本篇文章给同学们谈谈金太阳九上数学试卷淮南,以及金太阳数学试卷九年级答案对应的知识点,希望对各位同学有所帮助,不要忘记分享给你的朋友哦!
本文目录一览:
- 1、九年级上册数学期末试卷附答案解析
- 2、九年级上册数学期末试卷及答案
- 3、九年级上册数学期末试卷及参考答案(2)
- 4、九年级数学上册期末质量检测试卷
- 5、九年级数学上册期末质量检测试题
- 6、初三上数学期末试卷带答案
九年级上册数学期末试卷附答案解析
九年级数学上册期末试卷(含答案)
一.选择题(共12小题,每小题4分,满分48分)
1.若x:y=6:5,则下列等式中不正确的是( )
A. B. C. D.
2.二次函数y=x2﹣2x﹣2与坐标轴的交点个数是( )
A.0个 B.1个 C.2个 D.3个
3.如图,在平行四边形ABCD中,E为CD上一点,DE:CE=2:3,连结AE,BD交于点F,则S△DEF:S△ADF:S△ABF等于( )
A.2:3:5 B.4:9:25 C.4:10:25 D.2:5:25
4.从标有1,2,3,4的四张卡片中任取两张,卡片上的数字之和为奇数的概率是( )
A. B. C. D.
5.如图,一根5m长的绳子,一端拴在互相垂直的围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A在草地上的最大活动区域面积是( )
A. πm2 B. πm2 C. πm2 D. πm2
6.二次函数y=ax2﹣2x﹣3(a0)的图象一定不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限.
7.在下列命题中,正确的是( )
A.三点确定一个圆
B.圆的内接等边三角形只有一个
C.一个三角形有且只有一个外接圆
D.一个四边形一定有外接圆
8.二次函数y=ax2+bx+c(a≠0)的图象如图,下列结论:
(1)c0;
(2)b0;
(3)4a+2b+c0;
(4)(a+c)2
其中不正确的有( )
A.1个 B.2个 C.3个 D.4个
9.某块面积为4000m2的多边形草坪,在嘉兴市政建设规划设计图纸上的面积为250cm2,这块草坪某条边的长度是40m,则它在设计图纸上的长度是( )
A.4cm B.5cm C.10cm D.40cm
10.抛物线y=﹣(x﹣2)2+1经过平移后与抛物线y=﹣(x+1)2﹣2重合,那么平移的方法可以是( )
A.向左平移3个单位再向下平移3个单位
B.向左平移3个单位再向上平移3个单位
C.向右平移3个单位再向下平移3个单位
D.向右平移3个单位再向上平移3个单位
11.如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是( )
A. B. C. D.
12.如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是( )
A. B. C. D.
二.填空题(共6小题,每小题4分,满分24分)
13.已知弦AB把圆周分成1:5的两部分,则弦AB所对的圆心角的度数为__________.
14.如图,将弧AC沿弦AC折叠交直径AB于圆心O,则弧AC=__________度.
15.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A.B.C.D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣2x﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为__________.
16.如图,在直角三角形ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,则x的值为__________.
17.如图,A.D.E是⊙O上的三个点,且∠AOD=120°,B.C是弦AD上两点,BC= ,△BCE是等边三角形.若设AB=x,CD=y,则y与x的函数关系式是__________.
18.如图,在Rt△ABC中,∠ABC=90°,BA=BC,点D是AB的中点,连结CD,过点B作BG⊥CD,分别交CD.CA于点E,F,与过点A且垂直于AB的直线相交于点G,连结DF.给出以下四个结论:① ;②FG= FB;③AF= ;④S△ABC=5S△BDF,其中正确结论的序号是__________.
