九年级数学沪科版期中调研卷(数学九年级沪科版测试卷二期中)

今天给各位同学分享九年级数学沪科版期中调研卷的知识,其中也会对数学九年级沪科版测试卷二期中进行解释,如果能碰巧解决你现在面临的问题,别忘了分享本站,现在开始吧!

本文目录一览:

初三党、冲刺 数学求试卷啊~~~

2011年学业考试数学模拟卷

(时间:100分钟,满分:150分)

考生注意:

1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.

2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.

一、选择题:(本大题共6题,每题4分,满分24分)

[每小题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂]

1.下列根式中,与 为同类二次根式的是(▲)

(A) ; (B) ; (C) ; (D) .

2.关于二次函数 的图像,下列判断正确的是(▲)

(A)图像开口向上; (B)图像的对称轴为直线 ;

(C)图像有最低点; (D)图像的顶点坐标为( ,2).

3.关于等边三角形,下列说法不正确的是(▲)

(A)等边三角形是轴对称图形; (B)等边三角形是中心对称图形;

(C)等边三角形是旋转对称图形; (D)等边三角形都相似.

4.把一块周长为20cm,面积为20 的纸片裁成四块形状、大小完全相同的小三角形纸片(如图1),则每块小三角形纸片的周长和面积分别为(▲)

(A)10cm,5 ; (B)10cm,10 ;

(C)5cm,5 ; (D)5cm,10 .

5.已知 、 是两个单位向量,向量 , ,那么下列结论中正确的是(▲)

(A) ; (B) ; (C) ; (D) .

6.图2反映了一辆汽车从甲地开往乙地的过程中,汽车离开甲地的距离s(千米)与所用时间t(分)之间的函数关系.已知汽车在途中停车加油一次,根据图像,下列描述中,不正确的是(▲)

(A)汽车在途中加油用了10分钟;

(B)汽车在加油前后,速度没有变化;

(C)汽车加油后的速度为每小时90千米;

(D)甲乙两地相距60千米.

二、填空题:(本大题共12题,每题4分,满分48分)

[在答题纸相应题号后的空格内直接填写答案]

7.计算: ▲ .

8.计算: ▲ .

9.在实数范围内分解因式: = ▲ .

10.方程 的解为: ▲ .

11.已知 ,且 ,则 ▲ .

12.已知函数 的图像经过第一、三、四象限,则 的取值范围是 ▲ .

13.把抛物线 向左平移一个单位,所得抛物线的表达式为: ▲ .

14.已知关于 的方程 ,如果从1、2、3、4、5、6六个数中任取一个数作为方程的常数项 ,那么所得方程有实数根的概率是 ▲ .

15.如图3,已知梯形ABCD中,AB∥CD,AB=5,CD=3,AD=BC=4,则 ▲ .

16.如图4,小芳与路灯相距3米,她发现自己在地面上的影子(DE)长2米,如果小芳的身高为1.6米,那么路灯离地面的高度(AB)是 ▲ 米.

17.如图5,已知AB是⊙O的直径,⊙O1、⊙O2的直径分别是OA、OB,⊙O3与⊙O、

⊙O1、⊙O2均相切,则⊙O3与⊙O的半径之比为 ▲ .

18.已知A是平面直角坐标系内一点,先把点A向上平移3个单位得到点B,再把点A绕点B顺时针方向旋转90°得到点C,若点C关于y轴的对称点为(1,2),那么点A的坐标是 ▲ .

三、解答题:(本大题共7题,满分78分)

[将下列各题的解答过程,做在答题纸上]

19.(本题满分10分) 计算: .

20.(本题满分10分,每小题满分5分)

如图6,已知一个正比例函数与一个反比例函数的

图像在第一象限的交点为A(2,4).

(1)求正比例函数与反比例函数的解析式;

(2)平移直线 ,平移后的直线与x轴交于点B,

与反比例函数的图像在第一象限的交点为C(4,n).

