今天给各位同学分享数学周测冲刺卷八上的知识,其中也会对八上数学周考卷进行解释,如果能碰巧解决你现在面临的问题,别忘了分享本站,现在开始吧!
本文目录一览:
- 1、bfb数学八年级上周周清测试卷(16)
- 2、人教版八年级数学上册第二单元测试卷
- 3、八年级数学期末冲刺练习卷怎么样
- 4、BBF数学八年级上周测月考单元评价卷(二十)答案?在线等!!!急!!!
- 5、BFB数学八年级上周周清测试卷答案
- 6、bbf八年级数学上周测月考评价卷【十五】
bfb数学八年级上周周清测试卷(16)
、选择题
1、已知:如图,在△ABC中,∠ADE=∠C,则下列等式成立的是
A. eq \f(AD,AB)= eq \f(AE,AC) B. eq \f(AE,BC)= eq \f(AD,BD) C. eq \f(DE,BC)= eq \f(AE,AB) D. eq \f(DE,BC)= eq \f(AD,AB)
2、AC是□ABCD的对角线,则图中相似三角形共有( )
A.2对; B.3对; C.4对; D.5对.
3、如果关于x的方程x 2m-3=3x 7的解为不大于2的非负数,那么
(A)m=6 (B)m等于5,6,7 (C)无解 (D)5≤m≤7
4、如图,P为线段AB的黄金分割点(PB>PA),四边形AMNB、四边形PBFE都为正方形,且面积分别为 、 .四边形APHM、四边形APEQ都为矩形,且面积分别为 、 .下列说法正确的是
A. = B. = C. = D. =
5、柏拉图借毕达哥拉斯主义者提马尤斯门(Timaeus)的口说出以下的话:“两个东西不可能有完美的结合,除非另有第三者存在其间,因为他们之间必须有一种结合物,最好的结合物是比例.设有三个数量,若中数与小数之比等于大数与中数之比,反过来,小数与中数之比等于中数与
[img]人教版八年级数学上册第二单元测试卷
想要提高数学的成绩,除了上课认真听讲,更重要的是多做基础单元测试题目。下面由我为你整理的人教版八年级数学上册第二单元测试卷,希望对大家有帮助!
人教版八年级数学上册第二单元测试卷
一、选择题
1.正三角形△ABC的边长为3,依次在边AB、BC、CA上取点A1、B1、C1,使AA1=BB1=CC1=1,则△A1B1C1的面积是()
A. B. C. D.
2.在Rt△ABC中,∠C=90°,AB=10.若以点C为圆心,CB为半径的圆恰好经过AB的中点D,则AC=()
A.5 B. C. D.6
3.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()
A.140° B.160° C.170° D.150°
4.如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=3,则BC的长为()
A.6 B.6 C.9 D.3
5.如图,在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD.若BD=1,则AC的长是()
A.2 B.2 C.4 D.4
6.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为()
A. B.1 C. D.2
7.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为()
A.0.5km B.0.6km C.0.9km D.1.2km
8.如图,一个矩形纸片,剪去部分后得到一个三角形,则图中∠1+∠2的度数是()
A.30° B.60° C.90° D.120°
9.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为()
A.2 B. C. D.
10.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()
A.120° B.90° C.60° D.30°
11.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()
A. B.2 C. D.2
12.将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()
A.3cm B.6cm C. cm D. cm
13.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于()
A. cm B.2cm C.3cm D.4cm
14.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()
A.3 B.4 C.5 D.6
15.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上一点,连接DE,则下列说法错误的是()
A.∠CAD=30° B.AD=BD C.BD=2CD D.CD=ED
二、填空题
16.由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是cm.
17.在△ABC中,∠B=30°,AB=12,AC=6,则BC=.
18.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD=.
19.如图,已知正方形ABCD的边长为4,对角线AC与BD相交于点O,点E在DC边的延长线上.若∠CAE=15°,则AE=.
20.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB=.
第2章 特殊三角形
人教版八年级数学上册第二单元测试卷参考答案与试题解析
一、选择题(共15小题)
1.正三角形△ABC的边长为3,依次在边AB、BC、CA上取点A1、B1、C1,使AA1=BB1=CC1=1,则△A1B1C1的面积是()
A. B. C. D.
【考点】等边三角形的判定与性质.
【专题】压轴题.