九年级上册数学期末试卷及答案
九年级数学第二次月考试卷
(时量120分钟,满分120分)
班次:________姓名:________学号:_________
题号 一 二 三 四 五 六 总分
得分
一、填空题(每题3分,共30分)
1、方程x2=2 x的根为:___________
2、写出一个一元二次方程:____________________,使其根x1=2,0<x2<1。
3、cos60°+ tan30°=___________
4、在△ABC中,∠C=90°,cosA=0.8746,则sinB=____________
5、把一个转盘分成6等份,分别是红、黄、蓝、绿、白、黑,转动转盘两次,两次均是红色的概率是:______________________
6、如图(1),在高为3m,坡角为30°的楼梯表面铺地毯,地毯的长度至少需________m( ,精确到0.1m)。
图(3)
7、命题“两对角线相等的梯形是等腰梯形”的逆命题是:________________________________。
8、在△ABC中,AB=9,AC=12,BC=18,D为AC上一点,DC= AC,在AB上取一点E得△ADE,若图中两个三角形相似,则DE的长是____________。如图(2)
9、有三个不同事件:(1)向空中抛一枚普通硬币,正面朝上;(2)买一张彩票中100万元大奖;(3)从有10个白球的袋子中随便摸一个球,它是红球,按发生概率从大到小的顺序为_________。(填序号)
10、把命题“对顶角相等”改写成“如果……,那么……”的形式为 ________________。
二、选择题(每题3分,共30分)
11、方程2x(x-3)=5(x-3)的解是( )
A、x= B、x=3 C、x1=3,x2= D、x=
12、若假设“整数a,b,c 中恰有一个偶数”不成立,则有( )
A、a,b,c都是奇数 B、a,b,c都是偶数
C、a,b,c中至少有两个偶数 D、a,b,c或都是奇数或至少有两个偶数
13、在△ABC中,若sinA=sinB= ,则△ABC是( )三角形。
A、锐角 B、钝角 C、直角 D、以上均不是
14、若顺次连结四边形ABCD各边的中点所得四边形是正方形,则四边形ABCD一定是( )
A、矩形 B、菱形 C、正方形 D、对角线垂直且相等的四边形
15、在Rt△ABC中,如果各边长都扩大2倍,则锐角A的正弦值和余弦值( )
A、都没有变化 B、都扩大2倍 C、都缩小2倍 D、不能确定
16、某事件发生的概率是0.01%,则该事件( )
A、一定不发生 B、一定会发生
C、可能会发生,但发生的可能性很小 D、发生与不发生的可能性一样
17、如果整张报纸与半张报纸相似,则此报纸的长与宽的比是( )
A、2:1 B、 C、4:1 D、
18、如图(3),D,E是AB的三等分点,且DF∥EG∥BC,解图中三部分图形的S1:S2:S3=( )
A、1:2:3 B、1:4:9
C、1:3:5 D、1:3:6
19、△ABC的三边长分别是 , ,2,△A 'B 'C '的两边长分别是1和 ,若△ABC∽△A 'B 'C ',则△A 'B 'C '的第三边的长应等于( )
A、 /2 B、 C、2 D、
20、掷两枚均匀的骰于,出现正面向上的点数和为3的概率是( )
A、 B、 C、 D、
三、解答题(每题6分,共12分)
21、已知如图AD•AB=AE•AC,求证:△FDB∽△FEC。
22、计算:sin227°+sin253°+cos30°tan30°-sin60°•tan45°•tan60°
四、解答题(每题7分,共14分)
23、如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/s的速度移动,同时点Q沿DA边从点D开始向A以1cm/s的速度移动,如果P、Q同时出发,用t秒表示移动的时间(0<t≤6=,那么:
(1)当t为何值时,△QAP为等腰直角三角形?
(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?
24、已知关于x的方程x2-(2m+1)x+m2=0
(1)当m取何值时,方程有两个实数根。
(2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求出这两个根。
五、解答题(每题8分,共16分)
25、如图,在地面C、D两点分别测得楼房AB的楼顶A的仰角为30°、45°,并测得CD=10m,且B、C、D在同一条直线上,求楼高AB为多少米。
26、甲、乙两人各自掷一个普通的正方体骰子,如果两人所掷的点数之积为奇,则甲得1分,如果两个人所掷的点数之积为偶数,则乙得1分,连掷20次,谁得分高,谁就获胜。
(1)谁获胜的可能性大?简述你的理由。
(2)你认为这个游戏公平吗?若不公平,请你为他们设计一个公平游戏。
六、解答题(每题9分,共18分)
27、如图,在△ABC中,∠BAC的平分线与BC的垂直平分线PQ相交于点P,过点P分别作PN⊥AB于N,PM⊥AC于点M,求证:BN=CM
28、两条公路OM、ON相交成30°角,在公路OM上,距O点80米的A处有一所学校,当拖拉机沿公路ON方向行驶时,路两旁50m以内会受到噪声的影响,已知拖拉机的速度为18km/ h,那么拖拉机沿ON方向行驶时,是否会给学校带来噪音影响?若受影响,试计算受影响时间。
[img]九年级上册数学期末试卷及参考答案(2)
(1)如图2,当∠ABC=45°且α=90°时,用等式表示线段AD,DE之间的数量关系;
(2)将线段CB沿着射线CE的方向平移,得到线段EF,连接BF,AF.
