衡水名师初等函数讲解(衡水中学初中数学)

本篇文章给同学们谈谈衡水名师初等函数讲解,以及衡水中学初中数学对应的知识点,希望对各位同学有所帮助,不要忘记分享给你的朋友哦!

本文目录一览:

基本初等函数和初等函数有什么区别,如何定义的?高等函数又是如何定义的??

基本初等函数主要是几个常见的初等函数,如x^n、sin(x)、cos(x)、log(x)等,而初等函数是指这些函数的加、减、乘、除等的组合。

[img]

基本初等函数

基本初等函数包括以下6种:

(1)常值函数(也称常数函数) y =c(其中c 为常数)

(2)幂函数 y =x^a(其中a 为实常数)

(3)指数函数 y =a^x(a>0,a≠1)

(4)对数函数 y =log a(x)(a>0,a≠1)

(5)三角函数:

正弦函数 y =sin(x)

余弦函数 y =cos(x)

正切函数 y =tan(x)也记成y =tg(x)

余切函数 y =cot(x)也记成y =ctg(x)

正割函数 y =sec(x)

余割函数 y =csc(x)

(6)反三角函数:

反正弦函数 y =arcsinx

反余弦函数 y =arccosx

反正切函数 y =arctanx

反余切函数 y =arccotx

(反正割函数、反余割函数一般不用)

所谓初等函数就是由基本初等函数经过有限次的四则运算和复合而成的函数。

基本初等函数图像及性质

基本初等函数图像及性质如下:

1、幂函数性质如下:

当α0时,幂函数y=xα有下列性质:

图像都经过点(1,1)(0,0);函数的图像在区间[0,+∞)上是增函数;在第一象限内,α1时,导数值逐渐增大;α=1时,导数为常数;0α1时,导数值逐渐减小,趋近于0(函数值递增);

负值性质:当α0时,幂函数y=xα有下列性质:

图像都通过点(1,1);图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。

零值性质:当α=0时,幂函数y=xa。

2、指数函数的性质如下:

a、y=x0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。

指数函数y=a^x(a0且a≠1)的函数值恒大于零,定义域为R,值域为(0,+00);指数函数y=a^x(a0且a≠1)的图像经过点(0,1);指数函数y=a^x(a1)在R上递增,指数函数y=a^x(0 a 1)在R上递减。

函数总是在某一个方向上无限趋向于X轴,并且永不相交。函数总是通过(0,1)这点,(若 ,则函数定过点(0,1+b));指数函数无界;指数函数是非奇非偶函数;指数函数具有反函数,其反函数是对数函数。

3、对数函数性质如下:

定义域:对数函数y=log ax 的定义域是{x 丨x0};定点 :对数函数的函数图像恒过定点(1,0);单调性 :a1时,在定义域上为单调增函数; 0a1时,在 定义域上为单调减函数;零点:x=1。

初等函数性质

初等函数是由基本初等函数经过有限次的四则运算和复合运算所得到的函数。基本初等函数和初等函数在其定义区间内均为连续函数。不是初等函数的函数,称为非初等函数,如狄利克雷函数和黎曼函数。有两种分类方法:数学分析有六种基本初等函数,高等数学只有五种。

16个基本初等函数的求导公式推导

16个基本初等函数的求导公式推导如下:

1.y=c y'=0

2. y=α^μ y'=μα^(μ-1)

3. y=a^x y'=a^x lna

y=e^x y'=e^x

4. y=loga,x y'=loga,e/x

y=lnx y'=1/x

5. y=sinx y'=cosx

6. y=cosx y'=-sinx

7. y=tanx y'=(secx)^2=1/(cosx)^2

8. y=cotx y'=-(cscx)^2=-1/(sinx)^2

9. y=arc sinx y'=1/√(1-x^2)

10.y=arc cosx y'=-1/√(1-x^2)

11.y=arc tanx y'=1/(1+x^2)

12.y=arc cotx y'=-1/(1+x^2)

13.y=sh x y'=ch x

14.y=ch x y'=sh x

15.y=thx y'=1/(chx)^2

16.y=ar shx y'=1/√(1+x^2)

17.y=ar chx y'=1/√(x^2-1)

18.y=ar th y'=1/(1-x^2)

15.y=thx y'=1/(chx)^2

16.y=ar shx y'=1/√(1+x^2)

17.y=ar chx y'=1/√(x^2-1)

18.y=ar th y'=1/(1-x^2)

跪求高中数学10种函数的8大性质 越详细越好,

1.一次函数(包括正比例函数)

最简单最常见的函数,在平面直角坐标系上的图象为直线.

定义域(下面没有说明的话,都是在无特殊要求情况下的定义域):R

值域:R

奇偶性:无

周期性:无

平面直角坐标系解析式(下简称解析式):

①ax+by+c=0[一般式]

②y=kx+b[斜截式]

(k为直线斜率,b为直线纵截距,正比例函数b=0)

③y-y1=k(x-x1)[点斜式]

(k为直线斜率,(x1,y1)为该直线所过的一个点)

④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]

((x1,y1)与(x2,y2)为直线上的两点)

⑤x/a-y/b=0[截距式]

(a、b分别为直线在x、y轴上的截距)

解析式表达局限性:

①所需条件较多(3个);

②、③不能表达没有斜率的直线(平行于x轴的直线);

④参数较多,计算过于烦琐;

⑤不能表达平行于坐标轴的直线和过圆点的直线.

倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜 角.设一直线的倾斜角为a,则该直线的斜率k=tg(a).

2.二次函数:

题目中常见的函数,在平面直角坐标系上的图象是一条对称轴与y轴平行的抛物线.

定义域:R

值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)

奇偶性:偶函数

周期性:无

解析式:

①y=ax^2+bx+c[一般式]

⑴a≠0

⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;

⑶极值点:(-b/2a,(4ac-b^2)/4a);

⑷Δ=b^2-4ac,

Δ>0,图象与x轴交于两点:

([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);

Δ=0,图象与x轴交于一点:

(-b/2a,0);

Δ<0,图象与x轴无交点;

②y=a(x-h)^2+t[配方式]

此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);

3.反比例函数

在平面直角坐标系上的图象为双曲线.

定义域:(负无穷,0)∪(0,正无穷)

值域:(负无穷,0)∪(0,正无穷)

奇偶性:奇函数

周期性:无

解析式:y=1/x

4.幂函数

y=x^a

①y=x^3

定义域:R

值域:R

奇偶性:奇函数

周期性:无

图象类似于将一个过圆点的二次函数的第四区间部分关于x轴作轴对称

后得到的图象(类比,这个方法不能得到三次函数图象)

②y=x^(1/2)

定义域:[0,正无穷)

值域:[0,正无穷)

奇偶性:无(即非奇非偶)

周期性:无

图象类似于将一个过圆点的二次函数以原点为旋转中心,顺时针旋转

90°,再去掉y轴下方部分得到的图象(类比,这个方法不能得到三次

函数图象)

5.指数函数

在平面直角坐标系上的图象(太难描述了,说一下性质吧……)

恒过点(0,1).联系解析式,若a>1则函数在定义域上单调增;若0<a<1 则函数在定义域上单调减.

定义域:R

值域:(0,正无穷)

奇偶性:无

周期性:无

解析式:y=a^x

a>0

性质:与对数函数y=log(a)x互为反函数.

*对数表达:log(a)x表示以a为底的x的对数.

6.对数函数

在定义域上的图象与对应的指数函数(该对数函数的反函数)的图象关于直线y=x轴对称.

恒过定点(1,0).联系解析式,若a>1则函数在定义域上单调增;若0<a<1 则函数在定义域上单调减.

定义域:(0,正无穷)

值域:R

奇偶性:无

周期性:无

解析式:y=log(a)x

a>0

性质:与对数函数y=a^x互为反函数.

7.三角函数

⑴正弦函数:y=sinx

图象为正弦曲线(一种波浪线,是所有曲线的基础)

定义域:R

值域:[-1,1]

奇偶性:奇函数

周期性:最小正周期为2π

对称轴:直线x=kπ/2 (k∈Z)

中心对称点:与x轴的交点:(kπ,0)(k∈Z)

⑵余弦函数:y=cosx

图象为正弦曲线,由正弦函数的图象向左平移π/2个单位(最小平移量)所得.

定义域:R

值域:[-1,1]

奇偶性:偶函数

周期性:最小正周期为2π

对称轴:直线x=kπ (k∈Z)

中心对称点:与x轴的交点:(π/2+kπ,0)(k∈Z)

⑶正切函数:y=tg x

图象的每个周期单位很像是三次函数,很多个,均匀分布在x轴上.

定义域:{x│x≠π/2+kπ}

值域:R

奇偶性:奇函数

周期性:最小正周期为π

对称轴:无

中心对称点:与x轴的交点:(kπ,0)(k∈Z).

8.反三角函数:

y=arcsin(x),

定义域[-1,1] ,

值域[-π/2,π/2]

1)y=arccos(x),

定义域[-1,1] ,

值域[0,π],

2)y=arctan(x),

定义域(-∞,+∞),

值域(-π/2,π/2),

函数性质公式 arcsin(-x)=-arcsinx

arccos(-x)=π-arccosx

arctan(-x)=-arctanx

arccot(-x)=π-arccotx

arcsinx+arccosx=π/2=arctanx+arccotx

sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)

9.复合函数:

y=f(μ)=f[φ(x)],

其中x称为自变量,μ为中间变量,y为因变量

定义域:若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数

y=f[g(x)]的定义域是:复合函数的导数D={x|x∈A,且g(x)∈B}

周期性:设y=f(u),的最小正周期为T1,

μ=φ(x)的最小正周期为T2,

则y=f(μ)的最小正周期为T1*T2,任一周期可表示为k*T1*T2(k属于R+)

增减性:依y=f(x),μ=φ(x)的增减性决定.

即“增增得增,减减得增,增减得减”,可以简化为“同增异减”

10)初等函数

初等函数是由幂函数(power function)、指数函数(exponential function)、对数函数(logarithmicfunction)、三角函数(trigonometric function)、反三角函数(inverse trigonometic function)与常数经过有限次的有理运算(加、减、乘、除、有理数次乘方、有理数次开方)及有限次函数复合所产生、并且能用一个解析式表示的函数.

一般初等函数的导数还是初等函数,但初等函数的不定积分不一定是初等函数.另外初等函数的反函数不一定是初等函数.

衡水名师初等函数讲解的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于衡水中学初中数学、衡水名师初等函数讲解的信息别忘了在本站进行查找喔。

本文转载自互联网,如有侵权,联系删除