今天给各位同学分享百师联盟中考数学模拟卷的知识,其中也会对百师联盟中考冲刺卷一进行解释,如果能碰巧解决你现在面临的问题,别忘了分享本站,现在开始吧!
本文目录一览:
出一套中考数学模拟卷 就综合一下各资料上的题就好了 不要一整套 一定要是综合的!
1.(2008年四川省宜宾市)
已知:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A(-1,0)、B(0,3)两点,其顶点为D.
(1) 求该抛物线的解析式;
(2) 若该抛物线与x轴的另一个交点为E. 求四边形ABDE的面积;
(3) △AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.
(注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为 )
.
2. (08浙江衢州)已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8, ),C(0, ),点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A′),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S;
(1)求∠OAB的度数,并求当点A′在线段AB上时,S关于t的函数关系式;
(2)当纸片重叠部分的图形是四边形时,求t的取值范围;
(3)S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由.
3. (08浙江温州)如图,在 中, , , , 分别是边 的中点,点 从点 出发沿 方向运动,过点 作 于 ,过点 作 交 于
,当点 与点 重合时,点 停止运动.设 , .
(1)求点 到 的距离 的长;
(2)求 关于 的函数关系式(不要求写出自变量的取值范围);
(3)是否存在点 ,使 为等腰三角形?若存在,请求出所有满足要求的 的值;若不存在,请说明理由.
4.(08山东省日照市)在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AM=x.
(1)用含x的代数式表示△MNP的面积S;
(2)当x为何值时,⊙O与直线BC相切?
(3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?
5、(2007浙江金华)如图1,已知双曲线y= (k0)与直线y=k′x交于A,B两点,点A在第一象限.试解答下列问题:(1)若点A的坐标为(4,2).则点B的坐标为 ;若点A的横坐标为m,则点B的坐标可表示为 ;
(2)如图2,过原点O作另一条直线l,交双曲线y= (k0)于P,Q两点,点P在第一象限.①说明四边形APBQ一定是平行四边形;②设点A.P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出mn应满足的条件;若不可能,请说明理由.
6. (2008浙江金华)如图1,在平面直角坐标系中,己知ΔAOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连结AP,并把ΔAOP绕着点A按逆时针方向旋转.使边AO与AB重合.得到ΔABD.(1)求直线AB的解析式;(2)当点P运动到点( ,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使ΔOPD的面积等于 ,若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.
7.(2008浙江义乌)如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:
(1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;
②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度 ,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.
(2)将原题中正方形改为矩形(如图4—6),且AB=a,BC=b,CE=ka, CG=kb (a b,k 0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由.
(3)在第(2)题图5中,连结 、 ,且a=3,b=2,k= ,求 的值.
8. (2008浙江义乌)如图1所示,直角梯形OABC的顶点A、C分别在y轴正半轴与 轴负半轴上.过点B、C作直线 .将直线 平移,平移后的直线 与 轴交于点D,与 轴交于点E.
(1)将直线 向右平移,设平移距离CD为 (t 0),直角梯形OABC被直线 扫过的面积(图中阴影部份)为 , 关于 的函数图象如图2所示, OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4.
①求梯形上底AB的长及直角梯形OABC的面积;
②当 时,求S关于 的函数解析式;
(2)在第(1)题的条件下,当直线 向左或向右平移时(包括 与直线BC重合),在直线AB上是否存在点P,使 为等腰直角三角形?若存在,请直接写出所有满足条件的点P的坐标;若不存在,请说明理由.
9.(2008山东烟台)如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点,且满足AE+CF=2.
(1)求证:△BDE≌△BCF;
(2)判断△BEF的形状,并说明理由;
(3)设△BEF的面积为S,求S的取值范围.
10.(2008山东烟台)如图,抛物线 交 轴于A、B两点,交 轴于M点.抛物线 向右平移2个单位后得到抛物线 , 交 轴于C、D两点.