①若α=90°,依题意补全图3,求线段AF的长;
②请直接写出线段AF的长(用含α的式子表示).
25.在平面直角坐标系xOy中,设点P(x1,y1),Q(x2,y2)是图形W上的任意两点.
定义图形W的测度面积:若|x1﹣x2|的最大值为m,|y1﹣y2|的最大值为n,则S=mn为图形W的测度面积.
例如,若图形W是半径为1的⊙O,当P,Q分别是⊙O与x轴的交点时,如图1,|x1﹣x2|取得最大值,且最大值m=2;当P,Q分别是⊙O与y轴的交点时,如图2,|y1﹣y2|取得最大值,且最大值n=2.则图形W的测度面积S=mn=4
(1)若图形W是等腰直角三角形ABO,OA=OB=1.
①如图3,当点A,B在坐标轴上时,它的测度面积S=;
②如图4,当AB⊥x轴时,它的测度面积S=;
(2)若图形W是一个边长1的正方形ABCD,则此图形的测度面积S的最大值为;
(3)若图形W是一个边长分别为3和4的矩形ABCD,求它的测度面积S的取值范围.
一、选择题(共8小题,每小题4分,满分32分)
1.方程x2﹣3x﹣5=0的根的情况是()
A. 有两个不相等的实数根 B. 有两个相等的实数根
C. 没有实数根 D. 无法确定是否有实数根
考点: 根的判别式.
分析: 求出b2﹣4ac的值,再进行判断即可.
解答: 解:x2﹣3x﹣5=0,
△=b2﹣4ac=(﹣3)2﹣4×1×(﹣5)=290,
所以方程有两个不相等的实数根,
故选A.
点评: 本题考查了一元二次方程的根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)①当b2﹣4ac0时,一元二次方程有两个不相等的实数根,②当b2﹣4ac=0时,一元二次方程有两个相等的实数根,③当b2﹣4ac0时,一元二次方程没有实数根.
2.在Rt△ABC中,∠C=90°,BC=3,AB=5,则sinA的值为()
A. B. C. D.
考点: 锐角三角函数的定义.
分析: 直接根据三角函数的定义求解即可.
解答: 解:∵Rt△ABC中,∠C=90°,BC=3,AB=5,
∴sinA= = .
故选A.
点评: 此题考查的是锐角三角函数的定义,比较简单,用到的知识点:
正弦函数的定义:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.即sinA=∠A的对边:斜边=a:c.
3.若如图是某个几何体的三视图,则这个几何体是()
A. 长方体 B. 正方体 C. 圆柱 D. 圆锥
考点: 由三视图判断几何体.
分析: 由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.
解答: 解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥.
故选:D.
点评: 本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.
4.小丁去看某场电影,只剩下如图所示的六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号.若小丁从中随机抽取一个,则抽到的座位号是偶数的概率是()
A. B. C. D.
考点: 概率公式.
分析: 由六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号,直接利用概率公式求解即可求得答案.
解答: 解:∵六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号,
∴抽到的座位号是偶数的概率是: = .
故选C.
点评: 此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.
5.如图,△ABC和△A1B1C1是以点O为位似中心的位似三角形,若C1为OC的中点,AB=4,则A1B1的长为()
A. 1 B. 2 C. 4 D. 8
考点: 位似变换.
专题: 计算题.
分析: 根据位似变换的性质得到 = ,B1C1∥BC,再利用平行线分线段成比例定理得到 = ,所以 = ,然后把OC1= OC,AB=4代入计算即可.
解答: 解:∵C1为OC的中点,
∴OC1= OC,
∵△ABC和△A1B1C1是以点O为位似中心的位似三角形,
∴ = ,B1C1∥BC,
∴ = ,
∴ = ,
即 =
∴A1B1=2.
故选B.
点评: 本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.
6.已知点A(x1,y1),B(x2,y2)是反比例函数y=﹣ 的图象上的两点,若x10
A. y10
考点: 反比例函数图象上点的坐标特征.
专题: 计算题.
