周测小卷八上数学(八上数学周周卷的答案)

本篇文章给同学们谈谈周测小卷八上数学,以及八上数学周周卷的答案对应的知识点,希望对各位同学有所帮助,不要忘记分享给你的朋友哦!

本文目录一览:

bfb数学八年级上周周清测试卷(16)

、选择题

1、已知:如图,在△ABC中,∠ADE=∠C,则下列等式成立的是

A. eq \f(AD,AB)= eq \f(AE,AC) B. eq \f(AE,BC)= eq \f(AD,BD) C. eq \f(DE,BC)= eq \f(AE,AB) D. eq \f(DE,BC)= eq \f(AD,AB)

2、AC是□ABCD的对角线,则图中相似三角形共有( )

A.2对; B.3对; C.4对; D.5对.

3、如果关于x的方程x 2m-3=3x 7的解为不大于2的非负数,那么

(A)m=6 (B)m等于5,6,7 (C)无解 (D)5≤m≤7

4、如图,P为线段AB的黄金分割点(PB>PA),四边形AMNB、四边形PBFE都为正方形,且面积分别为 、 .四边形APHM、四边形APEQ都为矩形,且面积分别为 、 .下列说法正确的是

A. = B. = C. = D. =

5、柏拉图借毕达哥拉斯主义者提马尤斯门(Timaeus)的口说出以下的话:“两个东西不可能有完美的结合,除非另有第三者存在其间,因为他们之间必须有一种结合物,最好的结合物是比例.设有三个数量,若中数与小数之比等于大数与中数之比,反过来,小数与中数之比等于中数与

[img]

八上数学测试题(选择,填空,解答题)最好带个答案

一、认真填一填,你一定能填得又快又准。(每题2分,共26分)

1、-27的立方根是 ;3的算术平方根是 ;

2、一个多边形的每个外角都是40°,则这个多边形的内角和是 ;

3、如图,在矩形abcd中,ac、bd交于点o,

且ab=oa=3,则ad= ;

4、菱形的面积是24,一条对角线的长为6,则菱形的另一条对角线的长为 ;

5、“怪兽吃豆豆”是大家都喜欢的一种计算机游戏。现在如果用(2,1)表示“怪兽a”所在的位置,且知道“豆豆d”在第四象限,并且到 轴、 轴的距离分别是3和2,

那么“怪兽a”要吃到“豆豆d”所走的最短距离是 个单位长度;

6、已知 是方程kx-y=3的一个解,那么k的值是 ;

7、点a( , ),b( , )关于 轴对称,则 = ;

8、已知方程 ,则用 的代数式表示 为 ;

9、为了美化我们的家园,保护生态环境,初二年级的同学积极参加植树活动。现已知一、二两班共植树200棵,其中一班植树的总数是二班的1.5倍多3棵.如果设一班植树x棵,二班植树y棵,那么可以列方程组 ;

10、若 ,且 >0,则 的值为 ;

11、某物体所受压力f(n)与受力面积s(㎡)

的函数关系如图所示,则当受力面积是

30㎡时,所受的压力是 (n);

12、如图,正方形abcd的面积是64,点f在ad上,点

e在ab的延长线上,ce⊥cf,且△cef的面积是50,

则df的长度是 ;

二、精心选一选,你一定能选出下列每题中唯一正确的答案。(每小题3分,共30分)

1、下列说法不正确的是( )

a.-1的立方根是-1 b. 1的平方是1

c.-1的平方根是-1 d. 1的平方根是

2、下列四点中,在函数y =3x+2的图象上的点是( )

a.(-1,1) b.(-1,-1) c.(2,0) d.(0,-1.5)

3、小红画了两条相等并且互相垂直的线段,以它们为对角线的四边形是( )

a.平行四边形; (b)菱形: (c)正方形; (d)无法确定

4、下列说法中,正确的个数是( )

(1)只用一种图形能够密铺的有三角形、四边形、正六边形

(2)菱形的对角线互相垂直平分

(3)正比例函数y=kx(k≠0)的图象经过点(0,0)和(1,k)

(4)平移和旋转都不改变图形的大小和形状.