(1)求抛物线 对应的函数表达式;
(2)抛物线 或 在 轴上方的部分是否存在点N,使以A,C,M,N为顶点的四边形是平行四边形.若存在,求出点N的坐标;若不存在,请说明理由;
(3)若点P是抛物线 上的一个动点(P不与点A、B重合),那么点P关于原点的对称点Q是否在抛物线 上,请说明理由.
11.2008淅江宁波)2008年5月1日,目前世界上最长的跨海大桥——杭州湾跨海大桥通车了.通车后,苏南A地到宁波港的路程比原来缩短了120千米.已知运输车速度不变时,行驶时间将从原来的3时20分缩短到2时.
(1)求A地经杭州湾跨海大桥到宁波港的路程.
(2)若货物运输费用包括运输成本和时间成本,已知某车货物从A地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A地经杭州湾跨海大桥到宁波港的运输费用是多少元?
(3)A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?
12.(2008淅江宁波)如图1,把一张标准纸一次又一次对开,得到“2开”纸、“4开”纸、“8开”纸、“16开”纸….已知标准纸的短边长为 .
(1)如图2,把这张标准纸对开得到的“16开”张纸按如下步骤折叠:
第一步 将矩形的短边 与长边 对齐折叠,点 落在 上的点 处,铺平后得折痕 ;
第二步 将长边 与折痕 对齐折叠,点 正好与点 重合,铺平后得折痕 .
则 的值是 , 的长分别是 , .
(2)“2开”纸、“4开”纸、“8开”纸的长与宽之比是否都相等?若相等,直接写出这个比值;若不相等,请分别计算它们的比值.
(3)如图3,由8个大小相等的小正方形构成“ ”型图案,它的四个顶点 分别在“16开”纸的边 上,求 的长.
(4)已知梯形 中, , , ,且四个顶点 都在“4开”纸的边上,请直接写出2个符合条件且大小不同的直角梯形的面积.
13.(2008山东威海)如图,在梯形ABCD中,AB∥CD,AB=7,CD=1,AD=BC=5.点M,N分别在边AD,BC上运动,并保持MN∥AB,ME⊥AB,NF⊥AB,垂足分别为E,F.
(1)求梯形ABCD的面积;
(2)求四边形MEFN面积的最大值.
(3)试判断四边形MEFN能否为正方形,若能,
求出正方形MEFN的面积;若不能,请说明理由.
14.(2008山东威海)如图,点A(m,m+1),B(m+3,m-1)都在反比例函数 的图象上.
(1)求m,k的值;
(2)如果M为x轴上一点,N为y轴上一点,
以点A,B,M,N为顶点的四边形是平行四边形,
试求直线MN的函数表达式.
(3)选做题:在平面直角坐标系中,点P的坐标
为(5,0),点Q的坐标为(0,3),把线段PQ向右平
移4个单位,然后再向上平移2个单位,得到线段P1Q1,
则点P1的坐标为 ,点Q1的坐标为 .
15.(2008湖南益阳)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.
如图12,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1) 请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;
(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;
(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.
16.(2008年浙江省绍兴市)将一矩形纸片 放在平面直角坐标系中, , , .动点 从点 出发以每秒1个单位长的速度沿 向终点 运动,运动 秒时,动点 从点 出发以相等的速度沿 向终点 运动.当其中一点到达终点时,另一点也停止运动.设点 的运动时间为 (秒).
(1)用含 的代数式表示 ;
(2)当 时,如图1,将 沿 翻折,点 恰好落在 边上的点 处,求点 的坐标;
(4) 连结 ,将 沿 翻折,得到 ,如图2.问: 与 能否平行? 与
能否垂直?若能,求出相应的 值;若不能,说明理由.
17.(2008年辽宁省十二市)如图16,在平面直角坐标系中,直线 与 轴交于点 ,与 轴交于点 ,抛物线 经过 三点.
(1)求过 三点抛物线的解析式并求出顶点 的坐标;
(2)在抛物线上是否存在点 ,使 为直角三角形,若存在,直接写出 点坐标;若不存在,请说明理由;
(3)试探究在直线 上是否存在一点 ,使得 的周长最小,若存在,求出 点的坐标;若不存在,请说明理由.
