今天给各位同学分享百校大联考数学三角函数的知识,其中也会对百校大联考20212022学年度高三第二次联考数学进行解释,如果能碰巧解决你现在面临的问题,别忘了分享本站,现在开始吧!
本文目录一览:
- 1、那里可以下载到免费的高考资料
- 2、八省联考考生苦不堪言,这是为什么?
- 3、复数z的11次方等于1怎么算
- 4、在锐角三角形ABC中,A、B、C三内角所对的边分别为a,b,c,cos^2A+1/2=sin^2A,a=根号7, (1)若b=3,求c (2...
那里可以下载到免费的高考资料
高中文理综合合集百度网盘下载
链接:
?pwd=1234
提取码:1234
简介:高中文理综合优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。
八省联考考生苦不堪言,这是为什么?
八省联考的确是引起了热议!特别是数学卷,考完很多的考生直呼这是“炼狱般”的难度,从题目整体命题来看减少了套路化命题,更多的是引入了新定义加新定理的命题结构。就比如说数学第20题是以大兴机场作为背景,然后根据“新定义+欧拉定理”的方式命题,学生在看到这种命题时感觉比较陌生,其实这是正常的,因为欧拉定理是高数内容,但是题目并没有对欧拉定理进行进一步的解析,而是根据欧拉定理的基本定义作为命题结构。
1、联考反映一个很重要的问题
也就是说这次联考考验更多的是学生应变能力和平时的学习综合能力。如果光做死题,套路话刷题这肯定是不行的,在这张试卷当中以复数问题为例,大家都知道在平时的模考当中复数问题,出题较为简单,一般都出在选择题前三题之内,但是如今却排布在选择题后面,这就说明了难度的确是有所增加。学生在看到这样的命题排序时,也应该意识到,整张试卷题型分布难易程度都是从简到难,首先自己心理要过关。其次也就是说江苏省考生历经多年之后再重新回到新高考统一联考,这也是很多的家长最为关心的问题。因为考虑到江苏学子与统一高考真的是断开了太长的时间。题型命题结构出现了与往常不同的差异性变化让学生感到措手不及,这也是导致考完之后唏嘘一片的重要原因。但根据不少的,江苏学子所说,这张考卷的难易程度其实跟平时的模考差不多是能够接受的。这可能就是江苏的教育质量比较高的原因,因为参加此次联考的中学每年的高考成绩都是非常好的,甚至于说很多的火箭班,卓越班统一参加,其他的学生一同联考就感觉到压力很大。
2、适应性演练测试
这次考试受到学生以及家长的重视,因为此次联考的流程与2021年的新高考流程是一模一样。二月底试卷才评阅完,也就是说要到三月出成绩才公布。成绩公布之后,将会划定统一的省控分数线,然后让学生模拟进行志愿报考,最后也就是进入最后一个环节“录取”。因为现在还是在一月份,正处在一轮复习阶段,学生在做这样的试卷可能会感到陌生,这也是正常的,毕竟一轮复习只是对基础知识点进行梳理。二轮复习才会进入针对于高考的专项题型训练,在到后面也就是三轮复习进行进一步的巩固。在一轮复习还没有结束之前就对高考展开模拟,总的来讲,学生的真正水平远不止现在的这么多。所以就算是这次联考没有发挥好,学生以及家长都不要灰心。没有到高考的最后一刻,也就是说“乾坤未定”,每个人都有可能是黑马。特别是在后几个月的复习当中学生要全身心的投入到复习当中,因为专题训练就是针对于高考命题模式进行的拔高。此次联考更多的是要让学生提前感受到新高考的流程,让他们做到心中有数。
3、疑似泄题
这是八省联考结束之后又一个被议论纷纷的话题。因为网络上流传出了这样一张图片“考试还没有开始,就有人在群里面分享答案”,因为存在有人分享答案的情况,所以就有不少的家长担忧,会不会影响2021年新高考的难度?其实家长应该是这么想的:有人在这次联考当中作弊就会拉高平均分,就有可能对命题组专家人员造成错觉,认为这样的试卷拉不开学生之间的差距,难度更是不能体现出高考。所以家长们就想着:“人们都被拉高,要这样的话那么2021年高考肯定是比较难的啊。因为这次联考是八省一起的,命题组人员会不会根据此次的联考成绩作为高考命题的依据呢?”根据现有的答案来看这种忧虑其实是没有必要的。八省联考只是一个考前的针对性演练而已,并不会根据八省联考的成绩,而对高考的命题作为改变。更不可能说新高考的命题将会根据八省联考所有省参加联考学生的成绩作为参考。这一点家长朋友们大可放心!但不得不说的就是有的学生们还有没有认识到此次联考的重要性,真的是白白浪费了这一次宝贵的机会啊!因为所有的流程都跟高考一模一样现在联考可以作弊,高考可以吗?那很显然是不行的,学生要秉持着诚信的理念来进行考试,这样才是最正确的!