(5)一组对边平行,另一组对边相等的四边形是平行四边形

a. 2个 b. 3个 c. 4个 d. 5个

5、下列图案中,是中心对称图形的是……………………………( ).

a. b. c. d.

6、下列各函数中,x逐渐增大y反而减少的函数是( )

a. b. c. d.

7、已知点p( , )在第一象限,则点q ( , ) 在( )

a. 第一象限 b.第二象限 c. 第三象限 d.第四象限

8、在下列图象中是一次函数 (其中 >0, <2)的图象是( )

a. b. c. d.

9、观察下面两幅图,与图①中的房子相比,图②中的房子发生了一些变化.则相应的点的坐标发生了哪些变化? ( )

a.横坐标保持不变,纵坐标加了2; b.横坐标加了1,纵坐标加了2;

c.横坐标加了1,纵坐标变成了原来的2倍; d.横坐标加了2,纵坐标不变.

10、四边形abcd的对角线ac、bd交于点o,设有以下判断:①ab=bc;

②∠dab=90°;③bo=do;ao=co;④矩形abcd;⑤菱形abcd;

⑥正方形abcd,则下列推理不正确的是( )

2005-2006学年初二年级第一学期期末质量检测

数学答题卷

一、填空题:(每题2分,共26分)

1、_____ __,_____ __; 2、 ; 3、_______ ___ ;

4、___ _ __; 5、__________ __; 6、__________ _;

7、__________ __ ; 8、__________ __; 9、__________ _;

10、 ; 11、 ; 12、 .

二、选择题:(每小题3分,共30分)

题号 1 2 3 4 5 6 7 8 9 10

答案

三、计算题,请注意符号,并写出必要的演算步骤 (每小题4分,共20分)

1、 2、

解: 解:

3、 4、

解: 解:

5、

解:

四、解答题 (第(1)题4分;第(2)题5分)

(1)如图,矩形abcd中,ce⊥bd于e,∠dce∶∠ecb = 2∶1.求∠ace的度数.

解:

(2)如图,等腰梯形abcd中,ad‖bc,ab=cd.且∠b=60°,ad = ab = 4.

①建立适当的平面直角坐标系,并表示梯形各顶点的坐标;

②求梯形abcd的面积

解:

五、(7分)小明的作业本被顽皮的小弟弟不小心泼洒了墨水,结果列表和图象都有部分答案被污浊了.请你根据题中提供的信息,帮助小明补全表格和图象,并回答相关问题.

(1)列表 (2) 图象

-2

0 1 2

7 5 3 1

解: ; .

(3)请你写出 与 函数关系式;(写出计算过程)

解:

(4)求函数图象与两条坐标轴所围成的三角形的面积.

解:

六、( 8分)(5 ---10班同学做)某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡.使用这两种卡租一本书,租书金额 (元)与租书时间 (天)之间的关系如图所示.根据图中提供的信息回答下列问题:

(1)办理会员卡需要 元入会费?

(2)两种租书方式每天租书的收费分别是多少元?

解:

(3)分别写出用租书卡和会员卡租书的金额 (元)

与租书时间 (天)之间的函数关系式.

解:

(4)若两种租书卡的使用期限均为一年,则在这一年中如果租书时间累计为80天,请你通过图象和计算两种方法说明采用哪种租书方式比较划算?

解:

六、(8分)(1—4班同学做)有甲、乙两家通讯公司,甲公司每月通话(不区分通话地点)的收费标准如图所示;乙公司每月通话的收费如表所示.

(1)观察图1,写出甲公司用户月通话时间不超过400分钟时应付的话费金额;

解:

(2)求出甲公司的用户通话时间超过400分钟后,通话费用 (元)与通话时间 (分)之间的函数关系式;(写出计算过程)

解:

(3)王先生由于工作需要,从4月份开始经常去外市出差,估计每月各种通话时间的比例是:本地接听时间∶本地拨打时间∶外地通话时间 = 2∶1∶1.设王先生每月的各种通话时间总和为 (分),通话费用为 (元).你认为 不少于多少时间时,入乙通讯公司比入甲公司更合算?请用计算方法说明理由.