18.(2008年沈阳市)如图所示,在平面直角坐标系中,矩形 的边 在 轴的负半轴上,边 在 轴的正半轴上,且 , ,矩形 绕点 按顺时针方向旋转 后得到矩形 .点 的对应点为点 ,点 的对应点为点 ,点 的对应点为点 ,抛物线 过点 .
(1)判断点 是否在 轴上,并说明理由;
(2)求抛物线的函数表达式;
(3)在 轴的上方是否存在点 ,点 ,使以点 为顶点的平行四边形的面积是矩形 面积的2倍,且点 在抛物线上,若存在,请求出点 ,点 的坐标;若不存在,请说明理由.
19.(2008年四川省巴中市) 已知:如图14,抛物线 与 轴交于点 ,点 ,与直线 相交于点 ,点 ,直线 与 轴交于点 .
(1)写出直线 的解析式.
(2)求 的面积.
(3)若点 在线段 上以每秒1个单位长度的速度从 向 运动(不与 重合),同时,点 在射线 上以每秒2个单位长度的速度从 向 运动.设运动时间为 秒,请写出 的面积 与 的函数关系式,并求出点 运动多少时间时, 的面积最大,最大面积是多少?
20.(2008年成都市)如图,在平面直角坐标系xOy中,△OAB的顶点A的坐标为(10,0),顶点B在第一象限内,且 =3 ,sin∠OAB= .
(1)若点C是点B关于x轴的对称点,求经过O、C、A三点的抛物线的函数表达式;
(2)在(1)中,抛物线上是否存在一点P,使以P、O、C、A为顶点的四边形为梯形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若将点O、点A分别变换为点Q( -2k ,0)、点R(5k,0)(k1的常数),设过Q、R两点,且以QR的垂直平分线为对称轴的抛物线与y轴的交点为N,其顶点为M,记△QNM的面积为 ,△QNR的面积 ,求 ∶ 的值.
[img]九年级的数学中考模拟试题卷
上帝创造了整数,所有其余的数都是人造的。下面是九年级的数学中考模拟试题卷,欢迎童鞋们前来学习。
一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的)
1.形中,既是中心对称图形又是轴对称图形的是„„„„„„„„„
. 2.下列运算正确的是„„„„„„„„„„„„„„„„„„„„„„„„( ▲ ) A. a2+a2=2a4 B.(-a2)3=-a8 C.(-ab)2=2ab2 D.(2a)2÷a=4a
3.使3x-1 有意义的x的取值范围是„„„„„„„„„„„„„„„„„( ▲ ) A.x -13 B.x 13 C.x ≥ 13 D.x ≥-1 3
4.如图,数轴上A、B两点分别对应实数a、b,则下列结论正确的是„„„( ▲ ) A. ab0 B. a-b0 C.a+b0 D.|a|-|b|0
5.已知圆锥的底面半径为4cm,母线长为3cm,则圆锥的侧面积是 „„„„ ( ▲ ) A.15cm2 B.15πcm2 C. 12 cm2 D. 12πcm2
6.如图,平行四边形ABCD中,CE⊥AB于E,若∠A=125°,则∠BCE的度数为( ▲ ) A. 35° B. 55° C. 25° D. 30°
7.如图所示为一个无盖长方体盒子的展开图(重叠部分不计),根据图中数据,可知该无盖长方体的容积为 „„„„„„„„„„„„„„„„„„„„„„„„( ▲ ) A. 4 B.6 C. 8 D.12
8.在下列命题中,真命题是 „„„„„„„„„„„„„„„„„„„„ ( ▲ ) A.两条对角线相等的四边形是矩形 B.两条对角线垂直的四边形是菱形 C.两条对角线垂直且相等的四边形是正方形 D.两条对角线相等的平行四边形是矩形
9.如图,在平面直角坐标系中,A(1,0),B(0,3),以AB为边在第一象限作正方形ABCD,点D在双曲线y=k x(k≠0)上,将正方形沿x轴负方向平移 m个单位长度后,点C恰好落 在双曲线上,则m的值是 „„„„„„„„„„„„„„„„„„„„„( ▲ ) A. 2 B. 3 C. 2 D. 3
10.已知如图,直角三角形纸片中,∠C=90°,AC=6,BC=8,若要在纸片中剪出两个相外切的等圆,则圆的半径最大为„„„„„„„„„„„„„„„„„„„( ▲ ) A. 4 3 B. 107 C. 1 D. 125
二、填空题(本大题共8小题,每空2 分,共16分.不需写出解答过程,只需把答案直接填写在答题卷上相应的位置处)
11.因式分解:x3—4x= ▲ .
