD⊥CD;

(2)若AD=2,AC= ,求AB的长.

22. (本题满分10分) 如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.

(1) 求证:△ADF∽△DEC;

(2) 若AB=4,AD=3 ,AE=3,求AF的长.

23.(本题满分10分)有一种葡萄:从树上摘下后不保鲜最多只能存放一周,如果放在冷藏室,可以延长保鲜时间,但每天仍有一定数量的葡萄变质,假设保鲜期内的重量基本保持不变,现有一位个体户,按市场价收购了这种葡萄200千克放在冷藏室内,此时市场价为每千克2元,据测算,此后每千克鲜葡萄的市场价格每天可以上涨0.2元,但是,存放一天需各种费用20元,平均每天还有1千克葡萄变质丢弃.

(1)存放x天后将鲜葡萄一次性出售,设鲜葡萄的销售金额为y元,写出y关于x的函数关系式;

(2)为了使鲜葡萄的销售金额为760元,又为了尽早清空冷藏室,则需要在几天后一次性出售完;

(3)问个体户将这批葡萄存放多少天后一次性出售,可获得最大利润?最大利润是多少?(本题不要求写出自变量x的取值范围)

24、(本题12分)如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上一动点,连结OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连结CF.

(1)当∠AOB=30°时,求弧AB的长度;

(2)当DE=8时,求线段EF的长;

(3)在点B运动过程中,当交点E在O,C之间时,

是否存在以点E、C、F为顶点的三角形与△AOB相

似,若存在,请求出此时点E的坐标;若不存在,

请说明理由.

九年级数学上册期末质量检测试卷答案

1.B 2.D 3.c 4.C 5.C 6.C 7.B 8.A 9.C 10.B 11.A 12.B

13. 14.8 15. 16.4 17.① ②

18、 + .

= =

19、

解答:因为抛物线过(1,0)(0,3),则 解得:

20、 解:(1)由题意画树状图如下:

A B C

D E F D E F D E F

所有可能情况是:(A,D)、(A,E) 、(A,F) 、(B,D) 、(B,E) 、(B,F) 、(C,D) 、(C,E) 、(C,F).4分

(2)所有可能出场的等可能性结果有9个,其中首场比赛出场两个队都是部队文工团的结果有3个,所以P(两个队都是部队文工团)= .7分

21、答案:(1)证明:连结BC. 1分

∵直线CD与⊙O相切于点C,

∴∠DCA=∠B. 2分

∵AC平分∠DAB,∴∠DAC=∠CAB.∴∠ADC=∠ACB.3分

∵AB为⊙O的直径,∴∠ACB=90°.∴∠ADC=90°,即AD⊥CD.5分

(2)解:∵∠DCA=∠B,∠DAC=∠CAB,∴△ADC∽△ACB.6分

∴ ∴AC2=AD•AB.

∵AD=2,AC= ,∴AB= .9分.

22、(1)证明:∵四边形ABCD是平行四边形

∴AD∥BC, AB∥CD,

∴∠ADF=∠CED,∠B+∠C=180°.

∵∠AFE+∠AFD=180,∠AFE=∠B,

∴∠AFD=∠C.

∴△ADF∽△DEC.6分

(2)解:∵四边形ABCD是平行四边形,

∴AD∥BC CD=AB=4.

又∵AE⊥BC ,∴ AE⊥AD.

在Rt△ADE中,DE= .

∵△ADF∽△DEC,∴ .∴ .AF= .10分

23. 解:(1)若存放x天后将鲜葡萄一次性出售,设鲜葡萄的销售总额为y元,则有 3分

答:分

(3)设将这批葡萄存放x天后出售,则有

因此这批葡萄存放45天后出售,可获得最大利润405元1分

24、(1)连结BC,

∵A(10,0), ∴OA=10 ,CA=5,

∵∠AOB=30°,

∴∠ACB=2∠AOB=60°,

∴弧AB的长= ; 4分

(2)连结OD,

∵OA是⊙C直径, ∴∠OBA=90°,

又∵AB=BD,

∴OB是AD的垂直平分线,

∴OD=OA=10,

在Rt△ODE中,

OE= ,

∴AE=AO-OE=10-6=4,

由 ∠AOB=∠ADE=90°-∠OAB,∠OEF=∠DEA,

得△OEF∽△DEA,

∴ ,即 ,∴EF=3;4分

(3)设OE=x,当交点E在O,C之间时,由以点E、C、F

为顶点的三角形与△AOB相似,

有∠ECF=∠BOA或∠ECF=∠OAB,

①当∠ECF=∠BOA时,此时△OCF为等腰三角形,点E为OC

中点,即OE= ,∴E1( ,0);(2分)

