高一数学周测卷16(高一数学周周练)

本篇文章给同学们谈谈高一数学周测卷16,以及高一数学周周练对应的知识点,希望对各位同学有所帮助,不要忘记分享给你的朋友哦!

本文目录一览:

请帮助将人教版高一数学试卷复制在下边(急用)

高一数学期末同步测试题

ycy

说明:本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,答题时间120分钟.

第Ⅰ卷(选择题,共60分)

一、选择题:(每小题5分,共60分,请将所选答案填在括号内)

1.函数 的一条对称轴方程是 ( )

A. B. C. D.

2.角θ满足条件sin2θ0,cosθ-sinθ0,则θ在 ( )

A.第一象限 B.第二象限 C.第三象限 D.第四象限

3.己知sinθ+cosθ= ,θ∈(0,π),则cotθ等于 ( )

A. B.- C. ± D.-

4.已知O是△ABC所在平面内一点,若 + + = ,且| |=| |=| |,则△ABC

是 ( )

A.任意三角形 B.直角三角形 C.等腰三角形 D.等边三角形

5.己知非零向量a与b不共线,则 (a+b)⊥(a-b)是|a|=|b|的 ( )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

6.化简 的结果是 ( )

A. B. C. D.

7.已知向量 ,向量 则 的最大值,最小值分别是( )

A. B. C.16,0 D.4,0

8.把函数y=sinx的图象上所有点的横坐标都缩小到原来的一半,纵坐标保持不 变,再把 图象向左平移 个单位,这时对应于这个图象的解析式 ( )

A.y=cos2x B.y=-sin2x

C.y=sin(2x- ) D.y=sin(2x+ )

9. ,则y的最小值为 ( )

A.– 2 B.– 1 C.1 D.

10.在下列区间中,是函数 的一个递增区间的是 ( )

A. B. C. D.

11.把函数y=x2+4x+5的图象按向量 a经一次平移后得到y=x2的图象,则a等于 ( )

A.(2,-1) B.(-2,1) C.(-2,-1) D.(2,1)

12. 的最小正周期是 ( )

A. B. C. D.

第Ⅱ卷(非选择题,共90分)

二、填空题:(每小题4分,共16分,请将答案填在横线上)

13.已知O(0,0)和A(6,3),若点P分有向线段 的比为 ,又P是线段OB的中点,则点B的坐标为________________.

14. ,则 的夹角为_ ___.

15.y=(1+sinx)(1+cosx)的最大值为___ ___.

16.在 中, , ,那么 的大小为___________.

三、解答题:(本大题共74分,17—21题每题12分,22题14分)

17.已知

(I)求 ;

(II)当k为何实数时,k 与 平行, 平行时它们是同向还是反向?

18.已知函数f(x)=2cos2x+ sin2x+a,若x∈[0, ],且| f(x) |<2,求a的取值范围.

19.已知函数 .

(Ⅰ)求函数f (x)的定义域和值域;

(Ⅱ)判断它的奇偶性.

20.设函数 ,其中向量 =(2cosx,1), =(cosx, sin2x),x∈R.

(Ⅰ)若f(x)=1- 且x∈[- , ],求x;

(Ⅱ)若函数y=2sin2x的图象按向量 =(m,n)(|m| )平移后得到函数y=f(x)的图象,

求实数m、n的值.

21.如图,某观测站C在城A的南偏西 方向上,从城A出发有一条公路,走向是南偏东 ,在C处测得距离C处31千米的公路上的B处有一辆正沿着公路向城A驶去,行驶了20千米后到达D处,测得C、D二处间距离为21千米,这时此车距城A多少千米?

22.某港口水深y(米)是时间t ( ,单位:小时)的函数,记作 ,下面是

某日水深的数据

t (小时) 0 3 6 9 12 15 18 21 24

y (米) 10.0 13.0 9.9 7.0 10.0 13.0 10.1 7.0 10.0

经长期观察: 的曲线可近似看成函数 的图象(A 0, )

(I)求出函数 的近似表达式;

(II)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上时认为是安全的.某船吃水深度(船底离水面的距离)为6.5米,如果该船希望在同一天内安全进出港,请问:它至多能在港内停留多长时间?