12.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680 000 000元,这个 数用科学记数法表示为 ▲ 元.
13.若x1,x2是方程x2+2x—3=0的.两根,则x1+x2= ▲ .
14.六边形的内角和等于 ▲ °.
15.如图,将△ABC沿它的中位线MN折叠后,点A落在点A′处,若∠A=28°,∠B=130°, 则∠A′NC= ▲ °.
16.如图,△ABC中,∠A=90°,∠C=75°,AC=6,DE垂直平分BC,则BE= ▲ .
17.如图,点C、D分别在⊙O的半径OA、OB的延长线上,且OA=6,AC=4,CD平行 于AB,并与AB相交于MN两点.若tan∠C=1 2 ,则CN的长为 ▲ .
18.已知梯形ABCD,AD∥BC,AB⊥BC,AD=1,AB=3,BC=4.若P为线段AB上任 意一点,延长PD到E,使DE=2PD,再以PE、PC为边作□PCQE,求对角线PQ的最小值 ▲ . (第16题图) A B D C E A B C D O M N (第17题图) A B C D O x y (第9题图) A B C (第10题图) M N B C A’ (第15题图)
三、解答题(本大题共10小题,共计84分.解答时应写出必要的证明过程或演算步骤.
19.(本题8分)
(1)计算:(1 4)-1-27+(5-π)0 (2)(2x-1)2+(x-2)(x+2)-4x(x-1
2) 20.(本题满分8分)(1)解方程: 1x-3=2+x 3-x
(2) 解不等式组:x-3(x-2)≤4,1+2x3 x-1
21.(本题8分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC 的平行线交CE的延长线于F,且AF=BD,连接BF. (1)求证:BD=CD. (2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论
. 22.(本题满分6分)为了解某校九年级学生体育测试成绩情况,现从中随机抽取部分学 生的体育成绩统计如下,其中右侧扇形统计图中的圆心角α为36°.体育成绩(分) 人数(人) 百分比31 32 m 33 8 16% 3424% 35 15 根据上面提供的信息,回答下列问题: (1)m= ▲ ;抽取部分学生体育成绩的中位数为 ▲ 分;
(2)已知该校九年级共有500名学生,如果体育成绩达33分以上(含33分)为优秀,请估计该校九年级学生体育成绩达到优秀的总人数.
求中考数学模拟题(陕西)
2007年陕西省初中毕业生学业考试
数学模拟试卷(二十)
考生注意:
1.本卷共6页,五大题共26小题,满分130分.考试形式为闭卷,考试时间为90分钟.
2.答题时要冷静思考、仔细检查.预祝你取得好成绩!