求B、C两点的距离.

21.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)

如图7,△ABC中,AB=AC, ,点D在边BC上,BD=6,CD=AB.

(1) 求AB的长;

(2) 求 的正切值.

22.(本题满分10分,每小题各5分)

如图8,已知 是线段 上一点, 和 都是正方形,联结 、 .

(1) 求证: = ;

(2) 设 与 的交点为P,

求证: .

23.(本题满分12分,每小题各4分)

为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图9所示(其中男生收看3次的人数没有标出).

根据上述信息,解答下列各题:

(1) 该班级女生人数是 ▲ ,女生收看“两会”新闻次数的中位数是 ▲ ;

(2) 对于某个群体,我们把一周内

收看某热点新闻次数不低于3次的人

数占其所在群体总人数的百分比叫做

该群体对某热点新闻的“关注指数”.

如果该班级男生对“两会”新闻

的“关注指数”比女生低5%,试求

该班级男生人数;

(3) 为进一步分析该班级男、女生

统计量 平均数(次) 中位数(次) 众数(次) 方差 ……

该班级男生 3

3 4 2 ……

收看“两会”新闻次数的特点,小明

给出了男生的部分统计量(如表1).

根据你所学过的统计知识,适当

计算女生的有关统计量,进而比较该

班级男、女生收看 “两会”新闻次数

的波动大小.

24.(本题满分12分,每小题各4分)

如图10,已知抛物线 与 轴负半轴交于点 ,与 轴正半轴交于点 ,且 .

(1) 求 的值;

(2) 若点 在抛物线上,且四边形 是

平行四边形,试求抛物线的解析式;

(3) 在(2)的条件下,作∠OBC的角平分线,

与抛物线交于点P,求点P的坐标.

25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)

如图11,已知⊙O的半径长为1,PQ是⊙O的直径,点M是PQ延长线上一点,以点M为圆心作圆,与⊙O交于A、B两点,联结PA并延长,交⊙M于另外一点C.

(1) 若AB恰好是⊙O的直径,设OM=x,AC=y,试在图12中画出符合要求的大致图形,并求y关于x的函数解析式;

(2) 联结OA、MA、MC,若OA⊥MA,且△OMA与△PMC相似,求OM的长度和⊙M的半径长;

(3) 是否存在⊙M,使得AB、AC恰好是一个正五边形的两条边?若存在,试求OM的长度和⊙M的半径长;若不存在,试说明理由.

闵行区2008学年第二学期九年级质量调研考试 数学答案

闵行区2008学年第二学期九年级质量调研考试

数学试卷参考答案以及评分标准

一、选择题:(本大题共6题,每题4分,满分24分)

1.C;2.A;3.B;4.D;5.B;6.C.

二、填空题:(每题4分,满分48分)

7. ; 8. ; 9. ; 10.x = 2; 11.减小; 12. ;

13.1350; 14.4; 15. ; 16.17; 17. ; 18.1或7.

三、解答题:(本大题共7题,满分78分)

19.(本题满分10分)

解:由① 得 .………………………………………………………………(2分)

由② 得 .…………………………………………………………(2分)

解得 .………………………………………………………………(2分)

所以,原不等式组的解集是 .…………………………………………(2分)

在数轴上表示不等式组的解集,正确得2分,未去掉端点,扣1分.

20.(本题满分10分)

解:两边同时乘以最简公分母 ,得

.…………………………………………(2分)

整理后,得 . ………………………………………………(3分)

解得 , .………………………………………………(2分)

经检验: 是原方程的增根,舍去; 是原方程的根.……………(2分)

所以,原方程的根是x = 4.………………………………………………………(1分)

21.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分)

解:(1)设y与x之间的函数解析式是 (k ≠ 0).