【分析】依题意画出图形,过点A1作A1D∥BC,交AC于点D,构造出边长为1的小正三角形△AA1D;由AC1=2,AD=1,得点D为AC1中点,因此可求出S△AA1C1=2S△AA1D= ;同理求出S△CC1B1=S△BB1A1= ;最后由S△A1B1C1=S△ABC﹣S△AA1C1﹣S△CC1B1﹣S△BB1A1求得结果.
【解答】解:依题意画出图形,如下图所示:
过点A1作A1D∥BC,交AC于点D,易知△AA1D是边长为1的等边三角形.
又AC1=AC﹣CC1=3﹣1=2,AD=1,
∴点D为AC1的中点,
∴S△AA1C1=2S△AA1D=2× ×12= ;
同理可求得S△CC1B1=S△BB1A1= ,
∴S△A1B1C1=S△ABC﹣S△AA1C1﹣S△CC1B1﹣S△BB1A1= ×32﹣3× = .
故选B.
【点评】本题考查等边三角形的判定与性质,难度不大.本题入口较宽,解题方法多种多样,同学们可以尝试不同的解题方法.
2.在Rt△ABC中,∠C=90°,AB=10.若以点C为圆心,CB为半径的圆恰好经过AB的中点D,则AC=()
A.5 B. C. D.6
【考点】等边三角形的判定与性质;含30度角的直角三角形;勾股定理.
【专题】计算题;压轴题.
【分析】连结CD,直角三角形斜边上的中线性质得到CD=DA=DB,利用半径相等得到CD=CB=DB,可判断△CDB为等边三角形,则∠B=60°,所以∠A=30°,然后根据含30度的直角三角形三边的关系先计算出BC,再计算AC.
【解答】解:连结CD,如图,
∵∠C=90°,D为AB的中点,
∴CD=DA=DB,
而CD=CB,
∴CD=CB=DB,
∴△CDB为等边三角形,
∴∠B=60°,
∴∠A=30°,
∴BC= AB= ×10=5,
∴AC= BC=5 .
故选C.
【点评】本题考查了等边三角形的判定与性质:三边都相等的三角形为等边三角形;等边三角形的三个内角都等于60°.也考查了直角三角形斜边上的中线性质以及含30度的直角三角形三边的关系.
3.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()
A.140° B.160° C.170° D.150°
【考点】直角三角形的性质.
【分析】利用直角三角形的性质以及互余的关系,进而得出∠COA的度数,即可得出答案.
【解答】解:∵将一副直角三角尺如图放置,∠AOD=20°,
∴∠COA=90°﹣20°=70°,
∴∠BOC=90°+70°=160°.
故选:B.
【点评】此题主要考查了直角三角形的性质,得出∠COA的度数是解题关键.
4.如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=3,则BC的长为()
A.6 B.6 C.9 D.3
【考点】含30度角的直角三角形;线段垂直平分线的性质.
【分析】根据线段垂直平分线上的点到线段两端距离相等可得AD=BD,可得∠DAE=30°,易得∠ADC=60°,∠CAD=30°,则AD为∠BAC的角平分线,由角平分线的性质得DE=CD=3,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2DE,得结果.
【解答】解:∵DE是AB的垂直平分线,
∴AD=BD,
∴∠DAE=∠B=30°,
∴∠ADC=60°,
∴∠CAD=30°,
∴AD为∠BAC的角平分线,
∵∠C=90°,DE⊥AB,
∴DE=CD=3,
∵∠B=30°,
∴BD=2DE=6,
∴BC=9,
故选C.
【点评】本题主要考查了垂直平分线的性质,角平分线上的点到角的两边距离相等的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.
5.如图,在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD.若BD=1,则AC的长是()
A.2 B.2 C.4 D.4
【考点】含30度角的直角三角形;线段垂直平分线的性质;勾股定理.
【分析】求出∠ACB,根据线段垂直平分线的性质求出AD=CD,推出∠ACD=∠A=30°,求出∠DCB,即可求出BD、BC,根据含30°角的直角三角形性质求出AC即可.