题号 一 二 三 四 五 总分
17 18 19 20 21 22 23 24 25 26
得分
一、选择题(每题3分,共30分。将各小题你认为正确的答案序号,填入下表的空格内)
题号 1 2 3 4 5 6 7 8 9 10
答案
1 、 的算术平方根是( )
A B C D
2 、2sin 的值等于( )
A 1 B C D 2
3、 下面的扑克牌中,是中心对称图形有( )
A B C D
4 、数学老师对小明在参加中考前的5次数学模拟考试进行统计分析,判断小明的数学成绩是否稳定,于是老师需要知道小明这5次数学成绩的( )
A 平均数或中位数 B方差或极差 C众数或频率 D频数或众数
5 、一元一次不等式组 的解集在数轴上的表示正确的是( )
A B C D
6 、关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根为0 ,则a的值为( )
A 1 B -1 C 1或-1 D
7、如图,l1反映了某公司的销售收入与销售量的关系,l2反映了
该公司产品的销售成本与销售量的关系,当该公司盈利(收入
大于成本)时,销售量( )
A 小于3吨 B大于3吨 C 小于4吨 D 大于4吨
8 、在下列函数关系式中,y是x的反比例函数的是( )
A B xy=-6 C x+y=6 D y=-6x2
9、如图,某同学把一块三角形的玻璃打碎成了三块,现要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )
A 带①去 B 带②去 C 带③去 D 带①和②去
10、 星期天晚上后,小红从家里出去散步,如图所示描述了她散步过程中离家的距离s(m)与散步所用的时间t(min)之间的函数关系,依据图象,下面描述符合小红散步情境的是( )
A 从家出发,到一个公共阅报栏,看了一会儿报,就回家了
B 从家出发,到了一个公共阅报栏,看了一会儿报后,继续向前走了一段,然后回家了
C 从家出发,一直散步(没有停留),然后回家了
D 从家出发,散了一会儿步,就找同学去了,18min后才开始返回①②③
第7题 第9题 第10题
二、 填空题(本大题共5小题,每小题3分,共18分)
11 、 =
12、 如图所示,字母A所代表的正方形的面积为____________________
13 、某班50名学生在适应性考试中,分数段在90~100分的频率为0.1,则该班在这个分数段的学生有_____________人
14、 学校阅览室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2张方桌拼成一行能坐6人(如图所示),按照这种规定填写下表的空格:
拼成一行的桌子数 1 2 3 …… n
人数 4 6 8 ¬……
15 、估算大小
第14题 第12题
三解答题(直接在卷中作答,要有必要的解题步骤,每小题6分,共30分)
16、解方程 17 、
18、如图,在□ABCD中,E、F分别是CD、AB上的点,且DE=BF,当 EAF= 时, AEC=______________,四边形AECF是平行四边形吗?为什么?
19、在下图中,将大写字母N绕它右下 20、请你设计一个问题情
侧的顶点按顺时针方向旋转 ,作出 景,使某件事情发生的
旋转后的图案 机会为25%
四 、解答题(直接在卷中作答,要有必要的解题步骤,21、22题各8分,23、24题各9分,共34分)
21、 画出下图四棱柱的主视
图、左视图和俯视图
22、 初三(2)班的一个综合实践活动小组去A、B两个超市调查去年和今年“五一节”期间的销售情况,下图是调查后小敏和其他两位同学交流的情况,根据他们的对话,请你分别求出A、B两个超市今年“五一节”期间的销售额
23、 在方格纸上作函数 的图象,并回答下面的问题
(1)当x=-2时,y=__________
(2)当x -2时,y的取值范围____________________
(3)当 时,x的取值范围____________________
24 、小明和小刚用如图的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分。这个游戏对双方公平吗?若公平,说明理由,若不公平,如何修改规则才能使游戏对双方公平?
五 解答题(直接在卷中作答,要有必要的解题步骤,25题10分,26题11分,共21分)
25、 某工厂现有80台机器,每台机器平均每天生产384件产品。现准备增加一批同类机器以提高生产总量,在试生产中发现,由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品
(1)如果增加x台机器,每天的生产总量为y件,请你写出y与x之间的关系式;
(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?
26、 如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2,E为BC的中点,以OE为直径的⊙O’交x轴于D点,过点D作DF⊥AE于F
(1)求OA、OC的长;
(2)求证:DF为⊙O’的切线
(3)小明在解答本题时,发现 AOE是等腰三角形。由此,他断定:“直线BC上一定存在除点E以外的点P,使 AOP也是等腰三角形,且点P一定在⊙O’外”。你同意他的看法吗?请充分说明理由
2007年陕西省初中毕业生学业考试
数学模拟试卷(二十)参考答案
一、选择题(每题3分,共30分)
题号 1 2 3 4 5 6 7 8 9 10
答案 A B A B C B D B C B
二 填空题(本大题共5小题,每小题3分,共18分)
11. ;12 . 625;13. 5;14. 2n+2;15.