复数z的11次方等于1怎么算
复数是怎么计算的?
(A)复数的极式:
若点P代表z=x+iy,O为原点,线段OP与x轴正向所夹的有向角为 。
令OP=r,则r, ,x,y有如下的关系:x=rcos ,y=rsin ,上述的r称为复数
z的绝对值,以 表示。 称为复数的幅角,以argz表示,我们规定介于0,
2之间的幅角称为主幅角,以Argz表示。一个复数的幅角很多,但主幅角只
有一个。即 ,0Argz2
结论:将复数z=x+iy表示成 则称为复数z的极式。
[例题1] 将下列各复数化为极式:
(1)z=33i (2)z= (3)z=sin15+icos15(4)z=cos13+icos77
[例题2] 设z为复数,且| z1z |= 12,Arg(z1z)= 3 ,则z=? Ans:1+33 i
(B)复数极式的乘除法:
(1)复数的乘法:
设z1,z2之极式分别为z1=r1(cos+isin),z2=r2(cos+isin)
则
即将复数z1,z2相乘时,其绝对值相乘而其幅角相加。
(2)复数的除法:
(a)若 ,则 。
(b)若 ,则
(3)棣美弗定理:n为整数,若设 ,则zn=|z|n(cosn+isinn)。
[例题3] 试求下列之值:
(1)(cos100+isin100)(cos10isin10)(2) Ans:(1)i (2)12+32i
(C)解一元n次方程式:
(1)解zn=1之根:
例子:试解z7=1之根。(求1的7次方根)
结论:zn=1之根(1的n次方根)可表为 ,其中 。
(2)解zn=a之根:
例子:求1+i的7次方根。
结论: 之解(a的n次方根)为
。
[例题4] (1)试求1的5次方根,并将代表它们的点描在座标平面上。
(2)解方程式z4+z3+z2+z+1=0。
[例题5] 试求解 (z2)5=16+163 i。
(3) 的性质:设 则
(a)
(b)
(c) 的根为 。
(d)
[例题6] 设=cos25+i sin25,则求下列各小题:
(1)5=? (2)1++2+3+4=?
(3)(1)(12)(13)(14) (4) (2+)(2+2)(2+3)(2+4)
Ans:(1)1 (2)0 (3)5 (4)11
(D)极坐标:
(1)在引进复数的极式时,我们可知要描述复数平面上一P(a+bi),除了知道实
部a,虚部b之外,只要能指出P点离原点O多远,及P点是哪一个有向角
的终边上,亦可标示出P点。
(2)在平面上选定一点O,再过O作一数线L,以其正向为始边,绕定点O旋
转,使P点恰在其上。若其旋转量,为一有向角(逆时针为正、顺时针为
负), =r,我们就可以利用r,来描述P点的位置,符号:P[r,]。这种
表示法就是极坐标表示法,其中O点称为该极坐标系的极(或极点),数线L
称为极轴。并以[r,]为P点的极坐标。
例如:在极坐标上点P[2,56]
P点的直角坐标为(2cos56,2sin56)=(3 ,1)
例如:在直角坐标上Q(1,3)
设在极坐标上Q[r,]
rcos =1且rsin =3
r=2且 =23+2n,n为整数
Q点的极坐标可表为Q[2, 23+2n]
[例题7] 设在极坐标中A[1,6]、B[3,56],试求AB=? Ans:13
(E)复数在几何上的应用:
复数运算的几何意义:
(1)复数绝对值的几何意义:
复数z=a+bi的绝对值定义为复数z到原点O的距离
|z|=|a+bi|=a2+b2
复数平面上有两个点P(z1)、Q(z2),其中z1=a+bi、z2=c+di
PQ=|z1z2|
(2)复数加法的几何意义:
在复数平面上给定A1(z1)、A2(z2),其中z1=a1+b1i,z2=a2+b2i,
以OA1、OA2为邻边作平行四边形OA1PA2,
则P点的复数坐标为z1+z2,OP=|z1+z2|。
(3)复数乘法与除法的几何意义:
设z1=r1(cos1+i sin1),z2=r2(cos2+i sin2),其中ri=|zi|,i=1,2
根据复数乘法的原则z1z2= r1 r2(cos(1+2)+i sin(1+2))
我们令P(z1)、Q(z2)、R(z1z2)
(a)旋转运动:当r2=1时
因为OR=| z1z2|=r1r2=r1,且方向角为1+2,故R点是由P点绕原点O逆时针
旋转2得到的。
(b)伸缩运动:当2=0时,