【解答】解:∵在Rt△ABC中,∠B=90°,∠A=30°,
∴∠ACB=60°,
∵DE垂直平分斜边AC,
∴AD=CD,
∴∠ACD=∠A=30°,
∴∠DCB=60°﹣30°=30°,
在Rt△DBC中,∠B=90°,∠DCB=30°,BD=1,
∴CD=2BD=2,
由勾股定理得:BC= = ,
在Rt△ABC中,∠B=90°,∠A=30°,BC= ,
∴AC=2BC=2 ,
故选A.
【点评】本题考查了三角形内角和定理,等腰三角形的性质,勾股定理,含30度角的直角三角形性质的应用,解此题的关键是求出BC的长,注意:在直角三角形中,如果有一个角等于30°,那么它所对的直角边等于斜边的一半.
6.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为()
A. B.1 C. D.2
【考点】含30度角的直角三角形;角平分线的性质;线段垂直平分线的性质.
【分析】先根据线段垂直平分线的性质得出BE=CE=2,故可得出∠B=∠DCE=30°,再由角平分线定义得出∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°,利用三角形内角和定理求出∠A=180°﹣∠B﹣∠ACB=90°,然后在Rt△CAE中根据30°角所对的直角边等于斜边的一半得出AE= CE=1.
【解答】解:∵在△ABC中,∠B=30°,BC的垂直平分线交AB于E,BE=2,
∴BE=CE=2,
∴∠B=∠DCE=30°,
∵CE平分∠ACB,
∴∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°,
∴∠A=180°﹣∠B﹣∠ACB=90°.
在Rt△CAE中,∵∠A=90°,∠ACE=30°,CE=2,
∴AE= CE=1.
故选B.
【点评】本题考查的是含30度角的直角三角形的性质,线段垂直平分线的性质,等腰三角形的性质,角平分线定义,三角形内角和定理,求出∠A=90°是解答此题的关键.
7.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为()
A.0.5km B.0.6km C.0.9km D.1.2km
【考点】直角三角形斜边上的中线.
【专题】应用题.
【分析】根据直角三角形斜边上的中线等于斜边的一半,可得MC=AM=1.2km.
【解答】解:∵在Rt△ABC中,∠ACB=90°,M为AB的中点,
∴MC= AB=AM=1.2km.
故选D.
【点评】本题考查了直角三角形斜边上的中线的性质:在直角三角形中,斜边上的中线等于斜边的一半.理解题意,将实际问题转化为数学问题是解题的关键.
8.如图,一个矩形纸片,剪去部分后得到一个三角形,则图中∠1+∠2的度数是()
A.30° B.60° C.90° D.120°
【考点】直角三角形的性质.
【专题】常规题型.
【分析】根据直角三角形两锐角互余解答.
【解答】解:由题意得,剩下的三角形是直角三角形,
所以,∠1+∠2=90°.
故选:C.
【点评】本题考查了直角三角形两锐角互余的性质,熟记性质是解题的关键.
9.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为()
A.2 B. C. D.
【考点】含30度角的直角三角形;勾股定理;等腰直角三角形.
【分析】在Rt△ACD中求出AD,在Rt△CDB中求出BD,继而可得出AB.
【解答】解:在Rt△ACD中,∠A=45°,CD=1,
则AD=CD=1,
在Rt△CDB中,∠B=30°,CD=1,
则BD= ,
故AB=AD+BD= +1.
故选D.
【点评】本题考查了等腰直角三角形及含30°角的直角三角形的性质,要求我们熟练掌握这两种特殊直角三角形的性质.
10.(2014•海南)在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()
A.120° B.90° C.60° D.30°
【考点】直角三角形的性质.
【分析】根据直角三角形两锐角互余列式计算即可得解.
【解答】解:∵直角三角形中,一个锐角等于60°,
∴另一个锐角的度数=90°﹣60°=30°.
故选:D.
【点评】本题考查了直角三角形两锐角互余的性质,熟记性质是解题的关键.
11.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()
A. B.2 C. D.2
【考点】等边三角形的判定与性质;勾股定理的应用;正方形的性质.
【分析】图1中根据勾股定理即可求得正方形的边长,图2根据有一个角是60°的等腰三角形是等边三角形即可求得.
【解答】解:如图1,
∵AB=BC=CD=DA,∠B=90°,
∴四边形ABCD是正方形,
连接AC,则AB2+BC2=AC2,
∴AB=BC= = = ,
如图2,∠B=60°,连接AC,
∴△ABC为等边三角形,
∴AC=AB=BC= .
