七中育才八上数学周测卷(七中育才20192020学年度上半期八年级数学试题)

本篇文章给同学们谈谈七中育才八上数学周测卷,以及七中育才20192020学年度上半期八年级数学试题对应的知识点,希望对各位同学有所帮助,不要忘记分享给你的朋友哦!

本文目录一览:

八年级上册数学试卷附带答案

八年级上期数学期中试卷

(考试时间:120分钟) 出卷:新中祝毅

填空题(1~10题 每空1分,11~14题 每空2分,共28分)

1、(1)在□ABCD中,∠A=44,则∠B= ,∠C= 。

(2)若□ABCD的周长为40cm, AB:BC=2:3, 则CD= , AD= 。

2、若一个正方体棱长扩大2倍,则体积扩大 倍。

要使一个球的体积扩大27倍,则半径扩大 倍。

3、对角线长为2的正方形边长为 ;它的面积是 。

4、化简:(1) (2) , (3) = ______。

5、估算:(1) ≈_____(误差小于1),(2) ≈_____(精确到0.1)。

6、5的平方根是 , 的平方根是 ,-8的立方根是 。

7、如图1,64、400分别为所在正方形的面积,则图中字母所代表的正方形面积是 。

8、如图2,直角三角形中未知边的长度 = 。

9、已知 ,则由此 为三边的三角形是 三角形。

10、钟表上的分针绕其轴心旋转,分针经过15分后,分针转过的角度是 。

11、如图3,一直角梯形,∠B=90°,AD‖BC,AB=BC=8,CD=10,则梯形的面积是 。

12、如图4,已知 ABCD中AC=AD,∠B=72°,则∠CAD=_________。

13、图5中,甲图怎样变成乙图:__ __ ___________________________ _。

14、用两个一样三角尺(含30°角的那个),能拼出______种平行四边形。

二、选择题(15~25题 每题2分,共22分)

15、下列运动是属于旋转的是( )

A.滚动过程中的篮球 B.钟表的钟摆的摆动

C.气球升空的运动 D.一个图形沿某直线对折过程

16、如图6,是我校的长方形水泥操场,如果一学生要从A角走到C角,至少走( )

A.140米 B.120米 C.100米 D.90米

17、下列说法正确的是( )

A. 有理数只是有限小数 B. 无理数是无限小数

C. 无限小数是无理数 D. 是分数

18、下列条件中,不能判定四边形ABCD为平行四边形的条件是( )

A. AB‖CD,AB=CD B. AB‖CD,AD‖BC

C. AB=AD, BC=CD D. AB=CD AD=BC

19、下列数组中,不是勾股数的是( )

A 3、4、5 B 9、12、15 C 7、24、25 D 1.5、2、2.5

20、和数轴上的点成一一对应关系的数是( )

A.自然数 B.有理数 C.无理数 D. 实数

21、小丰的妈妈买了一部29英寸(74cm)的电视机,下列对29英寸的说法

中正确的是( )

A. 小丰认为指的是屏幕的长度; B 小丰的妈妈认为指的是屏幕的宽度;

C. 小丰的爸爸认为指的是屏幕的周长;D. 售货员认为指的是屏幕对角线的长度.

22、小刚准备测量一段河水的深度,他把一根竹竿插到离岸边1.5m远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为( )

A. 2m; B. 2.5m; C. 2.25m; D. 3m.

23、对角线互相垂直且相等的四边形一定是( )

A、正方形 B、矩形 C、菱形 D、无法确定其形状

24、下列说法不正确的是( )

A. 1的平方根是±1 B. –1的立方根是-1

C. 是2的平方根 D. –3是 的平方根

25、平行四边形的两条对角线和一边的长可依次取( )

A. 6,6,6 B. 6,4,3 C. 6,4,6 D. 3,4,5

三、解答题(26~33题 共50分)

26、(4分)把下列各数填入相应的集合中(只填序号)

(1)3.14(2)- (3)- (4) (5)0

(6)1.212212221… (7) (8)0.15

无理数集合{ … };

有理数集合{ … }

27、化简(每小题3分 共12分)

(1). (2).

(3). (4).

28、作图题(6分)

如图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可得到一些线段。请在图中画出 这样的线段。

29、(5分)用大小完全相同的250块正方形地板砖铺一间面积为40平方米的客厅,请问每一块正方形地板砖的边长是多少厘米?

30、(5分)一高层住宅大厦发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口如图,已知云梯长15米,云梯底部距地面2米,问发生火灾的住户窗口距离地面多高?