解:

2005-2006学年初二年级第一学期期末质量检测

数学答题卷

一、填空题:(每题2分,共26分)

1、 , ; 2、1260°; 3、 ; 4、8; 5、4; 6、2; 7、0;

8、 ; 9、 10、 ; 11、90; 12、6

二、选择题:(每小题3分,共30分)

题号 1 2 3 4 5 6 7 8 9 10

答案 c b d c b a c d c c

三、计算题,请注意符号,并写出必要的演算步骤 (每小题4分,共20分)

1、 ; 2、13; 3、 ; 4、 ; 5、

四、解答题 (第(1)题4分;第(2)题5分)

(1)解:∵∠dce+∠ecb=90°,∠dce:∠ecb=2:1

∴∠dce=60°,∠ecb=30°

∴∠cbe=60°

而∠acb=∠cbe 则∠acb=60°

∴∠ace=30°

(2)解:①如图,以b点为原点,以bc所在直线为

轴建立坐标系.过点a、d分别作ae⊥bc,

df⊥bc,垂足分别是e、f.在rt△aeb中,

∠abe=60°,ab=4,得be=2,ae= 。

且bc=2be+ad=8 ∴a、b、c、d四点的坐标分别为:a(2, ),

b(0,0),c(8,0),d(6,2 ); ②sabcd=

五、(1) ; (2)图象如右图所示

(3)

(4)解:设直线与 轴和 轴分别交于点b、a。

点a坐标为(0,3),点b坐标为( ,0)

s△aob=

六、第(1)题(5 ---10班同学做)

(1)办理会员卡需要 20 元入会费?

(2)解:租书卡每天租书花费 (元)

设会员卡每天租书花费 元,则

(3)解:租书卡

会员卡

(4)解:①图象法:过点a(80,0)作ac⊥ 轴,

交 于点c(80, ),交 于点b(80, )。

如图所示, > 。说明使用租书卡比会员卡划算。

②租书80天,租书卡花费 (元)

会员卡花费 (元)

说明使用租书卡比会员卡划算。

第(2)题(1—4班同学做)

(1)解:30 元

(2)解:设 ∵直线过点(400,30),(500,70),

∴ 得

从而

(3)解:甲: 乙:

∵ >30, ∴满足题意要求的 >400。

即 得 所以 不少于1200分钟时,入乙比甲合算。

人教版八年级数学上册第二单元测试卷

想要提高数学的成绩,除了上课认真听讲,更重要的是多做基础单元测试题目。下面由我为你整理的人教版八年级数学上册第二单元测试卷,希望对大家有帮助!

人教版八年级数学上册第二单元测试卷

一、选择题

1.正三角形△ABC的边长为3,依次在边AB、BC、CA上取点A1、B1、C1,使AA1=BB1=CC1=1,则△A1B1C1的面积是()

A. B. C. D.

2.在Rt△ABC中,∠C=90°,AB=10.若以点C为圆心,CB为半径的圆恰好经过AB的中点D,则AC=()

A.5 B. C. D.6

3.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()

A.140° B.160° C.170° D.150°

4.如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=3,则BC的长为()

A.6 B.6 C.9 D.3

5.如图,在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD.若BD=1,则AC的长是()

A.2 B.2 C.4 D.4

6.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为()

A. B.1 C. D.2

7.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为()

A.0.5km B.0.6km C.0.9km D.1.2km

8.如图,一个矩形纸片,剪去部分后得到一个三角形,则图中∠1+∠2的度数是()

A.30° B.60° C.90° D.120°

9.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为()

A.2 B. C. D.

