金太阳必修一数学试卷(金太阳数学高一试卷答案金太阳教育试卷答案网)

今天给各位同学分享金太阳必修一数学试卷的知识,其中也会对金太阳数学高一试卷答案金太阳教育试卷答案网进行解释,如果能碰巧解决你现在面临的问题,别忘了分享本站,现在开始吧!

本文目录一览:

高一金太阳数学卷三

f(1-2)=f(1)(-2)=f[1(-1-1)]=f(1)*f(-1)*f(-1)=f(-1)

所以f(1)*f(-1)=1

因为f(1)=0.5

所以f(-1)=2

所以f(-2)=f(-1-1)=f(-1)*f(-1)=4

[img]

求数学试卷答案 金太阳全国100所名校单元测试卷 高一下 12卷的 急需

网上有,在百度里输入“金太阳”三个字,然后根据自己的情况找相应的试卷答案。不要急,最好还是自己做一遍吧。。。

有没有金太阳高一数学有没有21—11—188A3点卷子

金色的太阳?是改造版的。我不知道我还有没有选择: duacdba cddcc dcbbc cbdcb ddb 36。温带落叶阔叶林,温带季风煤(3)丘陵,平原,山脉,山脉(4)关中,断层沉降,河流冲击(5)流道小,变化大,冰期,含沙量,冰多,你看到的答案一样是否定的,在这种情况下,我会继续。.

金太阳试卷凤庆一中高一级下学期数学期末试卷答案

给你个网址,自己去看看有没有第四,五次联考的。有的话下载就可以了。

必修一数学试题

一.选择题:(每题4分,共40分)

1.一个直角三角形绕斜边旋转 形成的空间几何体为( )

A.一个圆锥 B.一个圆锥和一个圆柱 C.两个圆锥 D.一个圆锥和一个圆台

2.设 , ,则 等于………………( )

A. B. C. D.

3.下列命题中: ① 若A α, B α, 则AB α;② 若A α, A β, 则α、β一定相交于一条直线,设为m,且A m ③经过三个点有且只有一个平面 ④ 若a b, cb, 则a//c. 正确命题的个数( )

A. 1 B. 2 C. 3 D. 4

4.如图所示的直观图,其平面图形的面积是( )

A.4 B.4 C.2 D.8

5.若 ,则 =( )高考资源网

A.0 B.1 C.2 D.3

6.一个正方体的顶点都在球面上,它的棱长为 ,则球的半径是( )cm.

A.1 B. C. D.2

7.设偶函数f(x)的定义域为R,当x 时f(x)是增函数,则f(-2),f( ),f(-3)的大小关系是( )

A.f( )f(-3)f(-2) B.f( )f(-2)f(-3)

C.f( )f(-3)f(-2) D.f( )f(-2)f(-3)

8.下列命题中错误的是( )

A.如果 ,那么 内一定存在直线平行于平面

B.如果 ,那么 内所有直线都垂直于平面

C.如果平面 不垂直平面 ,那么 内一定不存在直线垂直于平面

D.如果 ,那么

9.三凌锥P-ABC的侧棱长相等,则点P在底面的射影O是△ABC的( )

A.内心 B.外心 C.垂心 D.重心

10.设函数 对任意 满足 ,且 ,则 =( )

A.-2 B. C. D. 2

二、填空题(每小题4分,共16分)

11.用长、宽分别是3 和 的矩形硬纸卷成圆柱的侧面,则圆柱的底面半径是_______.

12.正方体 中, 分别是 的中点,则异面直线 所成角的大小为_________。

13.函数 在区间 上递减,则实数 的取值范围是 .

14. 已知m、n是不同的直线, 是不重合的平面,给出下列命题:

① 若 ,则 平行于平面 内的任意一条直线

② 若 则

③若 ,则

④若 ,则

上面命题中,真命题的序号是____________(写出所有真命题的序号)

三、解答题:

15.(本小题满分10分)

计算 :log2.56.25+lg +ln( )+log2(log216)

16. (本小题满分12分)

右图是一个空间几何体的三视图,根据

图中尺寸 (单位: ),求该几何体的表面积

和体积.