【点评】本题考查了正方形的性质,勾股定理以及等边三角形的判定和性质,利用勾股定理得出正方形的边长是关键.
12.将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()
A.3cm B.6cm C. cm D. cm
【考点】含30度角的直角三角形;等腰直角三角形.
【分析】过另一个顶点C作垂线CD如图,可得直角三角形,根据直角三角形中30°角所对的边等于斜边的一半,可求出有45°角的三角板的直角边,再由等腰直角三角形求出最大边.
【解答】解:过点C作CD⊥AD,∴CD=3,
在直角三角形ADC中,
∵∠CAD=30°,
∴AC=2CD=2×3=6,
又∵三角板是有45°角的三角板,
∴AB=AC=6,
∴BC2=AB2+AC2=62+62=72,
∴BC=6 ,
故选:D.
【点评】此题考查的知识点是含30°角的直角三角形及等腰直角三角形问题,关键是先求得直角边,再由勾股定理求出最大边.
13.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于()
A. cm B.2cm C.3cm D.4cm
【考点】含30度角的直角三角形.
【专题】常规题型.
【分析】根据在直角三角形中,30度所对的直角边等于斜边的一半得出AE=2ED,求出ED,再根据角平分线到两边的距离相等得出ED=CE,即可得出CE的值.
【解答】解:∵ED⊥AB,∠A=30°,
∴AE=2ED,
∵AE=6cm,
∴ED=3cm,
∵∠ACB=90°,BE平分∠ABC,
∴ED=CE,
∴CE=3cm;
故选:C.
【点评】此题考查了含30°角的直角三角形,用到的知识点是在直角三角形中,30度所对的直角边等于斜边的一半和角平分线的基本性质,关键是求出ED=CE.
14.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()
A.3 B.4 C.5 D.6
【考点】含30度角的直角三角形;等腰三角形的性质.
【专题】计算题.
【分析】过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD﹣MD即可求出OM的长.
【解答】解:过P作PD⊥OB,交OB于点D,
在Rt△OPD中,cos60°= = ,OP=12,
∴OD=6,
∵PM=PN,PD⊥MN,MN=2,
∴MD=ND= MN=1,
∴OM=OD﹣MD=6﹣1=5.
故选:C.
【点评】此题考查了含30度直角三角形的性质,等腰三角形的性质,熟练掌握直角三角形的性质是解本题的关键.
15.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上一点,连接DE,则下列说法错误的是()
A.∠CAD=30° B.AD=BD C.BD=2CD D.CD=ED
【考点】含30度角的直角三角形;角平分线的性质;等腰三角形的判定与性质.
【专题】几何图形问题.
【分析】根据三角形内角和定理求出∠CAB,求出∠CAD=∠BAD=∠B,推出AD=BD,AD=2CD即可.
【解答】解:∵在△ABC中,∠C=90°,∠B=30°,
∴∠CAB=60°,
∵AD平分∠CAB,
∴∠CAD=∠BAD=30°,
∴∠CAD=∠BAD=∠B,
∴AD=BD,AD=2CD,
∴BD=2CD,
根据已知不能推出CD=DE,
即只有D错误,选项A、B、C的答案都正确;
故选:D.
【点评】本题考查了三角形的内角和定理,等腰三角形的判定,含30度角的直角三角形的性质的应用,注意:在直角三角形中,如果有一个角等于30°,那么它所对的直角边等于斜边的一半.
二、填空题
16.由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是 18 cm.
【考点】等边三角形的判定与性质.
【专题】应用题.
【分析】根据有一个角是60°的等腰三角形的等边三角形进行解答即可.
【解答】解:∵OA=OB,∠AOB=60°,
∴△AOB是等边三角形,
∴AB=OA=OB=18cm,
故答案为:18
【点评】此题考查等边三角形问题,关键是根据有一个角是60°的等腰三角形的等边三角形进行分析.
17.在△ABC中,∠B=30°,AB=12,AC=6,则BC= 6 .
【考点】含30度角的直角三角形;勾股定理.
【分析】由∠B=30°,AB=12,AC=6,利用30°所对的直角边等于斜边的一半易得△ABC是直角三角形,利用勾股定理求出BC的长.
【解答】解:∵∠B=30°,AB=12,AC=6,
∴△ABC是直角三角形,
∴BC= = =6 ,
故答案为:6 .°
【点评】此题考查了含30°直角三角形的性质,以及勾股定理,熟练掌握性质及定理是解本题的关键.