分析: 根据反比例函数图象上点的坐标特征得到y1=﹣ ,y2=﹣ ,然后利用x10
解答: 解:∵A(x1,y1),B(x2,y2)是反比例函数y=﹣ 的图象上的两点,
∴y1=﹣ ,y2=﹣ ,
∵x10
∴y20
故选B.
点评: 本题考查了反比例函数图象上点的`坐标特征:反比例函数y= (k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
7.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为()
九年级数学上册期末质量检测试卷
同学们只要在九年级的数学期末复习过程中,抓住重点和常考点,数学测试中你一定会得心应手。
九年级数学上册期末质量检测试题
一.选择题(本大题共l2小题.在每小题给出的四个选项中.只有一项是正确的.请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.)
1.下列图形是中心对称图形但不是轴对称图形的是( )
2、视力表对我们来说并不陌生.如图是视力表的一部分,其中开口向上的两个E之间的变换是( )
A.平移 B.旋转
C.对称 D.位似
3、计算:tan45°+sin30°=( )
(A)2 (B) (C) (D)
4.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为( )
A. B. C. D.
5、如图,在 的正方形网格中, 绕某点旋转 ,得到 ,则其旋转中心可以是( )
A.点E B.点F
C.点G D.点H
6.把抛物线 向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为
A. B.
C. D.
7. 如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于( )
A、 B、 C、 D、
8、二次函数y=ax2+bx+c的图象如图所示,若点A(1,y1)、B(-6,y2)是它图象上的两点,则y1与y2的大小关系是( )
A.y1y2 D.不能确定
9.如图,AC是⊙O的直径,BD是⊙O的弦,EC∥AB交⊙O于E,则图中与 ∠BOC相等的角共有( )
A. 2个 B. 3个 C. 4个 D. 5个
10.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中 相似的是 ( )
11.如图,⊙ 是△ABC的内切圆,切点分别是 、 、 ,已知∠ ,则∠ 的度数是( )
A.35° B.40°
C.45° D.70°
12.如图,半圆 的直径 ,与半圆 内切的小圆 ,与 切于点 ,设⊙ 的半径为 , ,则 关于 的函数关系式是( )
A. B.
C. D.
一 二 三 总分
19 20 21 22 23 24 25 26
二.填空题(本大题共5小题,共20分,只要求填写最后结果.每小题填对得4分.)
13.从1至9这9个自然数中任取一个数,这个数能被2整除的概率是.
14、如图,工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的直径 是 mm.
15.已知圆锥的母线长为5 ,底面半径为3 ,则它的侧面积是 。
16、如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为_____m.
17、二次函数 的图象如图所示,则① ,② ,③ 这3个式子中,值为正数的有_______________(序号)
三、解答题(本大题共7小题.共64分。解答要写出必要的文字说明、证明过程或演算步骤。)
18、(第(1)题4分、第(2)题5分,共9分)
(1) 计算: + .
(2). 抛物线 的部分图象如图所示,
(1)求出函数解析式;
(2)写出与图象相关的2个正确结论:
, .
(对称轴方程,图象与x正半轴、y轴交点坐标例外)
19.(本题满分7分)如图,热气球的探测器显示,从热气球看一栋高楼的顶部B的仰角为45°,看这栋高楼底部C的俯角为60°,热气球与高楼的水平距离AD为50m,求这栋楼的高度.( 取1.414, 取1.732)
(1)请用适当方式写出首场比赛出场的两个队的所有可能情况(用代码A、B、C、D、E、F表示);
(2)求首场比赛出场的两个队都是部队文工团的概率P.
21.(本题满分9分) 如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB.
(1)求证:AD⊥CD;
(2)若AD=2,AC= ,求AB的长.
22. (本题满分10分) 如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.
(1) 求证:△ADF∽△DEC;
(2) 若AB=4,AD=3 ,AE=3,求AF的长.
23.(本题满分10分)有一种葡萄:从树上摘下后不保鲜最多只能存放一周,如果放在冷藏室,可以延长保鲜时间,但每天仍有一定数量的葡萄变质,假设保鲜期内的重量基本保持不变,现有一位个体户,按市场价收购了这种葡萄200千克放在冷藏室内,此时市场价为每千克2元,据测算,此后每千克鲜葡萄的市场价格每天可以上涨0.2元,但是,存放一天需各种费用20元,平均每天还有1千克葡萄变质丢弃.