高一数学测试题—期末试卷参考答案

一、选择题:

1、A2、B3、B4、D 5、C 6、C 7、D 8、A 9、C10、B 11、A12、C

二、填空题:

13、(4,2) 14、 15、 16、

三、解答题:

17.解析:① = (1,0) + 3(2,1) = ( 7,3) , ∴ = = .

②k = k(1,0)-(2,1)=(k-2,-1). 设k =λ( ),即(k-2,-1)= λ(7,3),

∴ . 故k= 时, 它们反向平行.

18.解析:

解得 .

19.解析: (1) 由cos2x≠0得 ,解得x≠ ,所以f(x)的定义域为

且x≠ }

(2) ∵f(x)的定义域关于原点对称且f(-x)=f(x)

∴f(x)为偶函数.

(3) 当x≠ 时

因为

所以f(x)的值域为 ≤ ≤2}

20.解析:(Ⅰ)依题设,f(x)=2cos2x+ sin2x=1+2sin(2x+ ).

由1+2sin(2x+ )=1- ,得sin(2x+ )=- .

∵- ≤x≤ ,∴- ≤2x+ ≤ ,∴2x+ =- ,

即x=- .

(Ⅱ)函数y=2sin2x的图象按向量c=(m,n)平移后得到函数y=2sin2(x-m)+n的图象,即函数y=f(x)的图象.

由(Ⅰ)得 f(x)=2sin2(x+ )+1. ∵|m| ,∴m=- ,n=1.

21.解析:在 中, , ,

,由余弦定理得

所以 .

在 中,CD=21,

= .

由正弦定理得

(千米).所以此车距城A有15千米.

22.解析:(1)由已知数据,易知 的周期为T = 12

由已知,振幅

(2)由题意,该船进出港时,水深应不小于5 + 6.5 = 11.5(米)

故该船可在当日凌晨1时进港,17时出港,它在港内至多停留16小时.

[img]

这几道题的答案 谢谢(高一数学必修一第一章集合单元测试)

1.B 2.D 3. D 4.D 5.C 6.C

13.{(1,2)} {(-3,4)} 空集

14.属于

15{a,b}

16.图像看不清

17.(4.7)

18。集合A包含于集合B

高一数学测试卷

松山区2006-2007学年度上学期期中考试试题

高一数学 2006.11

一.选择题(本题共12小题,每小题5分,共60分。)

1. 下列各组对象能构成集合的是( )

A.赤峰的小河流 B.方程 的解 C.接近于 的数的 D.所有的穷人

2.集合 的真子集的个数为( ) A. 3 B. 6 C. 8 D. 7

3.设 , , ,则 ( )

A. B. C. D.

4、如果命题“p或q”与命题“非p”都是真命题,那么( )

A.命题p不一定是假命题 B.命题q一定是真命题

C.命题q不一定是真命题 D.命题p与q的真值相同

5、如果( )在映射 作用下的象是 ,则(1,2)的原象是( )

A.(0, 3) B.(4,1) C.(0, 1) D.(0,1)

6、已知函数f(x) 的定义域是 [ ],那么函数y= f (2x) 的定义域是( )

A. B. C. D.

7、不等式 的解集为 ,则 的值是( )

A. B. C. D.

8. 则 ( )

A.2x+1 B.2 x-1 C.2 x-3 D.2 x +7

9、函数 的单调递减区间是( )

A. B. C. D.

10.函数y= x2的图象经过怎样的变换可以得到y=(x+1)2 +1的图象( )

A. 向左平移1个单位,再向下平移1个单位.

B. 向左平移1个单位,再向上平移1个单位.

C. 向右平移1个单位,再向上平移1个单位.

D. 向右平移1个单位,再向下平移1个单位.

11、已知A、B两地相距150千米,某人开汽车以60千米/小时的速度从A地到达B地,在B地停留1小时后再以50千米/小时的速度返回A地,把汽车离开A地的距离x表示为时间t(小时)的函数表达式是 ( )

A.x=60t B.x=60t+50t

C. x= D.x=

12、给出下列命题:

①命题“若b=3,则b2=9”的逆命题;

②命题“相似三角形的对应角相等”的否命题;

③命题“若 则 有实数根”的逆否命题;

④“ab”是“a2b2”的充分条件;

⑤“a5”是“a3”的必要条件;

其中真命题的个数是 ( )

A.1 B.2 C.3 D.4

二.填空题(本题共4小题,每小题4分,共16分。)

13.函数 的值域为:________.

14.已知函数 ,则 .