根据题意,得 …………………………………………(2分)

解得 …………………………………………………(1分)

所以,所求的函数解析式是 .………………………………(1分)

(2)设这一天的销售价为x元.…………………………………………………(1分)

根据题意,得 .…………………………(2分)

整理后,得 .……………………………………(1分)

解得 , .………………………………………(1分)

答:这一天的销售价应为33元或50元.…………………………………(1分)

22.(本题共2小题,第(1)小题5分,第(2)小题5分,满分10分)

证明:(1)∵PC // OB,PD // OA,

∴四边形OCPD是平行四边形,且∠ECP =∠O,∠FDP =∠O. …(1分)

∴PC = OD,PD = OC,∠ECP =∠FDP. ……………………………(1分)

∵PE⊥OA,PF⊥OB, ∴∠PEC =∠PFD = 90°.

∴△PCE∽△PDF.………………………………………………………(1分)

∴ ,即得 . ………………………………………(1分)

∴ .……………………………………………………(1分)

(2)当点P在∠AOB的平分线上时,四边形CODP是菱形.……………(1分)

∵当点P在∠AOB的平分线上时,由PE⊥OA,PF⊥OB,得PE = PF.

于是,由△PCE∽△PDF,得 ,即得PC = PD.………(2分)

∵四边形CODP是平行四边形,∴四边形CODP是菱形.…………(1分)

当点P不在∠AOB的平分线上时,可得PE ≠ PF.即得PC ≠ PD.

∴当点P不在∠AOB的平分线上时,四边形CODP不是菱形.……(1分)

23(本题共2小题,第(1)小题5分,第(2)小题7分,满分12分)

解:(1)联结AD.

∵AB = AC = 8,D是边BC的中点,∴AD⊥BC.………………………(1分)

在Rt△ABD中, ,∴BD = CD = 5.……………………(1分)

∵∠EDC =∠B +∠BED =∠EDF +∠CDF,∠EDF =∠B,

∴∠BED =∠CDF.…………………………………………………………(1分)

∵AB = AC,∴∠B =∠C.

∴△BDE∽△CFD.∴ .………………………………………(1分)

∵BE = 4, .………………………………………………………(1分)

(2)∵△BDE∽△CFD,∴ .………………………………………(1分)

∵BD = CD,∴ .…………………………………………………(1分)

又∠EDF =∠B,∴△BDE∽△DFE.∴∠BED =∠DEF.………………(1分)

∵EF // BC,∴∠BDE =∠DEF.……………………………………………(1分)

∴∠BDE =∠BED.∴BE = BD = 5.………………………………………(1分)

于是,由AB = 8,得AE = 3.

∵EF // BC,∴ .…………………………………………………(1分)

∵BC = 10,∴ .即得 .……………………………………(1分)

24.(本题共2小题,第(1)小题5分,第(2)小题7分,满分12分)

解:(1)∵二次函数 的图像经过点M(1,0),

∴ .……………………………………………………………(1分)

∴m = -3.……………………………………………………………………(1分)

∴所求函数的解析式是 .…………………………………(1分)

又 ,∴顶点坐标是(2,1).………………(2分)

(2)由(1)得二次函数图像的对称轴是直线x = 2,∴D(2,0).…………(1分)

由题意得,A( ,0)、B(0,b)、C(2,4 + b).……………………(2分)

∵对称轴直线x = 2与y轴平行,

∴△AOB∽△ADC.…………………………………………………………(1分)

∴ ,即 .………………………………(1分)

解得 , .……………………………………………………(2分)

经验证, , 都是满足条件的m的值.

25.(本题共3小题,第(1)小题4分,第(2)小题5分,第(3)小题5分,满分14分)

(1)证明:在边AB上截取线段AH,使AH = PC,联结PH.

由正方形ABCD,得∠B =∠BCD =∠D = 90°,AB = BC = AD.……(1分)

∵∠APF = 90°,∴∠APF =∠B.

