衡水名师数学圆锥曲线(圆锥曲线数学公开课教学视频)

今天给各位同学分享衡水名师数学圆锥曲线的知识,其中也会对圆锥曲线数学公开课教学视频进行解释,如果能碰巧解决你现在面临的问题,别忘了分享本站,现在开始吧!

本文目录一览:

圆锥曲线解题技巧归纳

圆锥曲线作为高中数学解析几何的重要知识点,其中蕴含着重要丰富的数学思想方法,解析几何基本思想是使用几何方法解决问题,也就是数形结合思想,所有的数学试题都不能离开形只谈抽象数或者是研究图。要求学生具备较扎实基础知识及较强综合能力.本文将重点分析下直线与圆锥曲线中常见题型,并给出相应解题技巧,使学生更好地备战高考数学。

圆锥曲线解题技巧归纳

直线与圆锥曲线常见解题思想方法有两种:几何法与代数法,下面将具体分析下这两种解题思想方法.

(一)几何法

几何法解决数学问题主要运用了数形结合思想,结合圆锥曲线定义、图形、性质等题目中已知条件转化成平面几何图形,并使用平面几何有关基本知识例如两点间线段最短、点到直线垂线段最短等来巧妙地解题.

(二)代数法

代数法主要是依据已知条件来构建目标函数,将其转化成函数最值问题,再结合使用配方法、不等式法、函数单调性法及参数法等等来求最值.

直线与圆锥曲线的常见题型及解题技巧实例分析

(一)题型一:弦的垂直平分线问题

解题技巧及规律:题干中给出直线与曲线M过点S(-1,0)相交于A,B两点,分析直线存在斜率并且不等于0,然后设直线方程,列出方程组,消元,对一元二次方程进行分析,分析判别式,并使用韦达定理,得出弦中点坐标,再结合垂直及中点,列出垂直平分线方程,求出N点坐标,最后结合正三角形性质:中线长是边长的32倍,使用弦长公式求出弦长.

(二)题型二:动弦过定点问题

解题技巧及规律:第一问是使用待定系数法求轨迹方程;第二问中,已知点A1、A2的坐标,因此可以设直线PA1、PA2方程,直线PA1与椭圆交点是A1(-2,0)和M,结合韦达定理,能求出点M坐标,同理求出点N坐标.动点P在直线L:x=t(t2)上,这样就能知道点P横坐标,根据直线PA1,PA2方程求出点P纵坐标,得出两条直线斜率关系,通过计算出M,N点坐标,求出直线MN方程,代入交点坐标,如果解出是t2,就可以了,否则不存在。

圆锥曲线解题技巧归纳

一、考查目标:

1、熟练掌握三大曲线的定义和性质;

2、能够处理圆锥曲线的相关轨迹问题;

3、能够处理圆锥曲线的相关定值、最值问题。

二、相关知识考查:

1、准确理解基本概念(如直线的倾斜角、斜率、距离等,也要注意斜率的存在与否)

2、熟练掌握基本公式(如两点间距离公式、点到直线的距离公式、斜率公式、定比分点的坐标公式、到角公式、夹角公式等)

3、熟练掌握求直线方程的方法(如根据条件灵活选用各种形式、讨论斜率存在和不存在的各种情况等等)

4、在解决直线与圆的位置关系问题中,要善于运用圆的几何性质以减少运算

5、了解线性规划的意义及简单应用

6、熟悉圆锥曲线中基本量的计算

7、掌握与圆锥曲线有关的'轨迹方程的求解方法(如:定义法、直接法、相关点法、参数法、交轨法、几何法、待定系数法等)

8、掌握直线与圆锥曲线的位置关系的常见判定方法,能应用直线与圆锥曲线的位置关系解决一些常见问题。

圆锥曲线结论是什么?

圆锥曲线结论:

1、当平面与二次锥面的母线平行,且不过圆锥顶点,结果为抛物线。

2、当平面与二次锥面的母线平行,且过圆锥顶点,结果退化为一条直线。

3、当平面只与二次锥面一侧相交,且不过圆锥顶点,结果为椭圆。

4、当平面只与二次锥面一侧相交,且不过圆锥顶点,并与圆锥的对称轴垂直,结果为圆。

5、当平面与二次锥面两侧都相交,且不过圆锥顶点,结果为双曲线。

6、当平面与二次锥面两侧都相交,且过圆锥顶点,结果为两条相交直线。

7、当平面与二次锥面的两侧都不相交,且过圆锥顶点,结果为一点。

圆锥曲线的历史背景:

1、圆锥曲线数学,几何学中通过平切圆锥得到的一些曲线。

2、阿波罗尼曾把椭圆叫亏曲线,把双曲线叫做超曲线,把抛物线叫做齐曲线。事实上,阿波罗尼在其着作中使用纯几何方法已经取得了今天高中数学中关于圆锥曲线的全部性质和结果。

圆锥曲线的弦长公式是什么?

圆被直线截的弦长公式是弦长=│x1-x2│√(k^2+1)=│y1-y2│√[(1/k^2)+1],其中k为直线斜率,(x1,y1),(x2,y2)为直线与曲线的两交点,││为绝对值符号,√为根号。

弦长为连接圆上任意两点的线段的长度。

弦长公式,在这里指直线与圆锥曲线相交所得弦长的公式。

圆锥曲线,是数学、几何学中通过平切圆锥(严格为一个正圆锥面和一个平面完整相切)得到的一些曲线,如:椭圆,双曲线,抛物线等。

[img]

衡水名师数学圆锥曲线的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于圆锥曲线数学公开课教学视频、衡水名师数学圆锥曲线的信息别忘了在本站进行查找喔。

本文转载自互联网,如有侵权,联系删除