本篇文章给同学们谈谈高一数学周测卷16,以及高一数学周周练对应的知识点,希望对各位同学有所帮助,不要忘记分享给你的朋友哦!
本文目录一览:
请帮助将人教版高一数学试卷复制在下边(急用)
高一数学期末同步测试题
ycy
说明:本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,答题时间120分钟.
第Ⅰ卷(选择题,共60分)
一、选择题:(每小题5分,共60分,请将所选答案填在括号内)
1.函数 的一条对称轴方程是 ( )
A. B. C. D.
2.角θ满足条件sin2θ0,cosθ-sinθ0,则θ在 ( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.己知sinθ+cosθ= ,θ∈(0,π),则cotθ等于 ( )
A. B.- C. ± D.-
4.已知O是△ABC所在平面内一点,若 + + = ,且| |=| |=| |,则△ABC
是 ( )
A.任意三角形 B.直角三角形 C.等腰三角形 D.等边三角形
5.己知非零向量a与b不共线,则 (a+b)⊥(a-b)是|a|=|b|的 ( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
6.化简 的结果是 ( )
A. B. C. D.
7.已知向量 ,向量 则 的最大值,最小值分别是( )
A. B. C.16,0 D.4,0
8.把函数y=sinx的图象上所有点的横坐标都缩小到原来的一半,纵坐标保持不 变,再把 图象向左平移 个单位,这时对应于这个图象的解析式 ( )
A.y=cos2x B.y=-sin2x
C.y=sin(2x- ) D.y=sin(2x+ )
9. ,则y的最小值为 ( )
A.– 2 B.– 1 C.1 D.
10.在下列区间中,是函数 的一个递增区间的是 ( )
A. B. C. D.
11.把函数y=x2+4x+5的图象按向量 a经一次平移后得到y=x2的图象,则a等于 ( )
A.(2,-1) B.(-2,1) C.(-2,-1) D.(2,1)
12. 的最小正周期是 ( )
A. B. C. D.
第Ⅱ卷(非选择题,共90分)
二、填空题:(每小题4分,共16分,请将答案填在横线上)
13.已知O(0,0)和A(6,3),若点P分有向线段 的比为 ,又P是线段OB的中点,则点B的坐标为________________.
14. ,则 的夹角为_ ___.
15.y=(1+sinx)(1+cosx)的最大值为___ ___.
16.在 中, , ,那么 的大小为___________.
三、解答题:(本大题共74分,17—21题每题12分,22题14分)
17.已知
(I)求 ;
(II)当k为何实数时,k 与 平行, 平行时它们是同向还是反向?
18.已知函数f(x)=2cos2x+ sin2x+a,若x∈[0, ],且| f(x) |<2,求a的取值范围.
19.已知函数 .
(Ⅰ)求函数f (x)的定义域和值域;
(Ⅱ)判断它的奇偶性.
20.设函数 ,其中向量 =(2cosx,1), =(cosx, sin2x),x∈R.
(Ⅰ)若f(x)=1- 且x∈[- , ],求x;
(Ⅱ)若函数y=2sin2x的图象按向量 =(m,n)(|m| )平移后得到函数y=f(x)的图象,
求实数m、n的值.
21.如图,某观测站C在城A的南偏西 方向上,从城A出发有一条公路,走向是南偏东 ,在C处测得距离C处31千米的公路上的B处有一辆正沿着公路向城A驶去,行驶了20千米后到达D处,测得C、D二处间距离为21千米,这时此车距城A多少千米?
22.某港口水深y(米)是时间t ( ,单位:小时)的函数,记作 ,下面是
某日水深的数据
t (小时) 0 3 6 9 12 15 18 21 24
y (米) 10.0 13.0 9.9 7.0 10.0 13.0 10.1 7.0 10.0
经长期观察: 的曲线可近似看成函数 的图象(A 0, )
(I)求出函数 的近似表达式;
(II)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上时认为是安全的.某船吃水深度(船底离水面的距离)为6.5米,如果该船希望在同一天内安全进出港,请问:它至多能在港内停留多长时间?
高一数学测试题—期末试卷参考答案
一、选择题:
1、A2、B3、B4、D 5、C 6、C 7、D 8、A 9、C10、B 11、A12、C
二、填空题:
13、(4,2) 14、 15、 16、
三、解答题:
17.解析:① = (1,0) + 3(2,1) = ( 7,3) , ∴ = = .