(1)存放x天后将鲜葡萄一次性出售,设鲜葡萄的销售金额为y元,写出y关于x的函数关系式;
(2)为了使鲜葡萄的销售金额为760元,又为了尽早清空冷藏室,则需要在几天后一次性出售完;
(3)问个体户将这批葡萄存放多少天后一次性出售,可获得最大利润?最大利润是多少?(本题不要求写出自变量x的取值范围)
24、(本题12分)如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上一动点,连结OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连结CF.
(1)当∠AOB=30°时,求弧AB的长度;
(2)当DE=8时,求线段EF的长;
(3)在点B运动过程中,当交点E在O,C之间时,
是否存在以点E、C、F为顶点的三角形与△AOB相
似,若存在,请求出此时点E的坐标;若不存在,
请说明理由.
九年级数学上册期末质量检测试卷答案
1.B 2.D 3.c 4.C 5.C 6.C 7.B 8.A 9.C 10.B 11.A 12.B
13. 14.8 15. 16.4 17.① ②
18、 + .
= =
19、
解答:因为抛物线过(1,0)(0,3),则 解得:
20、 解:(1)由题意画树状图如下:
A B C
D E F D E F D E F
所有可能情况是:(A,D)、(A,E) 、(A,F) 、(B,D) 、(B,E) 、(B,F) 、(C,D) 、(C,E) 、(C,F).4分
(2)所有可能出场的等可能性结果有9个,其中首场比赛出场两个队都是部队文工团的结果有3个,所以P(两个队都是部队文工团)= .7分
21、答案:(1)证明:连结BC. 1分
∵直线CD与⊙O相切于点C,
∴∠DCA=∠B. 2分
∵AC平分∠DAB,∴∠DAC=∠CAB.∴∠ADC=∠ACB.3分
∵AB为⊙O的直径,∴∠ACB=90°.∴∠ADC=90°,即AD⊥CD.5分
(2)解:∵∠DCA=∠B,∠DAC=∠CAB,∴△ADC∽△ACB.6分
∴ ∴AC2=AD•AB.
∵AD=2,AC= ,∴AB= .9分.
22、(1)证明:∵四边形ABCD是平行四边形
∴AD∥BC, AB∥CD,
∴∠ADF=∠CED,∠B+∠C=180°.
∵∠AFE+∠AFD=180,∠AFE=∠B,
∴∠AFD=∠C.
∴△ADF∽△DEC.6分
(2)解:∵四边形ABCD是平行四边形,
∴AD∥BC CD=AB=4.
又∵AE⊥BC ,∴ AE⊥AD.
在Rt△ADE中,DE= .
∵△ADF∽△DEC,∴ .∴ .AF= .10分
23. 解:(1)若存放x天后将鲜葡萄一次性出售,设鲜葡萄的销售总额为y元,则有 3分
答:分
(3)设将这批葡萄存放x天后出售,则有
因此这批葡萄存放45天后出售,可获得最大利润405元1分
24、(1)连结BC,
∵A(10,0), ∴OA=10 ,CA=5,
∵∠AOB=30°,
∴∠ACB=2∠AOB=60°,
∴弧AB的长= ; 4分
(2)连结OD,
∵OA是⊙C直径, ∴∠OBA=90°,
又∵AB=BD,
∴OB是AD的垂直平分线,
∴OD=OA=10,
在Rt△ODE中,
OE= ,
∴AE=AO-OE=10-6=4,
由 ∠AOB=∠ADE=90°-∠OAB,∠OEF=∠DEA,
得△OEF∽△DEA,
∴ ,即 ,∴EF=3;4分
(3)设OE=x,当交点E在O,C之间时,由以点E、C、F
为顶点的三角形与△AOB相似,
有∠ECF=∠BOA或∠ECF=∠OAB,
①当∠ECF=∠BOA时,此时△OCF为等腰三角形,点E为OC
中点,即OE= ,∴E1( ,0);(2分)
②当∠ECF=∠OAB时,有CE=5-x, AE=10-x,
∴CF∥AB,有CF= ,
∵△ECF∽△EAD,
∴ ,即 ,解得: ,
∴E2( ,0);(2分)
九年级数学上册期末质量检测试题
九年级数学期末考试的时间紧,,同学们要提高数学复习的质量和学习效益。
九年级数学上册期末质量检测试卷
一、选择题(单项选择,每小题3分,共21分)在答题卡上相应题目的答题区域内作答.