∵∠APC =∠B +∠BAP =∠APF +∠FPC,

∴∠PAH =∠FPC.………………………………………………………(1分)

又∵∠BCD =∠DCE = 90°,CF平分∠DCE,∴∠FCE = 45°.

∴∠PCF = 135°.

又∵AB = BC,AH = PC,∴BH = BP,即得∠BPH =∠BHP = 45°.

∴∠AHP = 135°,即得∠AHP =∠PCF.………………………………(1分)

在△AHP和△PCF中,∠PAH =∠FPC,AH = PC,∠AHP =∠PCF,

∴△AHP≌△PCF.∴AP = PF.………………………………………(1分)

(2)解:⊙P与⊙G两圆的位置关系是外切.

延长CB至点M,使BM = DG,联结AM.

由AB = AD,∠ABM =∠D = 90°,BM = DG,

得△ADG≌△ABM,即得AG = AM,∠MAB =∠GAD.………………(1分)

∵AP = FP,∠APF = 90°,∴∠PAF = 45°.

∵∠BAD = 90°,∴∠BAP +∠DAG = 45°,即得∠MAP=∠PAG = 45°.(1分)

于是,由AM = AG,∠MAP =∠PAG,AP = AP,

得△APM≌△APG.∴PM = PG.

即得PB + DG = PG.………………………………………………………(2分)

∴⊙P与⊙G两圆的位置关系是外切.……………………………………(1分)

(3)解:由PG // CF,得∠GPC =∠FCE = 45°.…………………………………(1分)

于是,由∠BCD = 90°,得∠GPC =∠PGC = 45°.

∴PC = GC.即得DG = BP.………………………………………………(1分)

设BP = x,则DG = x.由AB = 2,得PC = GC = 2 – x.

∵PB + DG = PG,∴PG = 2 x.

在Rt△PGC中,∠PCG = 90°,得 .……………(1分)

即得 .解得 .………………………………………(1分)

∴当 时,PG // CF.………………………………………(1分)

九年级上册数学题《沪科版》

50-40+x 元 ; 500-10x ;

可以根据题意列出方程 : y =(50+x)*(500-10x)-40*(500-10x) =-x^2+40x+500 . 由(4ac-b^2)/4a=900元 。

九年级的数学中考模拟试题卷

上帝创造了整数,所有其余的数都是人造的。下面是九年级的数学中考模拟试题卷,欢迎童鞋们前来学习。

   一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的)

1.形中,既是中心对称图形又是轴对称图形的是„„„„„„„„„

. 2.下列运算正确的是„„„„„„„„„„„„„„„„„„„„„„„„( ▲ ) A. a2+a2=2a4 B.(-a2)3=-a8 C.(-ab)2=2ab2 D.(2a)2÷a=4a

3.使3x-1 有意义的x的取值范围是„„„„„„„„„„„„„„„„„( ▲ ) A.x -13 B.x 13 C.x ≥ 13 D.x ≥-1 3

4.如图,数轴上A、B两点分别对应实数a、b,则下列结论正确的是„„„( ▲ ) A. ab0 B. a-b0 C.a+b0 D.|a|-|b|0

5.已知圆锥的底面半径为4cm,母线长为3cm,则圆锥的侧面积是 „„„„ ( ▲ ) A.15cm2 B.15πcm2 C. 12 cm2 D. 12πcm2

6.如图,平行四边形ABCD中,CE⊥AB于E,若∠A=125°,则∠BCE的度数为( ▲ ) A. 35° B. 55° C. 25° D. 30°

7.如图所示为一个无盖长方体盒子的展开图(重叠部分不计),根据图中数据,可知该无盖长方体的容积为 „„„„„„„„„„„„„„„„„„„„„„„„( ▲ ) A. 4 B.6 C. 8 D.12

8.在下列命题中,真命题是 „„„„„„„„„„„„„„„„„„„„ ( ▲ ) A.两条对角线相等的四边形是矩形 B.两条对角线垂直的四边形是菱形 C.两条对角线垂直且相等的四边形是正方形 D.两条对角线相等的平行四边形是矩形