②当∠ECF=∠OAB时,有CE=5-x, AE=10-x,

∴CF∥AB,有CF= ,

∵△ECF∽△EAD,

∴ ,即 ,解得: ,

∴E2( ,0);(2分)

[img]

BFB数学九年级(上)周周清测试卷(十五)答案

请问要答案吗?要的话答案如下:

第二章二次函数(B卷)

1~5DBACC6~10DDDCC

11、向上直线x=-1(-1,-5)12、y=(x-2)^2-1等13、114、y=1/2(x+3)^2-215、(-1,-2)x-116、y=x^217、(2)(3)(4)18、都是曲线都具有对称性抛物线有最大值双曲线与坐标轴没有交点19、1(0,2)20、s=1/180v^2

21、图像略,x=1,y=122.(1)由图像知方程x^2-2x-3=0,解得x1=3,x2=-1(2)x=1或x3时,函数的值大于0(3)-1x3时,函数值小于0

23、y=-2x^2+4x-5224、∵PA⊥x轴,AP=1∴点P的纵坐标为1.当y=1时,3/4x^2-3/2x+1/4=1,即x^2-2x-1=0,记得x1=1+根号2,x2=1-根号2,∵抛物线的对称轴为x=1,点P在对称轴的右侧,∴x=1+根号2,∴矩形PAOB的面积为(1+根号2)平方单位25.(1)a=-3/50,c=6,所以抛物线解析式为y=-3/50x^2+6(2)可设N(5,y),于是yN=-3/50×5^2+6=4.5,从而支柱MN的长度是10-4.5=5.5米(3)设DE是隔离带的宽,EG是三辆车的宽度和,则G点的坐标是(7,0)(7=2÷2+2×3),过G点作GH垂直AB交抛物线于点H,则yH=3/50×7^2+6=3+1/50>3,根据抛物线的特点可知,一条行车道能并排行驶这样的三辆汽车26、符合条件的二次函数的表达式有:y=1/3(x-1)^2-1,y=根号3(x-1)^2-根号3,y=-1/3(x-1)^2+1,y=-根号3(x-1)^2+根号3

bbf数学九年级(上)周测月考评价卷(七)的答案

你是哪的?

我可以给你选择题。

BDBAB ACCCD

刚做这张卷子,上面的是我做的,你相信我的话应该是没错的。

BBF 数学九年级上周测月考评价卷五

在百度知道上闲逛的那些大叔大姨大哥大姐们,有多少个有你那个什么 “BBF 数学九年级上周测月考评价卷五》呢。要想知道答案,首先要把你要问的问题、题目传上来,才会有要帮你解答嘛 。

九年级数学上册期末质量检测试题

九年级数学期末考试的时间紧,,同学们要提高数学复习的质量和学习效益。

九年级数学上册期末质量检测试卷

一、选择题(单项选择,每小题3分,共21分)在答题卡上相应题目的答题区域内作答.

1.下列计算正确的是()

A. B. C. D.

2.如图, 是∠ 的边 上一点,且点 的坐标为(3,4),

则sin 的值是( )

A. B. C. D. 无法确定

3.一个不透明的袋子中装有2个红球,3个白球,4个黄球,这些球除颜色外没有任何其它区别,现从这个盒子中随机摸出一个球,摸到白球的概率是( )

A.   B.    C.  D.

4.用配方法解方程 ,下列配方结果正确的是( )

A. ; B. ;

C. ; D. .

5.如果二次根式 有意义,那么 的取值范围是( ).

A. ≥5B. ≤5 C. 5 D. 5

6.对于 的图象下列叙述正确的是()

A.顶点坐标为(-3,2) B.对称轴为直线 3

C.当 3时, 有最大值2 D.当 ≥3时 随 增大而减小

7.如图,△ABC中, 、 分别是 、 的中点,给出下列结论:

① ;② ;③ ;④ ∽ .

其中正确的结论有( )

A.1个 B.2个 C.3个 D.4个

二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.

8.化简: ;

9.一元二次方程 的解是 .

10.计算:sin30°+tan45° .

11.某商品经过两次降价,单价由50元降为30元.已知两次降价的百分率相同,求每次降价的百分率.若设每次降价百分率为 ,则可列方程: .

12.已知抛物线的表达式是 ,那么它的顶点坐标是 ;

13.在 中, 90°,若cosA , 2㎝,则 _________㎝;

14.已知 ,则 ;

15. 如图 、 分别在 的边 、 上,要使△AED∽△ABC,应添加条件是 ;(只写出一种即可).

16.如图,点 是 的重心,中线 3㎝,则㎝.

17. 是关于 的方程 的根,且 ,则 的值是 .

三、解答题(共89分)在答题卡上相应题目的答题区域内作答.

18.(9分) 计算:

19.(9分) 解方程:

20.(9分)已知 , ,求代数式 的值.