1.下列计算正确的是()
A. B. C. D.
2.如图, 是∠ 的边 上一点,且点 的坐标为(3,4),
则sin 的值是( )
A. B. C. D. 无法确定
3.一个不透明的袋子中装有2个红球,3个白球,4个黄球,这些球除颜色外没有任何其它区别,现从这个盒子中随机摸出一个球,摸到白球的概率是( )
A. B. C. D.
4.用配方法解方程 ,下列配方结果正确的是( )
A. ; B. ;
C. ; D. .
5.如果二次根式 有意义,那么 的取值范围是( ).
A. ≥5B. ≤5 C. 5 D. 5
6.对于 的图象下列叙述正确的是()
A.顶点坐标为(-3,2) B.对称轴为直线 3
C.当 3时, 有最大值2 D.当 ≥3时 随 增大而减小
7.如图,△ABC中, 、 分别是 、 的中点,给出下列结论:
① ;② ;③ ;④ ∽ .
其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.
8.化简: ;
9.一元二次方程 的解是 .
10.计算:sin30°+tan45° .
11.某商品经过两次降价,单价由50元降为30元.已知两次降价的百分率相同,求每次降价的百分率.若设每次降价百分率为 ,则可列方程: .
12.已知抛物线的表达式是 ,那么它的顶点坐标是 ;
13.在 中, 90°,若cosA , 2㎝,则 _________㎝;
14.已知 ,则 ;
15. 如图 、 分别在 的边 、 上,要使△AED∽△ABC,应添加条件是 ;(只写出一种即可).
16.如图,点 是 的重心,中线 3㎝,则㎝.
17. 是关于 的方程 的根,且 ,则 的值是 .
三、解答题(共89分)在答题卡上相应题目的答题区域内作答.
18.(9分) 计算:
19.(9分) 解方程:
20.(9分)已知 , ,求代数式 的值.
21.(9分) 如图,为测楼房BE的高,用测量仪在距楼底部30米
的D处,用高1.2米的测角仪 测得楼顶B的仰角α为60°.
求楼房BE的高度.(精确到0.1米).
22.(9分)如图,已知 是原点, 、 两点的坐标分别为(3,-1)、(2,1).
(1)以点 为位似中心,在 轴的左侧将 放大两倍(即新图与原图的位似比为2),画出图形并写出点 、 的对应点的坐标;
(2)如果 内部一点 的坐标为 ,写出 的对应点 的坐标.
23.(9分)为了节约用水,某水厂规定:某单元居民如果一个月的用水量不超过 吨,那么这个月该单元居民只交10元水费.如果超过 吨,则这个月除了仍要交10元水费外,超过那部分按每吨 元交费.
元(用含 的式子表示).
(2)下表是该单元居民9月、10月的用水情况和交费情况:
月份 用水量(吨) 交费总数(元)
9月份 85 25
10月份 50 10
根据上表数据,求该 吨是多少?
24.(9分)甲、乙、丙三位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.请用树状图法或列表法,求恰好选中甲、乙两位同学打第一场比赛的概率.
25.(13分)如图,抛物线 与 轴相交于
点 、 ,且经过点 (5,4).该抛物线顶点为 .
(1)求 的值和该抛物线顶点 的坐标.
(2)求 的面积;
(3)若将该抛物线先向左平移4个单位,再向上平移2个单位, 求出平移后抛物线的解析式.
26.(13分)如图,在 中 , .点 是线段 边上的一动点(不含 、 两端点),连结 ,作 ,交线段 于点 .
1. 求证: ∽ ;
2. 设 , ,请写 与 之间的函数关系式,并求 的最小值。
3. 点在运动的过程中, 能否构成等腰三角形?若能,求出 的长;若不能,请说明理由。
四、附加题(共10分)在答题卡相应题目的答题区域内作答.
友情提示:如果你全卷得分低于90分(及格线)则本题的得分将计入全卷总分,但计入后全卷总分不超过90分;如果你全卷已达到或超过90分,则本题的得分不计入全卷总分.
1.计算;
九年级数学上册期末质量检测试题答案
说明:
(一)考生的正确解法与参考答案不同时,可参照参考答案及评分标准的精神进行评分.
(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面得分数的二分之一;如属严重的概念性错误,就不给分.