18.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD= 2 .
【考点】含30度角的直角三角形;角平分线的性质.
【分析】根据角平分线性质求出∠BAD的度数,根据含30度角的直角三角形性质求出AD即可得BD.
【解答】解:∵∠C=90°,∠B=30°,
∴∠CAB=60°,
AD平分∠CAB,
∴∠BAD=30°,
∴BD=AD=2CD=2,
故答案为2.
【点评】本题考查了对含30度角的直角三角形的性质和角平分线性质的应用,求出AD的长是解此题的关键.
19.如图,已知正方形ABCD的边长为4,对角线AC与BD相交于点O,点E在DC边的延长线上.若∠CAE=15°,则AE= 8 .
【考点】含30度角的直角三角形;正方形的性质.
【分析】先由正方形的性质可得∠BAC=45°,AB∥DC,∠ADC=90°,由∠CAE=15°,根据平行线的性质及角的和差得出∠E=∠BAE=∠BAC﹣∠CAE=30°.然后在Rt△ADE中,根据30°角所对的直角边等于斜边的一半即可得到AE=2AD=8.
【解答】解:∵正方形ABCD的边长为4,对角线AC与BD相交于点O,
∴∠BAC=45°,AB∥DC,∠ADC=90°,
∵∠CAE=15°,
∴∠E=∠BAE=∠BAC﹣∠CAE=45°﹣15°=30°.
∵在Rt△ADE中,∠ADE=90°,∠E=30°,
∴AE=2AD=8.
故答案为8.
【点评】本题考查了含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.也考查了正方形的性质,平行线的性质.求出∠E=30°是解题的关键.
20.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB= 5 .
【考点】含30度角的直角三角形;矩形的性质.
【分析】根据矩形的性质,可以得到△AOB是等边三角形,则可以求得OA的长,进而求得AB的长.
【解答】解:∵四边形ABCD是矩形,
∴OA=OB
又∵∠AOB=60°
∴△AOB是等边三角形.
∴AB=OA= AC=5,
故答案是:5.
八年级数学期末冲刺练习卷怎么样
好。
1、从编写上看,《期末冲刺优选卷》是针对广大学生期末复习冲刺的检测卷,本试卷以初中的新课程标准为指导,以教材为依据,严格按照教学总复习课程知识点,重难点编写。本书中的试卷为期末冲刺卷,是专门针对本年段各章节的重难点而精心设计的。
2、从价格上看,《期末冲刺优选卷》为35元一整卷,比其它类型的试卷要优惠便宜。
BBF数学八年级上周测月考单元评价卷(二十)答案?在线等!!!急!!!
这两个题都是第二个,很好解,告诉你我以前常用的最笨的也是最方便的办法,第一题你看看定义:一般地,形如y=kx+b(k,b是常数,k≠0)的函数叫做一次函数。其中x是自变量,y是x的函数。特别地,当b=0时,y=kx(k为常数,k≠0),y叫做x的正比例函数。不用多解释了。
第二题:你把X=0 和X=1分别算出Y的值得出两个坐标画个直线就知道这个不在那个象限了。最笨最有效的方法。望采纳
BFB数学八年级上周周清测试卷答案
当地震发生时,如果我们正在教室上课应该怎样避震?(10分)
答:如果你在教室里,要在教师指挥下迅速抱头、闭眼、蹲到各自的课桌下。地震一停,迅速有秩序撤离,撤离时千万不要拥挤。
二、 当地震发生时,如果我们在家里应该选择什么位置避震最好?(10分)
答:如果你在室内,应就近躲到坚实的家具下,如写字台、结实的床、农村土炕的炕沿下,也可躲到墙角或管道多、整体性好的小跨度卫生间和厨房等处。注意不要躲到外墙窗下、电梯间,更不要跳楼,这些都是十分危险的。
三、 面对火灾时我们该如何逃生自救?(10分)
答:火灾袭来时要迅速逃生,不要贪恋财物。受到火势威胁时,要当机立断披上浸湿的衣物、被褥等向安全出口方向冲出去。穿过浓烟逃生时,要尽量使身体贴近地面,并用湿毛巾捂住口鼻。身上着火,千万不要奔跑,可就地打滚或用厚重衣物压灭火苗。遇火灾不可乘坐电梯,要向安全出口方向逃生。室外着火,门已发烫时,千万不要开门,以防大火窜入室内。要用浸湿的被褥、衣物等堵塞门窗,并泼水降温。若所有逃生线路被大火封锁,要立即退回室内,用打手电筒、挥舞衣物、呼叫等方式向窗外发送求救信号,等待救援。千万不要盲目跳楼,可利用疏散楼梯,阳台、排水管等逃生,或把床单、被套撕成条状连成绳索,紧拴在窗框、铁栏杆等固定物上,顺绳滑下,或下到未着火的楼层脱离险境。