②k = k(1,0)-(2,1)=(k-2,-1). 设k =λ( ),即(k-2,-1)= λ(7,3),
∴ . 故k= 时, 它们反向平行.
18.解析:
,
解得 .
19.解析: (1) 由cos2x≠0得 ,解得x≠ ,所以f(x)的定义域为
且x≠ }
(2) ∵f(x)的定义域关于原点对称且f(-x)=f(x)
∴f(x)为偶函数.
(3) 当x≠ 时
因为
所以f(x)的值域为 ≤ ≤2}
20.解析:(Ⅰ)依题设,f(x)=2cos2x+ sin2x=1+2sin(2x+ ).
由1+2sin(2x+ )=1- ,得sin(2x+ )=- .
∵- ≤x≤ ,∴- ≤2x+ ≤ ,∴2x+ =- ,
即x=- .
(Ⅱ)函数y=2sin2x的图象按向量c=(m,n)平移后得到函数y=2sin2(x-m)+n的图象,即函数y=f(x)的图象.
由(Ⅰ)得 f(x)=2sin2(x+ )+1. ∵|m| ,∴m=- ,n=1.
21.解析:在 中, , ,
,由余弦定理得
所以 .
在 中,CD=21,
= .
由正弦定理得
(千米).所以此车距城A有15千米.
22.解析:(1)由已知数据,易知 的周期为T = 12
∴
由已知,振幅
∴
(2)由题意,该船进出港时,水深应不小于5 + 6.5 = 11.5(米)
∴
∴
∴
故该船可在当日凌晨1时进港,17时出港,它在港内至多停留16小时.
[img]这几道题的答案 谢谢(高一数学必修一第一章集合单元测试)
1.B 2.D 3. D 4.D 5.C 6.C
13.{(1,2)} {(-3,4)} 空集
14.属于
15{a,b}
16.图像看不清
17.(4.7)
18。集合A包含于集合B
高一数学测试卷
松山区2006-2007学年度上学期期中考试试题
高一数学 2006.11
一.选择题(本题共12小题,每小题5分,共60分。)
1. 下列各组对象能构成集合的是( )
A.赤峰的小河流 B.方程 的解 C.接近于 的数的 D.所有的穷人
2.集合 的真子集的个数为( ) A. 3 B. 6 C. 8 D. 7
3.设 , , ,则 ( )
A. B. C. D.
4、如果命题“p或q”与命题“非p”都是真命题,那么( )
A.命题p不一定是假命题 B.命题q一定是真命题
C.命题q不一定是真命题 D.命题p与q的真值相同
5、如果( )在映射 作用下的象是 ,则(1,2)的原象是( )
A.(0, 3) B.(4,1) C.(0, 1) D.(0,1)
6、已知函数f(x) 的定义域是 [ ],那么函数y= f (2x) 的定义域是( )
A. B. C. D.
7、不等式 的解集为 ,则 的值是( )
A. B. C. D.
8. 则 ( )
A.2x+1 B.2 x-1 C.2 x-3 D.2 x +7
9、函数 的单调递减区间是( )
A. B. C. D.
10.函数y= x2的图象经过怎样的变换可以得到y=(x+1)2 +1的图象( )
A. 向左平移1个单位,再向下平移1个单位.
B. 向左平移1个单位,再向上平移1个单位.
C. 向右平移1个单位,再向上平移1个单位.
D. 向右平移1个单位,再向下平移1个单位.
11、已知A、B两地相距150千米,某人开汽车以60千米/小时的速度从A地到达B地,在B地停留1小时后再以50千米/小时的速度返回A地,把汽车离开A地的距离x表示为时间t(小时)的函数表达式是 ( )
A.x=60t B.x=60t+50t
C. x= D.x=
12、给出下列命题:
①命题“若b=3,则b2=9”的逆命题;
②命题“相似三角形的对应角相等”的否命题;
③命题“若 则 有实数根”的逆否命题;
④“ab”是“a2b2”的充分条件;
⑤“a5”是“a3”的必要条件;
其中真命题的个数是 ( )
A.1 B.2 C.3 D.4
二.填空题(本题共4小题,每小题4分,共16分。)
13.函数 的值域为:________.
14.已知函数 ,则 .