(三)以下解答各行右端所注分数表示正确做完涉及应得的累计分数.
一、 选择题(每小题3分,共21分)
1.B 2.C 3.A 4.D 5.A 6.B 7.D
二、填空题(每小题4分,共40分)
8.4; 9. (写成 不扣分) ; 10. ; 11. ;
12.( , ); 13.6; 14. ; 15. ;
16.1; 17. .
三、解答题(共89分)
18.(9分)解:6分(每化简对一项得2分)
9分
19.(9分)解:
3分
6分
8分
∴ 9分
另用公式法: 4分
6分
8分
∴ 9分
20.(9分)解:3分
6分
9分
21.(9分)解:依条件可知, 米, 米2分
在 中,
4分
6分
(米)7分
∴ 米9分
答:略
22.(9分)解:(1)画图如图所示;4分
点 、 6分
(2)点 9分
23.(9分)解:(1) 3分
(2)根据表格提供的数据,可以知道 ,根据9月份用水情况可以列出方程:
6分
解得, 8分
因为 ,所以 9分
该水厂规定的 吨是60吨.
24.(9分)解:画树状图如下:
6分
所有可能出现的情况有6种,其中甲乙两位同学组合的情况有两种,
所以 9分
25.(13分)解:(1)将 (5,4)的坐标代入抛物线解析式 ,
得 ;2分
∴抛物线解析式
∴点 的坐标为( , );4分
(2)∵当 中 时, ,
∴ 、 两点的坐标为 (1,0), (4,0),6分
∴ 8分
9分
(3)∵抛物线原顶点坐标为( , ),
平移后的顶点为( , )
∴平移后抛物线解析式 13分
26.(13分)(1)证明:
(2) ∵ ∽
∴
即
∴ ( )7分(自变量的取值范围没写不扣分)
8分
∴当 , 有最小值是 9分
(3)∵ 是 的外角
∴
∵
∴
∴
当 时,
得 ≌
∴ 11分
当 时,
∴ ∽
∴
即:
∴ 13分
∴ 为等腰三角形时, 。
四、附加题:1.2;2.
答题卡
考生信息
一、选择题(每题3分,共21分)
二、填空题(每题4分,共40分)
8. 9. 略长 10. 11. 略长
12. 13. 14. 15. 略长 16. 17.
三、解答题(11小题,共89分)
18.解:
19.解:
20.解:
21.解:
22.解:(1)画图如右。
点 对应点的坐标为( , );
点 对应点的坐标为( , );
(2) 点 的对应点 的
坐标为( , );
23.解:(1)超过部分应交水费 元(用含 的式子表示)
(2)
24. 解:
25.解:
26.解:
四、附加题:
1.计算; 2. 的解为 ,
初三上数学期末试卷带答案
鲜花纷纷绽笑颜,捷报翩翩最灿烂。绽在心头芬芳绕,合家共同甜蜜笑。金榜题名无限好,不负十年多辛劳。继续扬帆勤钻研,书写明天新诗篇。祝你九年级数学期末考试取得好成绩,期待你的成功!以下是我为大家整理的初三上数学期末试卷,希望你们喜欢。
初三上数学期末试题
一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只
有一项是符合题目要求的.)
1.点(一1,一2)所在的象限为
A.第一象限 B.第二象限 c.第三象限 D.第四象限
2.反比例函数y=kx的图象生经过点(1,-2),则k的值为
A.-1 B.-2 C.1 D.2
3.若y= kx-4的函数值y随x的增大而减小,则k的值可能是下列的
A.-4 B.0 C.1 D.3
4.在平面直角坐标系中,函数y= -x+1的图象经过
A.第一,二,三象眼 B.第二,三,四象限
C.第一,二,四象限 D.第一,三,四象限
5.如图,AB是⊙O的直径,点C在⊙O上,若∠B=50°,则∠A的度数为
A.80° B.60° C.50° D.40°
6.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=
A.1 B.1.5 C.2
7.抛物线y=-3x2-x+4与坐标轴的交点的个数是
A.3 B.2 C.1 D.0
8.在同一平面直角坐标系中,函数y=mx+m与y=-mx (m≠0)的图象可能是
9.如图,点A是反比例函数y=2x(x0)的图象上任意一点,AB//x轴,交反比例函数y=-3x的 图象于点B,以AB为边作ABCD,其中C、D在x轴上,则SABCD为
A. 2 B. 3 C. 4 D. 5
10.如图,在平面直角坐标系中,⊙O的半径为1,则直线y=x一2与⊙O的位置关系是
A.相离 B.相切 C.相交 D.以上三种情况都有可能
11.竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at2+bt,其图象如图 所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是 A.第3秒 B.第3.9秒 C.第4.5秒 D.第6.5秒
12.如图,将抛物线y=(x—1)2的图象位于直线y=4以上的部分向下翻折,得到新的图像,若直线y=-x+m与新图象有四个交点,则m的取值范围为
A.43m /m
第Ⅱ卷(非选择题共84分)
二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在答题卡的横线上.)