31、(6分)小珍想出了一个测量池塘宽度AB的方法:先分别从池塘的两端A、B引两条直线AC、BC相交于点C,然后在BC上取两点E、G,使BE=CG,再分别过E、G作EF‖GH‖AB,交AC于F、H。测量出EF=10 m,GH=4 m(如图),于是小珍就得出了结论:池塘的宽AB为14 m 。你认为她说的对吗?为什么?

32、(5分)已知四边形ABCD,从下列条件中任取3个条件组合,使四边形ABCD为矩形,把所有的情况写出来:(只填写序号即可)

(1)AB‖CD (2)BC‖AD (3)AB=CD (4)∠A=∠C (5)∠B=∠D

(6)∠A=90 (7)AC=BD (8)∠B=90(9)OA=OC (10)OB=OD

请你写出5组 、 、 、 、 。

33、(7分)小东在学习了 后, 认为 也成立,因此他认为一个化简过程: = 是正确的。

(3分)你认为他的化简对吗?如果不对,请写出正确的化简过程;

(2分)说明 成立的条件;

(3) (2分)问 是否成立,如果成立,说明成立的条件。

[img]

人教版八年级数学上册第1单元测试卷

学习八年级数学第一单元知识不在于力量多少,而在能坚持多久。下面由我为你整理的人教版八年级数学上册第1单元测试卷附答案,希望对大家有帮助!

人教版八年级数学上册第1单元测试卷

第1章 分 式

类型之一  分式的概念

1.若分式2a+1有意义,则a的取值范围是 ()

A.a=0 B.a=1

C.a≠-1  D.a≠0

2.当a ________时,分式1a+2有意义.

3. 若式子2x-1-1的值为零,则x=________.

4.求出使分式|x|-3(x+2)(x-3)的值为0的x的值.

类型之二 分式的基本性质

5.a,b为有理数,且ab=1,设P=aa+1+bb+1,Q=1a+1+1b+1,则P____Q(填“”、“”或“=”).

类型之三 分式的计算与化简

6.化简1x-3-x+1x2-1(x-3)的结果是 ()

A.2 B.2x-1

C.2x-3 D.x-4x-1

7.化简x(x-1)2-1(x-1)2的结果是______________.

8.化简:1+1x÷2x-1+x2x.

9.先化简:1-a-1a÷a2-1a2+2a,再选取一个合适的值代入计算.

10.先化简,后求值:x-1x+2•x2-4x2-2x+1÷1x2-1,其中x2-x=0.

类型之四 整数指数幂

11.计算:(1)(-1)2 013-|-7|+9×(7-π)0+15-1;

(2)(m3n)-2•(2m-2n-3)-2÷(m-1n)3.

类型之五 科学记数法

12.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘-131,其浓度为0.000 096 3贝克/立方米.数据“0.000 096 3”用科学记数法可表示为__________________ .

类型之六  解分式方程

13.分式方程12x2-9-2x-3=1x+3的解为 ()

A.x=3 B.x=-3

C.无解 D.x=3或-3

14.解方程:2x-1=1x-2.

15.解方程:23x-1-1=36x-2.

类型之七 分式方程的应用

16.李明到离家2.1千米的学校参加九年级联欢会, 到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即步行匀速回家,在家拿道具用了1分钟,然后立即匀速骑自行车返回学校,已知李明骑自行车的速度是步行速度的3倍 ,且李明骑自行车到学校比 他从学校步行到家少用了20分钟.

(1)李明步行的速度是多少米/分?

(2)李明能否在联欢会开始前赶到学校?

17.为了提高产品的附加值,某公司计划将研发生产的1 200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:

信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;

信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.

根据以上信息,求:甲、乙两个工厂每天分别能加工多少件新产品.

人教版八年级数学上册第1单元测试卷答案

1.C 2.≠-2 3.3

4.【解析】 要使分式的值为0,必须使分式的分子为0,且分母不为0,即|x|-3=0且(x+2)(x-3)≠0.

解:要使已知的分式的值为0,x应满足|x|-3=0且(x+2)•(x-3)≠0.由|x|-3=0,得x=3或x=-3,检验知:当x=3时,(x+2)(x-3)=0,当x=-3 时,(x+2)(x-3)≠0,所以满足条件的x的值是x=-3.

5.=

6.B 【解析】 原式=1x-3-1x-1(x-3)=1-x-3x-1=x-1x-1-x-3x-1=2x-1.

7.1x-1

8.解:原式=x+1x÷x2-1x=x+1x×x(x+1)(x-1)=1x-1.