10.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()

A.120° B.90° C.60° D.30°

11.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()

A. B.2 C. D.2

12.将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()

A.3cm B.6cm C. cm D. cm

13.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于()

A. cm B.2cm C.3cm D.4cm

14.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()

A.3 B.4 C.5 D.6

15.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上一点,连接DE,则下列说法错误的是()

A.∠CAD=30° B.AD=BD C.BD=2CD D.CD=ED

二、填空题

16.由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是cm.

17.在△ABC中,∠B=30°,AB=12,AC=6,则BC=.

18.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD=.

19.如图,已知正方形ABCD的边长为4,对角线AC与BD相交于点O,点E在DC边的延长线上.若∠CAE=15°,则AE=.

20.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB=.

第2章 特殊三角形

人教版八年级数学上册第二单元测试卷参考答案与试题解析

一、选择题(共15小题)

1.正三角形△ABC的边长为3,依次在边AB、BC、CA上取点A1、B1、C1,使AA1=BB1=CC1=1,则△A1B1C1的面积是()

A. B. C. D.

【考点】等边三角形的判定与性质.

【专题】压轴题.

【分析】依题意画出图形,过点A1作A1D∥BC,交AC于点D,构造出边长为1的小正三角形△AA1D;由AC1=2,AD=1,得点D为AC1中点,因此可求出S△AA1C1=2S△AA1D= ;同理求出S△CC1B1=S△BB1A1= ;最后由S△A1B1C1=S△ABC﹣S△AA1C1﹣S△CC1B1﹣S△BB1A1求得结果.

【解答】解:依题意画出图形,如下图所示:

过点A1作A1D∥BC,交AC于点D,易知△AA1D是边长为1的等边三角形.

又AC1=AC﹣CC1=3﹣1=2,AD=1,

∴点D为AC1的中点,

∴S△AA1C1=2S△AA1D=2× ×12= ;

同理可求得S△CC1B1=S△BB1A1= ,

∴S△A1B1C1=S△ABC﹣S△AA1C1﹣S△CC1B1﹣S△BB1A1= ×32﹣3× = .

故选B.

【点评】本题考查等边三角形的判定与性质,难度不大.本题入口较宽,解题方法多种多样,同学们可以尝试不同的解题方法.

2.在Rt△ABC中,∠C=90°,AB=10.若以点C为圆心,CB为半径的圆恰好经过AB的中点D,则AC=()

A.5 B. C. D.6

【考点】等边三角形的判定与性质;含30度角的直角三角形;勾股定理.

【专题】计算题;压轴题.

【分析】连结CD,直角三角形斜边上的中线性质得到CD=DA=DB,利用半径相等得到CD=CB=DB,可判断△CDB为等边三角形,则∠B=60°,所以∠A=30°,然后根据含30度的直角三角形三边的关系先计算出BC,再计算AC.

【解答】解:连结CD,如图,

∵∠C=90°,D为AB的中点,

∴CD=DA=DB,

而CD=CB,

∴CD=CB=DB,

∴△CDB为等边三角形,

∴∠B=60°,

∴∠A=30°,

∴BC= AB= ×10=5,

∴AC= BC=5 .

故选C.

【点评】本题考查了等边三角形的判定与性质:三边都相等的三角形为等边三角形;等边三角形的三个内角都等于60°.也考查了直角三角形斜边上的中线性质以及含30度的直角三角形三边的关系.

3.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()

A.140° B.160° C.170° D.150°

【考点】直角三角形的性质.

【分析】利用直角三角形的性质以及互余的关系,进而得出∠COA的度数,即可得出答案.

【解答】解:∵将一副直角三角尺如图放置,∠AOD=20°,

∴∠COA=90°﹣20°=70°,

∴∠BOC=90°+70°=160°.

故选:B.

【点评】此题主要考查了直角三角形的性质,得出∠COA的度数是解题关键.

4.如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=3,则BC的长为()

A.6 B.6 C.9 D.3

【考点】含30度角的直角三角形;线段垂直平分线的性质.