9.如图,在平面直角坐标系中,A(1,0),B(0,3),以AB为边在第一象限作正方形ABCD,点D在双曲线y=k x(k≠0)上,将正方形沿x轴负方向平移 m个单位长度后,点C恰好落 在双曲线上,则m的值是 „„„„„„„„„„„„„„„„„„„„„( ▲ ) A. 2 B. 3 C. 2 D. 3

10.已知如图,直角三角形纸片中,∠C=90°,AC=6,BC=8,若要在纸片中剪出两个相外切的等圆,则圆的半径最大为„„„„„„„„„„„„„„„„„„„( ▲ ) A. 4 3 B. 107 C. 1 D. 125

二、填空题(本大题共8小题,每空2 分,共16分.不需写出解答过程,只需把答案直接填写在答题卷上相应的位置处)

11.因式分解:x3—4x= ▲ .

12.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680 000 000元,这个 数用科学记数法表示为 ▲ 元.

13.若x1,x2是方程x2+2x—3=0的.两根,则x1+x2= ▲ .

14.六边形的内角和等于 ▲ °.

15.如图,将△ABC沿它的中位线MN折叠后,点A落在点A′处,若∠A=28°,∠B=130°, 则∠A′NC= ▲ °.

16.如图,△ABC中,∠A=90°,∠C=75°,AC=6,DE垂直平分BC,则BE= ▲ .

17.如图,点C、D分别在⊙O的半径OA、OB的延长线上,且OA=6,AC=4,CD平行 于AB,并与AB相交于MN两点.若tan∠C=1 2 ,则CN的长为 ▲ .

18.已知梯形ABCD,AD∥BC,AB⊥BC,AD=1,AB=3,BC=4.若P为线段AB上任 意一点,延长PD到E,使DE=2PD,再以PE、PC为边作□PCQE,求对角线PQ的最小值 ▲ . (第16题图) A B D C E A B C D O M N (第17题图) A B C D O x y (第9题图) A B C (第10题图) M N B C A’ (第15题图)

三、解答题(本大题共10小题,共计84分.解答时应写出必要的证明过程或演算步骤.

19.(本题8分)

(1)计算:(1 4)-1-27+(5-π)0 (2)(2x-1)2+(x-2)(x+2)-4x(x-1

2) 20.(本题满分8分)(1)解方程: 1x-3=2+x 3-x

(2) 解不等式组:x-3(x-2)≤4,1+2x3 x-1

21.(本题8分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC 的平行线交CE的延长线于F,且AF=BD,连接BF. (1)求证:BD=CD. (2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论

. 22.(本题满分6分)为了解某校九年级学生体育测试成绩情况,现从中随机抽取部分学 生的体育成绩统计如下,其中右侧扇形统计图中的圆心角α为36°.体育成绩(分) 人数(人) 百分比31 32 m 33 8 16% 3424% 35 15 根据上面提供的信息,回答下列问题: (1)m= ▲ ;抽取部分学生体育成绩的中位数为 ▲ 分;

(2)已知该校九年级共有500名学生,如果体育成绩达33分以上(含33分)为优秀,请估计该校九年级学生体育成绩达到优秀的总人数.

九年级数学期中考试卷

1.下列运算正确的是 ( ▲ )

A. B. C. D.

2.在奔驰、宝马、丰田、三菱等汽车标志图形中,为中心对称图形的是( ▲ )

A B C D

3. 如图,数轴上 两点分别对应实数 ,则下列结论正确的是 ( ▲ )

A. B.

C. D.

4.如图所示,正方形ABCD中,点E是CD边上一点,连结AE,交对角线BD于 F,连结CF,则图中全等三角形共有 ( ▲ )