15、函数y= 的定义域为 .
16.如果二次函数 在区间 上是减函数,在区间 上是增函数,则 的值是 .
【考生须知】请把选择、填空的答案填在答题纸的相应位置,考试结束后只交答题纸.
松山区2006-2007学年度上学期期中考试试题
高一数学答题纸
得分 阅卷人
一.选择题(本题共12小题,每小题5分,共60分。)
题号 1 2 3 4 5 6 7 8 9 10 11 12
答案
得分 阅卷人
二.填空题(本题共4小题,每小题4分,共16分。)
13. 14.
15. 16.
三.解答题(本大题共6题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤.)
得分 阅卷人
17.(10分) 解不等式组
得分 阅卷人
18.(12分) 已知
(1)求 ;(2)求 、 的解析式.
得分 阅卷人
19.(12分) 已知函数 ,判断并证明 在区间(-1,+∞)上的单调性.
得分 阅卷人
20.(12分) 已知集合A=
(1)若A∪B=B,求实数 的取值范围;
(2)若A∩B≠ ,求实数 的取值范围.
得分 阅卷人
21.(12分) 已知集合A=
(1)若A是空集,求 的取值范围;
(2)若A中只有一个元素,求 的值,并把这个元素写出来;
(3)若A中至多只有一个元素,求 的取值范围。
得分 阅卷人
22.(16分) 已知二次函数 的图象(如图).
求:(1) 二次函数 的解析式;
(2) 二次函数 在区间 上的值域;
(3)解关于 的不等式 .
[url=]免费课件、教案、论文、试卷、在线考试的好地方[/url]
[url=]两万个课件全免费、全册/实录教案、优秀论文、最新试卷[/url]
高一数学必修课的测试题
高一数学必修课的测试题
一、选择题:(每小题5分,共60分)
1.若 是不共线的任意三点,则下列各式中成立的是( )
A、 B、
C、 D、
2.函数 是( )
A、周期为 的奇函数 B、周期为 的偶函数
C、周期为 的奇函数 D、周期为 的偶函数
3.若 是 的一个内角,且 则 等于( )
A、 B、
C、 或 D、 或
4.如图所示,向量
A、B、C在一条直线上,且 ,则( )
A、
B、
C、
D、
5. 是夹角为 的两个单位向量,则 等于( )
A、 B、 C、 D、8
6.若 共线,且 则 等于_______
A、1 B、2 C、3 D、4
7.与向量 垂直的单位向量是( )
A、 B、
C、( 或 D、 或
8.已知 ,则 是( )
A、锐角三角形 B、直角三角形 C、钝角三角形 D、任意三角形
9.函数 的单调递增区间为( )
A、
B、
C、
D、
10.已知 , 在 方向上的投影是 ,则 是( )
A、3 B、 C、2 D、
11.若 ,则( )
A、 B、
C、 D、
12.已知点 ,函数 的图象与线段 的交点 分有向线段 的比为3:2,则 的`值为( )
A、 B、 C、 D、4
二、填空题:(每题5分,共20分)
13. ______________。
14.已知 ,且 与 的夹角为锐角,则 的取值范围是______________________。
15.已知 的顶点 和重心 ,则 边的中点坐标是_________________。
16.关于函数 有下列命题:
①由 可得 必是 的整数倍
②由 的表达式可改写为
③ 的图像关于点 对称
④ 的图象关于直线 对称
其中正确命题的序号是____________________。
三、解答题(共70分)
17、(10分)已知 , , 与 的夹角为 。
求(1) . (2)
18.(12分)已知 若 , 在直线 上, 求 的坐标。
19、(12分)如图:梯形ABCD中,AB//CD,且AB=2CD,M、N是DC、BA的中点,设 , ,试以 、 为基底表示 、 。
20、(12分)已知 , , 是同一平面内的三个向量,其中 , 且 与 垂直,求 与 的夹角 。
21.(12分)已知函数
⑴求 的最大值和最小值。
⑵若不等式 在 上恒成立,求实数 的取值范围。
22、(12分)已知函数
(1)求 的定义域G;
(2)用定义判断 的奇偶性;
(3)在 上作出函数 的图象;
(4)指出函数 的最小正周期及单调递增区间。
关于高一数学周测卷16和高一数学周周练的介绍到此就结束了,不知道同学们从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。