【分析】根据线段垂直平分线上的点到线段两端距离相等可得AD=BD,可得∠DAE=30°,易得∠ADC=60°,∠CAD=30°,则AD为∠BAC的角平分线,由角平分线的性质得DE=CD=3,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2DE,得结果.

【解答】解:∵DE是AB的垂直平分线,

∴AD=BD,

∴∠DAE=∠B=30°,

∴∠ADC=60°,

∴∠CAD=30°,

∴AD为∠BAC的角平分线,

∵∠C=90°,DE⊥AB,

∴DE=CD=3,

∵∠B=30°,

∴BD=2DE=6,

∴BC=9,

故选C.

【点评】本题主要考查了垂直平分线的性质,角平分线上的点到角的两边距离相等的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.

5.如图,在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD.若BD=1,则AC的长是()

A.2 B.2 C.4 D.4

【考点】含30度角的直角三角形;线段垂直平分线的性质;勾股定理.

【分析】求出∠ACB,根据线段垂直平分线的性质求出AD=CD,推出∠ACD=∠A=30°,求出∠DCB,即可求出BD、BC,根据含30°角的直角三角形性质求出AC即可.

【解答】解:∵在Rt△ABC中,∠B=90°,∠A=30°,

∴∠ACB=60°,

∵DE垂直平分斜边AC,

∴AD=CD,

∴∠ACD=∠A=30°,

∴∠DCB=60°﹣30°=30°,

在Rt△DBC中,∠B=90°,∠DCB=30°,BD=1,

∴CD=2BD=2,

由勾股定理得:BC= = ,

在Rt△ABC中,∠B=90°,∠A=30°,BC= ,

∴AC=2BC=2 ,

故选A.

【点评】本题考查了三角形内角和定理,等腰三角形的性质,勾股定理,含30度角的直角三角形性质的应用,解此题的关键是求出BC的长,注意:在直角三角形中,如果有一个角等于30°,那么它所对的直角边等于斜边的一半.

6.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为()

A. B.1 C. D.2

【考点】含30度角的直角三角形;角平分线的性质;线段垂直平分线的性质.

【分析】先根据线段垂直平分线的性质得出BE=CE=2,故可得出∠B=∠DCE=30°,再由角平分线定义得出∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°,利用三角形内角和定理求出∠A=180°﹣∠B﹣∠ACB=90°,然后在Rt△CAE中根据30°角所对的直角边等于斜边的一半得出AE= CE=1.

【解答】解:∵在△ABC中,∠B=30°,BC的垂直平分线交AB于E,BE=2,

∴BE=CE=2,

∴∠B=∠DCE=30°,

∵CE平分∠ACB,

∴∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°,

∴∠A=180°﹣∠B﹣∠ACB=90°.

在Rt△CAE中,∵∠A=90°,∠ACE=30°,CE=2,

∴AE= CE=1.

故选B.

【点评】本题考查的是含30度角的直角三角形的性质,线段垂直平分线的性质,等腰三角形的性质,角平分线定义,三角形内角和定理,求出∠A=90°是解答此题的关键.

7.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为()

A.0.5km B.0.6km C.0.9km D.1.2km

【考点】直角三角形斜边上的中线.

【专题】应用题.

【分析】根据直角三角形斜边上的中线等于斜边的一半,可得MC=AM=1.2km.

【解答】解:∵在Rt△ABC中,∠ACB=90°,M为AB的中点,

∴MC= AB=AM=1.2km.

故选D.

【点评】本题考查了直角三角形斜边上的中线的性质:在直角三角形中,斜边上的中线等于斜边的一半.理解题意,将实际问题转化为数学问题是解题的关键.

8.如图,一个矩形纸片,剪去部分后得到一个三角形,则图中∠1+∠2的度数是()

A.30° B.60° C.90° D.120°

【考点】直角三角形的性质.

【专题】常规题型.

【分析】根据直角三角形两锐角互余解答.

【解答】解:由题意得,剩下的三角形是直角三角形,

所以,∠1+∠2=90°.

故选:C.

【点评】本题考查了直角三角形两锐角互余的性质,熟记性质是解题的关键.