21.(9分) 如图,为测楼房BE的高,用测量仪在距楼底部30米

的D处,用高1.2米的测角仪 测得楼顶B的仰角α为60°.

求楼房BE的高度.(精确到0.1米).

22.(9分)如图,已知 是原点, 、 两点的坐标分别为(3,-1)、(2,1).

(1)以点 为位似中心,在 轴的左侧将 放大两倍(即新图与原图的位似比为2),画出图形并写出点 、 的对应点的坐标;

(2)如果 内部一点 的坐标为 ,写出 的对应点 的坐标.

23.(9分)为了节约用水,某水厂规定:某单元居民如果一个月的用水量不超过 吨,那么这个月该单元居民只交10元水费.如果超过 吨,则这个月除了仍要交10元水费外,超过那部分按每吨 元交费.

元(用含 的式子表示).

(2)下表是该单元居民9月、10月的用水情况和交费情况:

月份 用水量(吨) 交费总数(元)

9月份 85 25

10月份 50 10

根据上表数据,求该 吨是多少?

24.(9分)甲、乙、丙三位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.请用树状图法或列表法,求恰好选中甲、乙两位同学打第一场比赛的概率.

25.(13分)如图,抛物线 与 轴相交于

点 、 ,且经过点 (5,4).该抛物线顶点为 .

(1)求 的值和该抛物线顶点 的坐标.

(2)求 的面积;

(3)若将该抛物线先向左平移4个单位,再向上平移2个单位, 求出平移后抛物线的解析式.

26.(13分)如图,在 中 , .点 是线段 边上的一动点(不含 、 两端点),连结 ,作 ,交线段 于点 .

1. 求证: ∽ ;

2. 设 , ,请写 与 之间的函数关系式,并求 的最小值。

3. 点在运动的过程中, 能否构成等腰三角形?若能,求出 的长;若不能,请说明理由。

四、附加题(共10分)在答题卡相应题目的答题区域内作答.

友情提示:如果你全卷得分低于90分(及格线)则本题的得分将计入全卷总分,但计入后全卷总分不超过90分;如果你全卷已达到或超过90分,则本题的得分不计入全卷总分.

1.计算;

九年级数学上册期末质量检测试题答案

说明:

(一)考生的正确解法与参考答案不同时,可参照参考答案及评分标准的精神进行评分.

(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面得分数的二分之一;如属严重的概念性错误,就不给分.

(三)以下解答各行右端所注分数表示正确做完涉及应得的累计分数.

一、 选择题(每小题3分,共21分)

1.B 2.C 3.A 4.D 5.A 6.B 7.D

二、填空题(每小题4分,共40分)

8.4; 9. (写成 不扣分) ; 10. ; 11. ;

12.( , ); 13.6; 14. ; 15. ;

16.1; 17. .

三、解答题(共89分)

18.(9分)解:6分(每化简对一项得2分)

9分

19.(9分)解:

3分

6分

8分

∴ 9分

另用公式法: 4分

6分

8分

∴ 9分

20.(9分)解:3分

6分

9分

21.(9分)解:依条件可知, 米, 米2分

在 中,

4分

6分

(米)7分

∴ 米9分

答:略

22.(9分)解:(1)画图如图所示;4分

点 、 6分

(2)点 9分

23.(9分)解:(1) 3分

(2)根据表格提供的数据,可以知道 ,根据9月份用水情况可以列出方程:

6分

解得, 8分

因为 ,所以 9分

该水厂规定的 吨是60吨.

24.(9分)解:画树状图如下:

6分

所有可能出现的情况有6种,其中甲乙两位同学组合的情况有两种,

所以 9分

25.(13分)解:(1)将 (5,4)的坐标代入抛物线解析式 ,

得 ;2分

∴抛物线解析式

∴点 的坐标为( , );4分

(2)∵当 中 时, ,

∴ 、 两点的坐标为 (1,0), (4,0),6分

∴ 8分

9分

(3)∵抛物线原顶点坐标为( , ),

平移后的顶点为( , )

∴平移后抛物线解析式 13分

26.(13分)(1)证明:

(2) ∵ ∽

∴ ( )7分(自变量的取值范围没写不扣分)

8分

∴当 , 有最小值是 9分

(3)∵ 是 的外角

当 时,

得 ≌

∴ 11分

当 时,

∴ ∽

即:

∴ 13分

∴ 为等腰三角形时, 。

四、附加题:1.2;2.

答题卡

考生信息

一、选择题(每题3分,共21分)

二、填空题(每题4分,共40分)

8. 9. 略长 10. 11. 略长

12. 13. 14.   15. 略长   16.   17.