A.1对 B.2对 C.3对 D.4对

5.初三(8)班学生准备利用“五一”假期外出旅游,旅游公司设计了几条线路供学生们选择.班长对全体学生进行民意调查,从而最终决定选择哪一条线路.下列调查数据中最值得关注的是( ▲ )

A. 平均数 B. 中位数 C.众数 D. 方差

6. 若方程x2-4x-2=0的两实根为x1、x2,则x1 + x2的值为 ( ▲ ) [来源:学科网]

A.-4 B. 4 C. 8 D. 6

7. 已知一个凸n边形的内角和等于540°,那么n的值是 ( ▲ )

A.4 B.5 C.6 D.7

8.若两圆的半径分别为2和3,圆心距为5,则两圆的位置关系为( ▲ )

A.外离 B.内切 C.相交 D.外切

9.将点A(4,0)绕着原点O顺时针方向旋转30°角到对应点A′,则点A′的坐标是( ▲ )

A.(23,2) B.(4,-2) C.(23,-2) D.(2, -23)

10.如图,直线l是一条河,P、Q两地相距8千米,P、Q两地到l的距离分别为2千米、5千米,欲在l上的某点M处修建一个水泵站,向P、Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是( ▲ )

二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置处)

11.分解因式: =____▲_ ___ .

12.在函数 中,自变量x的取值范围是 ▲ .

13.今年桃花节之前,阳山桃花节组委会共收到约1.2万条楹联应征作品,这个数据用科学记数法可表示为 ▲ 条.

14.如图,已知AB∥CD, °,则 为 ▲ °

15.若用半径为9,圆心角为 的扇形围成一个圆锥的侧面(接缝忽略不计) ,则这个圆锥的底面半径是 ▲ ;

16.2011年3月11日,日本发生了9.0级大地震.福岛县某地一水塔发生了严重沉陷(未倾斜).如图,已知地震前,在距该水塔30米的A处测得塔顶B的仰角为60°;地震后,在A处测得塔顶B的仰角为45°,则该水塔沉陷了 ▲ 米.

17.如图,点A在双曲线 上,点B在双曲线 上,且AB∥x轴,C、D在x轴上,若四边形ABCD为平行四边形,则它的面积为  ▲ 。

18.如图在三角形纸片ABC中,已知∠ABC=90º,AC=5,BC=4,过点A作直线l平行于BC,折叠三角形纸片ABC,使直角顶点B落在直线l上的点P处,折痕为MN,当点P在直线l上移动时,折痕的 端点M、N也随之移动,若限定端点M、N分别在AB、AC边上(包括端点)移动,则线段AP长度的最大值与最小值的差为 ▲ .

三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)

19.(本题满分8分)计算:

(1) ; (2)2x-2 - 8x2-4.

20.(本题满分8分)(1)解方程: (2)解不等式组:

21.(本题满分8分)某班将举行 “庆祝建党90周年知识竞赛” 活动,班长安排小明购买奖品,下面两图是小明买回奖品时与班长的对话情境:

请根据上面的信息, 试求两种笔记本各买了多少本?

22.(本小题满分8分)如图,AB为⊙O的直径,BC为⊙O的切线,AC交⊙O于点E,D 为AC上一点,∠AOD=∠C,若AE=8,tanA= ,求OD的长.

23.(本小题满分6分) 为了更好地 了解近阶段九年级学生的近期目标,惠山区关工委 设计了如下调查问卷:你认为近阶段的主要学习目标是哪一个?(此为单选题)

A.升入四星普通高中,为考上理想大学作准备;

B.升入三星级普通高中,将来能考上大学就行;

C.升入五年制高职类学校,以后做一名高级技师;

D.升入中等职业类学校,做一名普通工人就行;

E.等待初中毕业,不想再读书了.

在本区3000名九年级学生中随机调查了部分 学生后整理并制作了如下的统计图:

根据以上信息解答下列问题:

(1) 本次共调查了 名学生;

(2) 补全条形统计图,并计算扇形统计图中m=_______;

(3) 我区想继续升入普通高中(含四星和三星)的大约有多少人?