9.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为()

A.2 B. C. D.

【考点】含30度角的直角三角形;勾股定理;等腰直角三角形.

【分析】在Rt△ACD中求出AD,在Rt△CDB中求出BD,继而可得出AB.

【解答】解:在Rt△ACD中,∠A=45°,CD=1,

则AD=CD=1,

在Rt△CDB中,∠B=30°,CD=1,

则BD= ,

故AB=AD+BD= +1.

故选D.

【点评】本题考查了等腰直角三角形及含30°角的直角三角形的性质,要求我们熟练掌握这两种特殊直角三角形的性质.

10.(2014•海南)在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()

A.120° B.90° C.60° D.30°

【考点】直角三角形的性质.

【分析】根据直角三角形两锐角互余列式计算即可得解.

【解答】解:∵直角三角形中,一个锐角等于60°,

∴另一个锐角的度数=90°﹣60°=30°.

故选:D.

【点评】本题考查了直角三角形两锐角互余的性质,熟记性质是解题的关键.

11.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()

A. B.2 C. D.2

【考点】等边三角形的判定与性质;勾股定理的应用;正方形的性质.

【分析】图1中根据勾股定理即可求得正方形的边长,图2根据有一个角是60°的等腰三角形是等边三角形即可求得.

【解答】解:如图1,

∵AB=BC=CD=DA,∠B=90°,

∴四边形ABCD是正方形,

连接AC,则AB2+BC2=AC2,

∴AB=BC= = = ,

如图2,∠B=60°,连接AC,

∴△ABC为等边三角形,

∴AC=AB=BC= .

【点评】本题考查了正方形的性质,勾股定理以及等边三角形的判定和性质,利用勾股定理得出正方形的边长是关键.

12.将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()

A.3cm B.6cm C. cm D. cm

【考点】含30度角的直角三角形;等腰直角三角形.

【分析】过另一个顶点C作垂线CD如图,可得直角三角形,根据直角三角形中30°角所对的边等于斜边的一半,可求出有45°角的三角板的直角边,再由等腰直角三角形求出最大边.

【解答】解:过点C作CD⊥AD,∴CD=3,

在直角三角形ADC中,

∵∠CAD=30°,

∴AC=2CD=2×3=6,

又∵三角板是有45°角的三角板,

∴AB=AC=6,

∴BC2=AB2+AC2=62+62=72,

∴BC=6 ,

故选:D.

【点评】此题考查的知识点是含30°角的直角三角形及等腰直角三角形问题,关键是先求得直角边,再由勾股定理求出最大边.

13.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于()

A. cm B.2cm C.3cm D.4cm

【考点】含30度角的直角三角形.

【专题】常规题型.

【分析】根据在直角三角形中,30度所对的直角边等于斜边的一半得出AE=2ED,求出ED,再根据角平分线到两边的距离相等得出ED=CE,即可得出CE的值.

【解答】解:∵ED⊥AB,∠A=30°,

∴AE=2ED,

∵AE=6cm,

∴ED=3cm,

∵∠ACB=90°,BE平分∠ABC,

∴ED=CE,

∴CE=3cm;

故选:C.

【点评】此题考查了含30°角的直角三角形,用到的知识点是在直角三角形中,30度所对的直角边等于斜边的一半和角平分线的基本性质,关键是求出ED=CE.

14.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()

A.3 B.4 C.5 D.6

【考点】含30度角的直角三角形;等腰三角形的性质.

【专题】计算题.

【分析】过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD﹣MD即可求出OM的长.

【解答】解:过P作PD⊥OB,交OB于点D,

在Rt△OPD中,cos60°= = ,OP=12,

∴OD=6,

∵PM=PN,PD⊥MN,MN=2,

∴MD=ND= MN=1,

∴OM=OD﹣MD=6﹣1=5.

故选:C.

【点评】此题考查了含30度直角三角形的性质,等腰三角形的性质,熟练掌握直角三角形的性质是解本题的关键.