OR=| z1z2|=r1r2,且方向角为1+2=1,因此R点是由P点以原点O为伸缩中
心,伸缩|z2|倍得到的点。
(3)旋转与伸缩:
设z1=r1(cos1+i sin1),z2=r2(cos2+i sin2),其中ri=|zi|,i=1,2
根据复数乘法的原则z1z2= r1 r2(cos(1+2)+i sin(1+2))
令P(z1)、Q(z2)、R(z1z2),则R点是由P点绕原点旋转2角度
且以原点为中心伸缩r2倍所得到的点。
[例题8] 右图是一正方形OABC,已知A(2+i),试求B、C点的复数坐标。
Ans:B(1+3i)、C(1+2i)
[例题9] 复数平面上,设原点O为正三角形ABC的重心,已知A(1+i),求复数B、C。 Ans:132 + 312 i,312 3+12 i
[例题10] 利用棣美弗定理证明:sin3=3sin 4sin3 ,cos3=4cos33cos 。
复习评量
(A)学科能力测验、联考试题试题观摩:
1. 若复数z与 之积为 ,则z的主幅角为。(86日大自)Ans:23
2. 设z1=2+ai,z2=2b+(2b)i,其中a,b为实数,i=1 ,若|z1|=2|z2|,且z1z2的辐角为4,则数对(a,b)=? (85 自) Ans:(103 , 43 )
3. 令z为复数且 z6=1, z1 ,则下列选项何者为真?
(A) |z|=1(B) z2=1 (C) z3=1或z3=-1(D) |z4|=1 (E) 1+z+z2+z3+z4+z5=0
Ans:(A) (C) (D) (E) (90学科)
4. 令z=2(cos7+isin7),且zi=2(cosa+isina),试求a=? Ans:914 (91学科)
(B)重要问题复习:
5. 设复数z= ,求|z|=? Ans:13065
6. 试求下列各复数的极式:
(1)z=3+3i (2)z=4 (3)z= 2i
Ans:(1)z=32(cos34+isin34) (2)z=4(cos0+isin0) (3)z=2(cos2+isin2)
7. 试求下列各复数的极式:
(1)z=sin20+i cos20 (2)z=cos135isin45 (3)z= 3(cos25+i sin25)
Ans:(1)z=cos70+i sin70 (2)z=cos225+i sin225(3)z=3(cos205+i sin205)
8. 利用数学归纳法证明棣美弗定理。
9. (1)(cos100+i sin100)(cos10i sin10) (2)[2(1+i)][3+i]
(3)(1+3 i)10 (4)(3+i2)30 (5)
(6)
Ans:(1)i (2)4(cos512+i sin512) (3)512+5123 i (4)215 (5)261
(6)
10. 解方程式:(1)(z+2)3+8=0 (2)z44z3+6z24z+17=0并求以各根为顶点的正多边形的面积。
Ans:(1)4,22,222,面积33
(2)z=1+2[cos(2k+1)4+i sin(2k+1)4],k=0,1,2,3 面积=8
11. (1)求512i的二个平方根。
(2)再求复系数方程式z22(1+i)z5+14i=0 Ans:(1)3+2i,32i (2)2+3i,4i
12. 求下列各点的直角坐标:
(1)A[4,43] (2)B[2,712] (3)C[0,5] (4) D[5,1] (5)E[3,cos135]
Ans:(1)(2,23 ) (2)(262,6+22)
(3)(0,0) (4)(5cos1,5sin1) (5)(95,125)
13. 求下列各点的极坐标:
(1)A(2,2) (2)B(1+3 ,13 ) (3)C(4cos7,4sin7)(4)D(0,3)
Ans:(1)[22 ,34] (2)[22 ,12] (3)[4, 7] (4)[3,32]
14. 如图,给定z点的位置,且|z|=2,试描绘出1z的位置。
15. 如图,设OAB为一正三角形,其中A的坐标为(1,4)
试求B的坐标。Ans:(1223 ,2+32)
(c)进阶问题:
16. 设z1=cos78+isin78,z2=cos18+isin18
(1)求复数z1z2的主辐角。
(2)若(z1z2)5=a+bi,a,b为实数,求(a,b)=?