13.直线y=kx+b经过点(0,0)和(1,2),则它的解析式为_____________
14.如图,A、B、C是⊙O上的点,若∠AOB=70°,则∠ACB的度数为__________
15.如图,己知点A(O,1),B(O,-1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C.则∠BAC等于____________度.
16.如图,在平面直角坐标系中,抛物线y=12x2经过平移得到抛物线y=12x2-2x,其对称轴与两段抛物线弧所围成的阴影部分的面积为______________
17.如图,已知点A、C在反比例函数y=ax(a0)的图象上,点B、D在反比例函数y=bx(b0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB与CD的距离为5,则a-b的值是________________
18.如图所示,⊙O的面积为1,点P为⊙O上一点,令记号【n,m】表示半径OP从如图所示的位置开始以点O为中心连续旋转n次后,半径OP扫过的面积.旋转的规则为:第1次旋转m度;第2次从第1次停止的位置向相同的方向再次旋转m2度:第3次从第2次停止的位置向相同的方向再次旋转m4度;第4次从第3次停止的位置向相同的方向再次旋转m8度……依此类推.例如【2,90】=38,则【2017, 180】=_______________
三、解答题(本大题共9个小题,共66分.解答应写出文字说明,证明过程或演算步骤.)
19.(本小题满分6分)
(1)计算sin245°+cos30°•tan60°
(2)在直角三角形ABC中,已知∠C=90°,∠A=60°,BC=3,求AC.
20.(本小题满分6分)
如图,⊙O的直径CD=10,AB是⊙O的弦,AB⊥CD,垂足为M, OM∶OC=3∶5.
求AB的长度.
21.(本小题满分6分)
如图,点(3,m)为直线AB上的点.求该点的坐标.
22.(本小题满分7分)
如图,在⊙O中,AB,CD是直径,BE是切线,连结AD,BC,BD.
(1)求证:△ABD≌△CDB;
(2)若∠DBE=37°,求∠ADC的度数.
23.(本小题满分7分)
某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.求当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?
24.(本小题满分8分)
如图所示,某数学活动小组要测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°,若坡角∠FAE=30°,求大树的高度.(结果保留整数,参考数据:sin48°≈0.74,
cos48°≈0.67, tan48°≈l.ll, 3≈1.73)
25.(本小题满分8分)
如图,矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数y=kx(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=12.
(1)求边AB的长;
(2)求反比例函数的解析式和n的值;
(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点D与点F重合,折痕分别与x、y轴正半轴交于H、G,求线段OG的长
26.(本小题满分9分)
如图,抛物线y=33(x2+3x一4)与x轴交于A、B两点,与y轴交于点C.
(1)求点A、点C的坐标,
(2)求点D到AC的距离。
(3)看点P为抛物线上一点,以2为半径作⊙P,当⊙P与直线AC相切时,求点P的横坐标.
27.(本小题满分9分)
(1)如图l,Rt△ABD和Rt△ABC的斜边为AB,直角顶点D、C在AB的同侧,
求证:A、B、C、D四个点在同一个圆上.
(2)如图2,△ABC为锐角三角形,AD⊥BC于点D,CF⊥AB于点F,AD与CF交于点G,连结BG并延长交AC于点E,作点D关于AB的对称点P,连结PF.
求证:点P、F、E三点在一条直线上.
(3)如图3,△ABC中,∠A=30°,AB=AC=2,点D、E、F分别为BC、CA、AB边上任意一点,△DEF的周长有最小值,请你直接写出这个最小值.
下一页分享初三上数学期末试卷答案
关于金太阳九上数学试卷淮南和金太阳数学试卷九年级答案的介绍到此就结束了,不知道同学们从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。