15、函数y= 的定义域为 .

16.如果二次函数 在区间 上是减函数,在区间 上是增函数,则 的值是 .

【考生须知】请把选择、填空的答案填在答题纸的相应位置,考试结束后只交答题纸.

松山区2006-2007学年度上学期期中考试试题

高一数学答题纸

得分 阅卷人

一.选择题(本题共12小题,每小题5分,共60分。)

题号 1 2 3 4 5 6 7 8 9 10 11 12

答案

得分 阅卷人

二.填空题(本题共4小题,每小题4分,共16分。)

13. 14.

15. 16.

三.解答题(本大题共6题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤.)

得分 阅卷人

17.(10分) 解不等式组

得分 阅卷人

18.(12分) 已知

(1)求 ;(2)求 、 的解析式.

得分 阅卷人

19.(12分) 已知函数 ,判断并证明 在区间(-1,+∞)上的单调性.

得分 阅卷人

20.(12分) 已知集合A=

(1)若A∪B=B,求实数 的取值范围;

(2)若A∩B≠ ,求实数 的取值范围.

得分 阅卷人

21.(12分) 已知集合A=

(1)若A是空集,求 的取值范围;

(2)若A中只有一个元素,求 的值,并把这个元素写出来;

(3)若A中至多只有一个元素,求 的取值范围。

得分 阅卷人

22.(16分) 已知二次函数 的图象(如图).

求:(1) 二次函数 的解析式;

(2) 二次函数 在区间 上的值域;

(3)解关于 的不等式 .

[url=]免费课件、教案、论文、试卷、在线考试的好地方[/url]

[url=]两万个课件全免费、全册/实录教案、优秀论文、最新试卷[/url]

高一数学必修课的测试题

高一数学必修课的测试题

一、选择题:(每小题5分,共60分)

1.若 是不共线的任意三点,则下列各式中成立的是( )

A、 B、

C、 D、

2.函数 是( )

A、周期为 的奇函数 B、周期为 的偶函数

C、周期为 的奇函数 D、周期为 的偶函数

3.若 是 的一个内角,且 则 等于( )

A、 B、

C、 或 D、 或

4.如图所示,向量

A、B、C在一条直线上,且 ,则( )

A、

B、

C、

D、

5. 是夹角为 的两个单位向量,则 等于( )

A、 B、 C、 D、8

6.若 共线,且 则 等于_______

A、1 B、2 C、3 D、4

7.与向量 垂直的单位向量是( )

A、 B、

C、( 或 D、 或

8.已知 ,则 是( )

A、锐角三角形 B、直角三角形 C、钝角三角形 D、任意三角形

9.函数 的单调递增区间为( )

A、

B、

C、

D、

10.已知 , 在 方向上的投影是 ,则 是( )

A、3 B、 C、2 D、

11.若 ,则( )

A、 B、

C、 D、

12.已知点 ,函数 的图象与线段 的交点 分有向线段 的比为3:2,则 的`值为( )

A、 B、 C、 D、4

二、填空题:(每题5分,共20分)

13. ______________。

14.已知 ,且 与 的夹角为锐角,则 的取值范围是______________________。

15.已知 的顶点 和重心 ,则 边的中点坐标是_________________。

16.关于函数 有下列命题:

①由 可得 必是 的整数倍

②由 的表达式可改写为

③ 的图像关于点 对称

④ 的图象关于直线 对称

其中正确命题的序号是____________________。

三、解答题(共70分)

17、(10分)已知 , , 与 的夹角为 。

求(1) . (2)

18.(12分)已知 若 , 在直线 上, 求 的坐标。

19、(12分)如图:梯形ABCD中,AB//CD,且AB=2CD,M、N是DC、BA的中点,设 , ,试以 、 为基底表示 、 。

20、(12分)已知 , , 是同一平面内的三个向量,其中 , 且 与 垂直,求 与 的夹角 。

21.(12分)已知函数

⑴求 的最大值和最小值。

⑵若不等式 在 上恒成立,求实数 的取值范围。

22、(12分)已知函数

(1)求 的定义域G;

(2)用定义判断 的奇偶性;

(3)在 上作出函数 的图象;

(4)指出函数 的最小正周期及单调递增区间。

关于高一数学周测卷16和高一数学周周练的介绍到此就结束了,不知道同学们从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

本文转载自互联网,如有侵权,联系删除