17.(本小题满分10分)

如图在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的

中点.

(1)求证:EF‖平面CB1D1;

(2)求证:平面CAA1C1⊥平面CB1D1.

18.(本小题满分10分)

如图,圆锥 中, 、 为底面圆的两条直径,

,且 , , 为 的中点.

(1)求圆锥 的表面积;

(2)求异面直线 与 所成角的正切值.

19.(本小题满分12分)

如图,ABCD是正方形,O是正方形的中心,

PO 底面ABCD,E是PC的中点。

求证:(1)PA‖平面BDE

(2)平面PAC 平面BDE

(3)求二面角E-BD-A的大小。

20.(本小题满分10分)

如图,平面ABCD⊥平面ABEF,ABCD是正方形,ABEF是矩形,

且 G是EF的中点,

(1)求证平面AGC⊥平面BGC;

(2)求GB与平面AGC所成角的正弦值.

高一期末数学试卷参考答案

一、选择题:(每小题4分,共40分)

题号 1 2 3 4 5 6 7 8 9 10

答案 C A B A B C A B B A

二、填空题:(每小题4分,共16分)

11. 或 12. 13. 14. ③ ④

三、解答题:

15、(10分)原式=2-2+ =

16. (12分) 解:由三视图可知空间几何体是底面边长为2,侧棱长为3的正三棱柱,

其底面积为: ,侧面积为:

其全面积为: ,

其体积为: (m3)

17.(10分)

解(1)连接BD则BDD1B1是平行四边形,∴BD //B1D1

又∵EF//BD ∴EF//B1D1

EF 面CB1D1

B1D1 面CB1D1

EF//平面CB1D1

(2) ∵B1D1⊥A1C1, B1D1⊥AA1 B1D1⊥面CAA1C1

B1D1 面C1B1D1

∴平面CAA1C1⊥平面C1B1D1

18. (10分)

解: (1) ,

, ,

.

(2) , 为异面直线 与 所成角.

, ,

.在 中, , ,

异面直线 与 所成角的正切值为 .

19、(12分)证明(1)∵O是AC的中点,E是PC的中点,∴OE‖AP,

又∵OE 平面BDE,PA 平面BDE,∴PA‖平面BDE

(2)∵PO 底面ABCD,∴PO BD,

又∵AC BD,且AC PO=O∴BD 平面PAC,

而BD 平面BDE,∴平面PAC 平面BDE。

(3)由(2)可知BD 平面PAC,∴BD OE,BD OC,

∠EOC是二面角E-BD-C的平面角

(∠EOA是二面角E-BD-A的平面角)

在RT△POC中,可求得OC= ,PC=2

在△EOC中,OC= ,CE=1,OE= PA=1

∴∠EOC=45°∴∠EOA =135°,即二面角E-BD-A大小为135°。

20.(10分)(1)证明:正方形ABCD ∵面ABCD⊥面ABEF且交于AB,

∴CB⊥面ABEF ∵AG,GB 面ABEF, ∴CB⊥AG,CB⊥BG

又AD=2a,AF= a,ABEF是矩形,G是EF的中点,

∴AG=BG= ,AB=2a, AB2=AG2+BG2,∴AG⊥BG ∵CG∩BG=B ∴AG⊥平面CBG 而AG 面AGC, 故平面AGC⊥平面BGC

(2)解:如图,由(Ⅰ)知面AGC⊥面BGC,且交于GC,在平面BGC内作BH⊥GC,垂足为H,则BH⊥平面AGC,

∴∠BGH是GB与平面AGC所成的角

∴在Rt△CBG中 又BG= ,

图略

关于金太阳必修一数学试卷和金太阳数学高一试卷答案金太阳教育试卷答案网的介绍到此就结束了,不知道同学们从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

本文转载自互联网,如有侵权,联系删除