三解答题(每小题6分,共30分)
16 解方程
解:方程两边同时乘以(x-2)得:1-x=-1-2(x-2)……(3分)
1 -x=-1-2x+4
x=2 ……(4分)
检验:把x=2代入原方程,分母为0 ……(5分)
∴x=2是原方程的增根
∴原方程无解 ……(6分)
17
解:原式=1+2 -5 1 ……(3分)
=1+2 -5
= -2 ……(6分)
18 解: AEC= ……(1分)
四边形AECF是平行四边形 ……(2分)
理由:∵在□ABCD中AB=CD DE=BF CE//AF
∴AB-BF=CD-DE 即AF=CE ……(4分)
∵CE//AF ……(5分)
∴四边形AECF是平行四边形 ……(6分)
19 解:……(6分)
20 答:在一个袋子中装有除颜色外完全相同的3个白球,1个红球,抽到红球的概率为25%。 ……(6分)
(答案不唯一,只要合理即可)
四 解答题(21、22题各8分,23、24题各9分,共34分)
21 如右图所示
主视图……3分,左视图……3分,俯视图……2分
(注:长对正,宽相等,高平齐)
22 解:设去年“五一节”期间A超市销售额为x万元,B超市销售额为y万元,依题意得:……(1分)
……(4分)
解得 ……(6分)
今年“五一节”期间A超市销售额:1.15x=115(万元)
B超市销售额:1.1y=55(万元) ……(7分)
答:今年“五一节”期间A超市销售额为115万元,B超市销售额为55万元。……(8分)
23解:
x -4 -2 -1
1 2 4
-1 -2 -4 4 2 1
……(2分) 右图……(2分)
(1)-1 ……(5分)
(2)-1y0 ……(7分)
(3) ……(9分)
24
解:
1 2 3
1 1 2 3
2 2 4 6
……(3分)
P(积为奇数)= P(积为偶数)= ……(5分)
小明的平均得分=2× = 小刚的平均得分=
所以这游戏对双方公平。……(9分)
五 解答题(25题10分,26题11分,共21分)
25 解:y=(80+x)(384-4x) ……(3分)
=30720 -320x+384x -4x2
=30720+64x -4x2 ……(5分)
=-4(x2-16x2+42-42)+30720
=-4(x-4)2+30784 ……(9分)
当x=4(台)时,y有最大值为30784件
答:(1)y=30720+64x -4x2
(2)增加4台机器,可以使每天的生产总量最大;最大生产总量是30784件。……(10分)
25 解:(1)在矩形OABC中,设OC=x 则OA=x+2,依题意得
x(x+2)=15 解得:x1=3,x2=-5
x2=-5(不合题意,舍去) 所以OC=3,OA=5……(3分)
(只要学生写出OC=3,OA=5,即给3分)
(2)连接O’D
在矩形OABC中,OC=AB,
所以⊿OCE≌⊿ABE
所以EA=EO
所以
在⊙O’中,因为O’O=O’D
所以
所以
所以O’D//AE
因为DF⊥AE
所以DF⊥O’D
又因为点D在⊙O’上,O’D为⊙O’的半径,所以DF为⊙O’的切线……(6分)
(3)不同意,理由如下:
①当OA=AP时,以点A为圆心,以AO为半径画弧交BC于P1和P4两点
过P1 点作P1H⊥OA于点H,P1H=OC=3,因为AP1=OA=5
所以AH=4,所以OH=1
求得点P1(1,3)
同理可得:P4(9,3)……(8分)
②当OA=OP时,同上可求得P2(4,3),P3(-4,3)……(10分)
因此,在直线BC上,除了E点外,既存在⊙O’内的点P1,又存在⊙O’内的点P2、P3、P4,它们分别使⊿AOP为等腰三角形……(11分)
其他解法,请参照评分建议酌情给分。
关于百师联盟中考数学模拟卷和百师联盟中考冲刺卷一的介绍到此就结束了,不知道同学们从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。