24.(本题满分8分)小明设计了一种游戏,游戏规则是: 开始时,一枚棋子先放在如图①所示的起始位置,然后掷一枚均匀的正四面体骰子,如图②所示,各顶点分别表示1,2,3,4,朝上顶点所表示的数即为骰子所掷的点数,根据骰子所掷的点数相应的移动棋子的步数,每一步棋子就移动一格,若步数用尽,棋子正好到达迷宫中心,小明就获胜,若棋子到达 迷宫中心, 步数仍然没有用尽,则棋子还要从迷宫中心后退余下的步数(例如小明第一次抛到3, 则棋子应落在图①中的第三格位置,第二次仍抛到3,则棋子最后应落在图①中的第四格位置).

现在小明连续掷骰子两次,求小明获胜的概率.(请用“画树状图”或“列表”的方法给出分析过程,并写出结果)

25.(本题满分10分)如图,直角梯形ABCD的顶点A、B、C的坐标分别为(12,0)、

(2,0)和(2,3),AB∥CD,∠C=90°,CD=CB.

(1)求点D的坐标;

(2)抛物线y=ax2+bx+c过原点O与点(7,1),且对称轴为过点(4,3)与y轴平行的直线,求抛物线的函数关系式;

(3)在(2)中的抛物线上是否存在一点P,使得PA+PB+PC+PD最小?若存在,求出点P的坐标;若不存在,请说明理由.

26.(本题满分10分)阅读与证明:

如图,已知正方形ABCD中,E、F分别是CD、BC上的点,且∠EAF=45°,

求证:BF+DE=EF.

分析:证明一条线段等于另两条线段的和,常用“截长法”或“补短法”,将线段BF、DE放在同一直线上,构造出一条与BF+DE相等的线段.如图1延长ED至点F′,使DF′=BF,连接A F′,易证△ABF≌△ADF′,进一步证明△AEF≌△AEF′,即可得结论.

(1)请你将下面的证明过程补充完整.

证明:延长ED至F′,使DF′=BF,

∵ 四边形ABCD是正方形

∴ AB=AD,∠ABF=∠ADF′=90°,

∴ △ABF≌△ADF’(SAS)

应用与拓展:如图建立平面直角坐标系,使顶点A与坐标原点O重合,边OB、OD分别在x轴、y轴的正半轴上.

(2)设正方形边长OB为30,当E为CD中点时,试问F为BC的几等分点?并求此时F点的坐标;

(3)设正方形边长OB为30,当EF最短时,直接写出直线EF的解析式: .

27.(本小题满分10分)如图,OB是矩形OABC的对角线,抛物线y=-13x2+x+6经过B、C两点.

(1)求点B的坐标;

(2)D、E分别是OC、OB上的点,OD=5,OE=2EB,过D、E的直线交 轴于F,试说明OE⊥ DF;

(3)若点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.

28.(本题满分8分)如图,某汽车的底盘所在直线恰好经过两轮胎的圆心,两轮的半径均为60 cm,两轮胎的圆心距为260 cm(即PQ=260 cm),前轮圆心P到汽车底盘最前端点M的距离为80 cm,现汽车要驶过一个高为80 cm的台阶(即OA=80 cm),若直接行驶会“碰伤”汽车.

(1)为保证汽车前轮安全通过, 小明准备建造一个斜坡AB (如图所示),那么小明建造的斜坡的坡角α最大为多少度?(精确到0.1度)

(2)在(1)的条件下,汽车能否安全通过此改造后的台阶(即汽车底盘不被台阶刮到)?并说明理由.

其实还有好多卷子,望采纳》... (有些图没了)

[img]

九年级数学沪科版期中调研卷的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于数学九年级沪科版测试卷二期中、九年级数学沪科版期中调研卷的信息别忘了在本站进行查找喔。

本文转载自互联网,如有侵权,联系删除