Ans:(1)138 (2)(32,12)
17. 设=cos27+i sin27
试求(1)1++2+3+4+5+6=?
(2)(1)(12)(13)(14)(15)(16)=?
Ans:(1)0 (2)7
18. 设zn=(1+i)(1+i2)(1+i3)(1+in),n为自然数,则
(1)|zn|=? (2)|zn+1zn|=? Ans:(1)n+1 (2)1
19. 设 =2n,n为大于1的自然数,试证: , 。
20. 在极坐标平面上二点,A(52 ,4)、B(2,cos135),则AB=?Ans:58
21. (1)设n为自然数,若z+1z =2cos,则证明:zn+1zn =2cosn。
(2)若z为复数,且满足 ,则 =?
22. 设z1,z2为复数,|z1|=2,|z2|=1,求|z1+z2|2+|z1z2|2=?Ans:10
(提示:若w为复数,则|w|2=w )
23. 已知z1=1+i,z2=i,试求z3使得z1z2z3为正三角形。
Ans:123 +32i或12+3 32i
24. A,B,C,D表x4x2+1=0的四个根,P点代表i,试求PA、PB、PC、PD之积。
Ans:3
DNFCOF指数是怎么计算的
COF指数,人称废才指数。
就是cof越高越废物。
此指数的产生是因为组队时队伍中有人等级高于你本人7级或以上,且并非自己家族的人或师父。
据说此指数过高,会直接影响到打怪获得的经验、物品的暴率、任务物品的掉落率以及翻牌时稀有装备的获得率。
那么有些玩家就会问了
"哎呀职业玩家,我已经有COF指数了啊,哎呀我该怎么办呀"
在这里,我可以很负责任的告诉你
一旦你有了COF指数
目前来说没有任何可能让他降到0(当然,除非以后商城会出什么清COF的道具啊什么的~~)
那么有些玩家又要问了
"哎呀职业玩家,人家受不鸟啦,你快告诉我们怎么降低COF指数呀"
好的,下面我先讲下这个COF指数的原理,也就是说,它,是怎么来的
例:
某玩家甲,这个号一共用了100点疲劳
有10点疲劳是比自己高7级以上的人带的,而这个人并非自己家族的人或师父。
其他90点疲劳是自己单刷或者跟不加COF的人一起刷的.
那么
他的COF指数为10%
某玩家乙,这个号一共用了1000点疲劳
有1点疲劳是比自己高7级以上的人带的,而这个人并非自己家族的人或师父。
其他999点疲劳是自己单刷或者跟不加COF的人一起刷的.
那么
他的COF指数为0.1%
好的,相信大家已经知道怎么降低COF指数了
IB的分数是怎么计算的?