四、 在道路上行走时应注意什么?(10分)
答: 1.走路要走人行道,没有人行道的,须靠路边行走。2.横过马路要走人行横道,过街天桥或地下通道。3.遵守交通信号,红灯停,绿灯行。4.不钻(跨)越交通隔离设施。5.不在汽车临近时或车辆前后横穿马路,不在在道路上扒车、追车、强行拦车或抛物击车。6.不在马路上追逐猛跑、嬉戏、打闹、游戏,不要边走路边看书。7.夜间步行要尽量选择穿戴浅颜色的衣帽和在有路灯的地方横过马路。
五、中小学生游泳四不要。(10分)
答:1、 没有家长带领,小孩子不能偷偷地结伴去游泳;2、 不能去不知水情、地方很偏僻的小河、池塘里游泳。3、 为预防抽筋,要做好下水前的准备,先活动活动身体,用水淋湿身体的各个部分,不能马上下水; 4、 对自己的水性要有自知之明,下水后不能嬉戏玩闹,在没有大人及安全措施的情况下不能逞能比赛。(10分)
六、未成年人发现有人溺水,应该选择哪种方法救人?(10分)
答:未成年人发现有人溺水,尽量不要下水营救,应大声呼救请成人过来营救,第二要用救生器材或当时可以利用的竹竿、木板、绳索等物件营救。第三就是溺水者不要慌乱,尽量让嘴和鼻子露出水面保持呼吸等待救援。 家长安全知识问卷:
一、 如果家用电器着火是否可用水灭火?我们应该教孩子怎么办?(10分)
答:家用电器着火不能用水灭火。扑灭家用电器发生的火灾方法是:首先立刻切断电源,拉闸要带上绝缘手套,人要离远些,避免切断电源时的电弧喷射烧伤脸部。用电工钳或干燥木柄斧子切断电源时,应将电源的相线、地线一根一根的分别切断,否则会引起短路,造成更大的灾难。扑救火灾时,要关闭门窗,防止风吹助燃。要立即用干燥的棉被、棉衣盖住火苗。切不可用水和灭火器喷淋电器设备的方法扑救,因为高温电器突然遇水冷却会爆炸伤人。火扑灭后,必须及时打开门窗通气。
二、 我们该如何教孩子辨别天然气是否泄漏?如果家中出现天然气泄漏让孩子应该怎么办?(10分)
答:1.检查燃气管道和炉具,用抹布沾上肥皂水沿管道涂抹一遍,重点是各个接口,如燃气泄露会出现气泡,平时在煮饭时如有燃气泄露会有一股很浓的味道。 2. 燃气泄露处置办法:在没有明火的情况下,现场千万不要打或接电话,用毛巾沾水捂住鼻子和嘴,马上打开窗通风,如现场允许尽快关掉阀门和电源,如有明火:关掉电源和厨房门,直接拨打119救援。
三、 如果父母不在家,有陌生人敲门您的孩子会怎么办?孩子的做法对吗?(10分)
答:略。
四、 家长应该如何教育孩子安全横过马路?(10分)
答: 教育孩子应文明过马路:1.站队过马路;2.要走人行横道;3.要走地下通道;4.不要在道路上嬉戏打闹;5.不要跨越护栏;6.不要追、扒、拦车。
bbf八年级数学上周测月考评价卷【十五】
1、如果a>b,那么下列各式中正确的是--------------------------------------------------( ) (A)a-2<b-2; (B)22ba<; (C)-2a<-2b; (D)-a>-b . 2、使分式 )2)(1(1−−−−−−−−−−−−xxx 有意义的 x 的值为------------------------------------------( ). (A).x≠1 ; (B). x≠2 ; (C). x≠1 且 x≠2 ;(D). x≠1或 x≠2. 3、若二次三项式x²+ax-6可分解为(x+2)(x+b),则a+b=-------------------------------- ( ) (A) – 4 ; (B) 4 ; (C)2 ; (D)–2 4、以不等式组−≤−+−xxxx3182)1(325 的非负整数解为边长,可以构成一个----------( ) (A)等边三角形; (B)等腰三角形; (C)直角三角形; (D)一般三角形. 5、若不等式(a – 2)x 2-a的解集是x -1, 则a的取值范围是---------------( ) (A)a≤2 ; (B) a 2 ; (C) a 2 ; (D) a 0 . 