三、解答题(11小题,共89分)

18.解:

19.解:

20.解:

21.解:

22.解:(1)画图如右。

点 对应点的坐标为( , );

点 对应点的坐标为( , );

(2) 点 的对应点 的

坐标为( , );

23.解:(1)超过部分应交水费 元(用含 的式子表示)

(2)

24. 解:

25.解:

26.解:

四、附加题:

1.计算; 2. 的解为 ,

谁可以帮我找一套初三上的数学练习题,附答案,好的话我会加分的,谢谢

九年级数学上学期期末检测试题卷

一、选择题(每小题3分,满分24分)

1.一元二次方程 的根是( )

A.x1=1,x2=6 B.x1=2,x2=3 C.x1=1,x2=-6 D.x1=-1,x2=6

2.下列四个几何体中,主视图、左视图与俯视图是全等图形的几何体是( )

A.球 B.圆柱 C.三棱柱 D.圆锥

3.到三角形三条边的距离相等的点是三角形( )

A.三条角平分线的交点 B.三条高的交点

C.三边的垂直平分线的交点 D.三条中线的交点

4.如果矩形的面积为6cm2,那么它的长 cm与宽 cm之间的函数关系用图象表示

大致( )

A B C D

5.下列函数中,属于反比例函数的是( )

A. B. C. D.

6.在Rt△ABC中,∠C=90°,a=4,b=3,则cosA的值是( )

A. B. C. D.

7.如图(1),△ABC中,∠A=30°,∠C=90°AB的垂直平分线 (1)

交AC于D点,交AB于E点,则下列结论错误的是( )

A、AD=DB B、DE=DC C、BC=AE D、AD=BC

8.顺次连结等腰梯形各边中点得到的四边形是 ( )

A、矩形 B、菱形 C、正方形 D、平行四边形

二、填空题(每小题3分,满分21分)

9.计算tan45°= .

10.已知函数 是反比例函数,则m的值为 .

11.请你写出一个反比例函数的解析式,使它的图象在第二、四象限 .

12.在直角三角形中,若两条直角边长分别为6cm和8cm,则斜边上的中线长

为 cm.

13. 已知菱形的周长为 ,一条对角线长为 ,则这个菱形的面积

为 (cm)2.

14.已知正比例函数 与反比例函数 的一个交点是(2,3),则另

一个交点是( , ).

15.如图,已知AC=DB,要使△ABC≌△DCB,需添加的一个

条件是 .

三、解答题(本大题共9个小题,满分75分)

16.(本小题8分)解方程:

17.(本小题8分)如图,在△ABD中,C是BD上的一点,

且AC⊥BD,AC=BC=CD.(1)求证:△ABD是等腰三角形.

(2)求∠BAD的度数.

18.(本小题8分)如图所示,课外活动中,小明在离旗杆AB的 米C处,用测角仪测得旗杆顶部A的仰角为 ,已知测角仪器的高CD= 米,求旗杆AB的高.(精确到 米)

(供选用的数据: , , )

19.(本小题8分)某商店四月份的营业额为40万元,五月份的营业额比四月份有所增长,六月份比五月份又增加了5个百分点,即增加了5%,营业额达到了50.6万元。求五月份增长的百分率。

20.(本小题8分)“一方有难,八方支援”.今年11月2日,鄂嘉出现洪涝灾害,牵动着全县人民的心,医院准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士支援鄂嘉防汛救灾工作.

(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果.

(2)求恰好选中医生甲和护士A的概率.

21.(本小题8分)如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.

(1)已知CD=4cm,求AC的长.

(2)求证:AB=AC+CD.

22.(8分)在如图的12×24的方格形纸中(每个小方格的边长都是1个单位)有一ΔABC. 现先把ΔABC分别向右、向上平移8个单位和3个单位得到ΔA1B1C1;再以点O为旋转中心把ΔA1B1C1按顺时针方向旋转90º得到ΔA2B2C2. 请在所给的方格形纸中作出ΔA1B1C1和ΔA2B2C2.

23.(本题满分9分)

如图,给出四个等式:①AE=AD;②AB=AC;③OB=OC;④∠B=∠C. 现选取其中的三个,以两个作为已知条件,另一个作为结论.

(1)请你写出一个正确的命题,并加以证明;

(2)请你至少写出三个这样的正确命题.

24、(10分)如图,已知反比例函数 和一次函数y=2x-1,其中一次函数的图象经过(a,b),(a+1,b+k)两点.

(1)求反比例函数的解析式;

(2)如图4,已知点A在第一象限,且同时在上述两个函数的图象上,求点A的坐标;

(3)利用(2)的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由.

关于周测卷数学九年级上册和九年级数学周周练全一册的答案的介绍到此就结束了,不知道同学们从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

本文转载自互联网,如有侵权,联系删除