9.解:原式=1-a-1a×a(a+2)(a+1)(a-1)=1-a+2a+1=-1a+1.

当a=3时,原式=-13+1=-14.(a的取值为0,±1,-2外的任意值)

10.【解析】 本题是一道含有分式乘除混合运算的分式运算,先化简,然后把化简后的最简结果与已知条件相结合,不难发现计算方法.

解:原式=x-1x+2•(x+2)(x-2)(x-1)2•(x+1)(x-1)1=(x-2)•(x+1)=x2-x-2.

当x2-x=0时,原式=0-2=-2.

11.【解析】 先算乘方,再算乘除.

解:(1)原式=-1-7+3+5=0;

(2)原式=m-6n-2•2-2m4n6÷m-3n3

=14m-6+4-(-3)n-2+6-3=14mn.

12.9.63×10-5

13.C 【解析】 方程的两边同乘(x+3)(x-3),得12-2(x+3)=x-3,解得x=3.

检验:当x=3时,(x+3)(x-3)=0,

即x=3不是原分式方程的解,

故原方程无解.

14.解: 方程两边都乘(x-1)(x-2),得2( x-2)=x-1,

去括号,得2x-4=x-1,

移项,得x=3.

经检验,x=3是原方程的解,

所以原分式方程的解是x=3.

15.解:方程两边同时乘6x-2,得4-(6x-2)=3,

化 简,得-6x=-3,解得x=12.

检验:当x=12时,6x-2≠0,

所以x=12是原方程的解.

16.【解析】 (1)相等关系:从学校步行回家所用的时间-从家赶往学校所用的时间=20分钟;(2)比较回家取道具所用总时间与42分的大小.

解:(1)设李明步行的速度是x米/分,则他骑自行车的速度是3x米/分,

根据题意,得2 100x-2 1003x=20,解得x=70,

经检验,x=70是原方程的解,

所以李明步行的速度是70米/分.

(2)因为2 10070+2 1003×70+1=41(分)42(分),

所以李明能在联欢会开始前赶到学校.

17.【解析】 本题的等量关系为:甲工厂单独加工完成这批产品所用天数-乙工厂单独加工完成这批产品所用天数=10;乙工厂每天加工的数量=甲工厂每天加工的数量×1.5,则若设甲 工厂每天加工x件产品,那么乙工厂每天加工1.5x件产品,根据题意可分别表示出两个工厂单独加工完成这批产品所用天数,进而列出方程求解.

解:设甲工厂每天加工x件产品,则乙工厂每天加工1.5x件产品,

依题意,得1 200x-1 2001.5x=10,

解得x=40,

经检验x=40是原方程的 根,

所以1.5x=60.

答:甲工厂每天加 工40件产品,乙工厂每天加工60件产品.

八年级上册数学育才经典成都七中的答案

作业还是自己做吧,如果实在有不会的可以问问同学

问问家长,或者就直接问老师,最直接的方法,

老师也能知道学生有哪些薄弱的地方

希望能帮到你,请采纳正确答案.

你的点赞或采纳是我继续帮助其他人的动力

bfb数学八年级上周周清测试卷(16)

、选择题

1、已知:如图,在△ABC中,∠ADE=∠C,则下列等式成立的是

A. eq \f(AD,AB)= eq \f(AE,AC) B. eq \f(AE,BC)= eq \f(AD,BD) C. eq \f(DE,BC)= eq \f(AE,AB) D. eq \f(DE,BC)= eq \f(AD,AB)

2、AC是□ABCD的对角线,则图中相似三角形共有( )

A.2对; B.3对; C.4对; D.5对.

3、如果关于x的方程x 2m-3=3x 7的解为不大于2的非负数,那么

(A)m=6 (B)m等于5,6,7 (C)无解 (D)5≤m≤7

4、如图,P为线段AB的黄金分割点(PB>PA),四边形AMNB、四边形PBFE都为正方形,且面积分别为 、 .四边形APHM、四边形APEQ都为矩形,且面积分别为 、 .下列说法正确的是

A. = B. = C. = D. =

5、柏拉图借毕达哥拉斯主义者提马尤斯门(Timaeus)的口说出以下的话:“两个东西不可能有完美的结合,除非另有第三者存在其间,因为他们之间必须有一种结合物,最好的结合物是比例.设有三个数量,若中数与小数之比等于大数与中数之比,反过来,小数与中数之比等于中数与

关于七中育才八上数学周测卷和七中育才20192020学年度上半期八年级数学试题的介绍到此就结束了,不知道同学们从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

本文转载自互联网,如有侵权,联系删除