6、下列各式从左到右,是因式分解的是---------------------------------------------------() (A)(y-1)(y+1)=2y-1;(B)1)(122−+=−+yxxyxyyx; (C)(x-2)(x-3)=(3-x)(2-x);(D)22)2(44−=+−xxx. 7、计算20032004)2(2−+的结果是---------------------------------------------------------------( ) (A)20042 (B)20042− (C)20032 (D)20032− . 8、下列多项式中,能用公式法进行因式分解的是------------------------------------------( ) (A)A、22yxyx+−; (B)222yxyx−+; (C)222yxyx−+−; (D)22yxyx++ . 9、当x为任意实数时,下列分式一定有意义的是------------------------------------------( ) (A)212−x; (B)112+x ; (C)||1x; (D)21+x . 10、小明在抄分解因式的题目时,不小心漏抄了x的指数,他只知道该数为不大于10的正整数,并且能利用平方差公式分解因式,他抄在作业本上的式子是x□-24y(“□”表示漏抄的指数),则这个指数可能的结果共有-------------------------------------------------------( ) (A)2种 (B)3种 (C) 4种 (D)5种 . 二、填空题(每题2分,共40分) 11、不等式-2x-1<-1的解集是________ 。 12、当______时,代数式2x-3的值小于-1。 13、若不等式组−+121mxmx><无解,则m的取值范围是__________ 。 14、已知x+y=6,xy=4,则x2y+xy2的值为 . 15、某商店销售一批色拉油,如果按每瓶40元出售,那么相对于进价来说,每瓶就可获利25%,这种色拉油每瓶的进价是 元。 16、分式:12ab , 13c 2 ,- c4ab 2 的最简公分母是 ; 17、当x________时,分式122−xx有意义。 18、分解因式:2x2—8= 。 19、多项式x2+kx+9是完全平方式,那么k = _______ . 20、使分式方程931312−=++−xkxx产生增根的k值为____________; 三、解答题:(共60分) 21、把下列各式分解因式:(每题3分,共9分) (1))()(2xyyxx−+−; (2)1)(2)(2++++yxyx; (3)4)2(22−+−baba. 22、解下列不等式(组),并把它的解集在数轴上表示出来。(4分+6分) (1)311x−−≥x ; (2)+++−834184xxxx<< 23、计算:(每题4分,共8分) (1)222xyxyyx+−− ; (2)22111xx+−+ 24、先化简,再求值:(6分)x4x4x4x1x2x222−÷+−−−.其中21x=. 25、解分式方程(6分):32121−−−=−xxx 26、学校为家远的学生安排住宿,现有房间若干间,若每间住5人,还剰14人安排不下,若每间住7人,则有一间不空也不满,问学校可能有多少房间安排学生住宿?住宿的学生可能有多少人?(6分) 27(4分)、老师给学生一个多项式,甲、乙、丙、丁四位同学分别给了一个关于此多项式的描述: 甲:这是一个三次三项式; 乙:三次项系数为1; 丙:这个多项式的各项有公因式; 丁:这个多项式分解因式时要用到公式法; 若已知这四位同学的描述都正确,请你构造一个同时满足这个描述的一个多项式。 28.(6分)、先根据要求编写应用题,再解答你所编写的应用题。 编写要求:⑴编写一道关于行程的实际问题,使根据题意所列方程是:xx15320=+; ⑵所编问题题意清楚,符合实际。 29(5分)、已知一次函数mxy52−=的图象与x轴的交点在A(-1,0)与B(4,0)之间(包括A、B两点),求m的取值范围。
关于数学周测冲刺卷八上和八上数学周考卷的介绍到此就结束了,不知道同学们从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。