GPA ( Grade Point Average )是美国商学院衡量申请者本科阶段学习表现的主要标准。在美国,通常计算 GPA 的方法是将本科各科成绩按系数等级乘以学分,相加后再除以总学分。按照惯例,美国学校在计算时大多采用 4 分制来衡量学生成绩: 90-100 分的系数为 4.0 , 80-89 分的系数为 3.0 , 70-79 分的系数为 2.0 , 60-69 分的系数为 1.0 , 0-59 分的系数为 0 。选择ib课程的孩纸可以这样计算自己的GPA成绩:百分制加权平均(中国通用标准算法)和4分制加权平均(美国通用标准算法)。百分制加权平均:∑(百分制课程成绩×课程学分数)/∑课程学分数。 4分制加权平均:先把百分制分数转换成4分制分数,再按照同样的公式计算:∑(4分制课程成绩×课程学分数)/∑课程学分数。转换表:百分制90~100 80~89 70~79 60~69 0~604分制 4.0 3.0 2.0 1.0 0这两种方法任挑一种使用,但对于不同的人各有利弊。比如说,如果你有很多88、89这样的分数,你可以使用百分制;如果你的核心课全部或绝大多数在90分以上,你可以使用4分制。以上信息来自学通国际教育网
QQ的天数是怎么计算的
每天在线两小时就算一天
steam游戏数是怎么计算的
网友注册后可以打分。满10人,豆瓣就进行汇总。
一星2分,二星4分……五星10分。
计算方法是采用加权平均分。也就是最后得分与平均分和评分人数两方面有关。
平均分越高、评分人数越多,得分越高。
平均分相同,评分人数越多,计算出来的得分越高。
这样是为了避免恶意刷分。
树的方数是怎么计算的?
树的方数的计算方法:
1、测量树干的材积(方数),可根据所测定的立木胸径(树高 1.3米处的树干直径)、树高或原木的小头直径、材长分别查相应的立木或原木材积表即得。
2、板方材按实测长、宽、厚相乘或查板方材积表而得。
3、伐倒木树干材积的测定方法:
中央断面求积式,也称胡伯尔公式: V=g1/2L
量测树干长L、在1/2L处量测直径d1/2,计算出断面积g1/2,代入公式求算材积V。
赫斯菲尔德公式:FC=CA
量测树长1/3处直径和小头直径。若取带梢树干,则gn=0,公式变为: G=CB
4、单株立木材积的测定方法:
胸高形数法: V=g1.3Hf1.3
式中V为树干材积;g1.3为胸高断面积;H为树高;f1.3为胸高形数。形数一般是根据大量伐倒木的实测数据取得,经过数理统计整理,求得实验回归式,编制出不同树种各直径和树高的形数表,在计算材积时查用。
实验形数法: V=g1.3(H+3)fэ
实验形数fэ是根据大量资料的分析而得出的一个经验系数,它随树高的变化要比胸高形数稳定得多,大部分树种的fэ集中在0.40~0.44之间。使用时可根据具体情况作常数对待。
5、 薪炭材材积的测定方法:
一般不用单根检尺的方法测定材积,而把它们截成一定长度后堆放成垛,根据所占空间计算一垛的材积。按垛的长、宽、高所计算的空间体积称层积材积,扣除材间空隙而求得的木材体积称实积材积。层积材积可通过换算系数计算出实积材积。换算系数的大小与材积的直径、弯曲和枝节有关。简易测定方法有:
相片网点测定法:将所要测定的木材垛横断面拍成相片,覆盖网点板。统计木材断面上所落点数与总点数的比例,即为实积系数。
对角线比例测定法:在材垛的正面划一个与垛高相等的长方形,在长方形两对角线各牵一皮尺,沿皮尺在各木材头上用粉笔划一条线,量测材头截线的总长度与对角线长度之比即为实积系数。
分数乘整数是怎么计算的?
分子乘整数,分母不变,能约分的先约分
品种指数是怎么计算的
上证指数是一个派许公式计算的以报告期发行股数为权数的加权综合股价指数。
计算公式为:上证指数=(报告期股票市价总值÷基期股票市价总值)× 100
其中:
①市价总值=∑(某支股票市价×总股本)
即——每支股票的总股本*股价,然后在相加求和。这里的每一支,是在上交所挂牌交易的每一支股票,包括A股和B股;
②报告期即计算上证指数的当期;
③基期股票市价总值的算法;
尼基系数是怎么计算的
近年来,国内不少学者对基尼系数的具体计算方法作了探索,提出了十多个不同的计算公式。山西农业大学经贸学院张建华先生提出了一个简便易用的公式:假定一定数量的人口按收入由低到高顺序排队,分为人数相等的n组,从第1组到第i组人口累计收入占全部人口总收入的比重为wi
齿条模数是怎么计算的?
计算方法:两齿间的距离(从第一齿一点到第二齿的同一点)÷3.14=模数
1、齿条:
是一种齿分布于条形体上的特殊齿轮。齿条也分直齿齿条和斜齿齿条,分别与直齿圆柱齿轮和斜齿圆柱齿轮配对使用; 齿条的齿廓为直线而非渐开线(对齿面而言则为平面),相当于分度圆半径为无穷大圆柱齿轮。
2、特点:
(1) 由于齿条齿廓为直线,所以齿廓上各点具有相同的压力角,且等于齿廓的倾斜角,此角称为齿形角,标准值为20°。
(2) 与齿顶线平行的任一条直线上具有相同的齿距和模数。
(3) 与齿顶线平行且齿厚等于齿槽宽的直线称为分度线(中线),它是计算齿条尺寸的基准线。
3、参数:
齿条的主要参数有:齿槽宽、齿顶高、齿根高、齿高、齿厚、齿根圆半径等。
回答于 2022-10-04
抢首赞
查看全部回答
高中数学到底怎么学,孩子高中数学不行怎么办?
根据数学相关内容为您推荐高中数学
高中数学到底怎么学,从高一到高三初期,我儿子就一直特别努力,可是数学成绩就是没提高,高中数学到底怎么学,试过了这个方法,他的成绩真的提高了
历下区优越教育咨询中心广告
四年级上数学计算-淘宝热卖好物汇集,品牌众多,放心购!
四年级上数学计算-购物上淘宝,品类集结,热卖好物!海量优质商品,轻松畅购!尽享优惠,买东西上淘宝,一站轻松购!
杭州易宏广告有限公司广告
大家还在搜
猿辅导在线教育
美甲美睫培训学校
叽里呱啦学英语app
末日激斗
脂溢性脱发如何根治
二手手表交易平台
能赢钱的斗地主
在线教育平台排名
四年级上册乘法计算-淘宝综合购物平台,年终盛典,优惠不停!
四年级上册乘法计算-寻找新潮流,新风向,就上淘宝买买买,好货不用等,大牌集结,全网低价,放心之选!网购逛淘宝,更高性价比,榜单好物,品质优选,乐享不停!
广告
复数计算?
1/1+j=1(1-j)/(1+j)(1-j)=(1+j)/2=1/2+j/2.....
季末少艾
1083浏览
更多答主
复数是怎么计算的?
答主1对1在线解答问题
5分钟内响应 | 万名专业答主
马上提问
最美的花火 咨询一个教育问题,并发表了好评
lanqiuwangzi 咨询一个教育问题,并发表了好评
garlic 咨询一个教育问题,并发表了好评
188****8493 咨询一个教育问题,并发表了好评
篮球大图 咨询一个教育问题,并发表了好评
动物乐园 咨询一个教育问题,并发表了好评
AKA 咨询一个教育问题,并发表了好评
复数的计算方法
(a+bi)+(c+di)=(a+c)+(b+d)i(a+bi)-(c+di)=(a-c)+(b-d)i(a+bi)(c+di)=ac+bci+adi+bd·i^2=(ac-bd)+(ad+bc)i符合的实数正常运算法则 直接乘出来再合并就行(a+bi)/(c+di)=(ac+bd)/(c^2+d^2)+[(bc-ad)/(c^2+d^2)]i
百度网友afc51a2bd
4点赞1106浏览
[img]在锐角三角形ABC中,A、B、C三内角所对的边分别为a,b,c,cos^2A+1/2=sin^2A,a=根号7, (1)若b=3,求c (2...
(1)由已知可得cosA=1/2
2bc cosA=c^2+b^2- a^2 把 a=根号7, b=3
带入整理后得:c^2-3c+2=0
c=1或2
(2)令BC上的高=h,三角形ABC面积=1/2h*BC可知h需取最大值,则AB=AC即△ABC是正△
其面积=1/2√21
百校大联考数学三角函数的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于百校大联考20212022学年度高三第二次联考数学、百校大联考数学三角函数的信息别忘了在本站进行查找喔。