15.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上一点,连接DE,则下列说法错误的是()

A.∠CAD=30° B.AD=BD C.BD=2CD D.CD=ED

【考点】含30度角的直角三角形;角平分线的性质;等腰三角形的判定与性质.

【专题】几何图形问题.

【分析】根据三角形内角和定理求出∠CAB,求出∠CAD=∠BAD=∠B,推出AD=BD,AD=2CD即可.

【解答】解:∵在△ABC中,∠C=90°,∠B=30°,

∴∠CAB=60°,

∵AD平分∠CAB,

∴∠CAD=∠BAD=30°,

∴∠CAD=∠BAD=∠B,

∴AD=BD,AD=2CD,

∴BD=2CD,

根据已知不能推出CD=DE,

即只有D错误,选项A、B、C的答案都正确;

故选:D.

【点评】本题考查了三角形的内角和定理,等腰三角形的判定,含30度角的直角三角形的性质的应用,注意:在直角三角形中,如果有一个角等于30°,那么它所对的直角边等于斜边的一半.

二、填空题

16.由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是 18 cm.

【考点】等边三角形的判定与性质.

【专题】应用题.

【分析】根据有一个角是60°的等腰三角形的等边三角形进行解答即可.

【解答】解:∵OA=OB,∠AOB=60°,

∴△AOB是等边三角形,

∴AB=OA=OB=18cm,

故答案为:18

【点评】此题考查等边三角形问题,关键是根据有一个角是60°的等腰三角形的等边三角形进行分析.

17.在△ABC中,∠B=30°,AB=12,AC=6,则BC= 6  .

【考点】含30度角的直角三角形;勾股定理.

【分析】由∠B=30°,AB=12,AC=6,利用30°所对的直角边等于斜边的一半易得△ABC是直角三角形,利用勾股定理求出BC的长.

【解答】解:∵∠B=30°,AB=12,AC=6,

∴△ABC是直角三角形,

∴BC= = =6 ,

故答案为:6 .°

【点评】此题考查了含30°直角三角形的性质,以及勾股定理,熟练掌握性质及定理是解本题的关键.

18.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD= 2 .

【考点】含30度角的直角三角形;角平分线的性质.

【分析】根据角平分线性质求出∠BAD的度数,根据含30度角的直角三角形性质求出AD即可得BD.

【解答】解:∵∠C=90°,∠B=30°,

∴∠CAB=60°,

AD平分∠CAB,

∴∠BAD=30°,

∴BD=AD=2CD=2,

故答案为2.

【点评】本题考查了对含30度角的直角三角形的性质和角平分线性质的应用,求出AD的长是解此题的关键.

19.如图,已知正方形ABCD的边长为4,对角线AC与BD相交于点O,点E在DC边的延长线上.若∠CAE=15°,则AE= 8 .

【考点】含30度角的直角三角形;正方形的性质.

【分析】先由正方形的性质可得∠BAC=45°,AB∥DC,∠ADC=90°,由∠CAE=15°,根据平行线的性质及角的和差得出∠E=∠BAE=∠BAC﹣∠CAE=30°.然后在Rt△ADE中,根据30°角所对的直角边等于斜边的一半即可得到AE=2AD=8.

【解答】解:∵正方形ABCD的边长为4,对角线AC与BD相交于点O,

∴∠BAC=45°,AB∥DC,∠ADC=90°,

∵∠CAE=15°,

∴∠E=∠BAE=∠BAC﹣∠CAE=45°﹣15°=30°.

∵在Rt△ADE中,∠ADE=90°,∠E=30°,

∴AE=2AD=8.

故答案为8.

【点评】本题考查了含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.也考查了正方形的性质,平行线的性质.求出∠E=30°是解题的关键.

20.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB= 5 .

【考点】含30度角的直角三角形;矩形的性质.

【分析】根据矩形的性质,可以得到△AOB是等边三角形,则可以求得OA的长,进而求得AB的长.

【解答】解:∵四边形ABCD是矩形,

∴OA=OB

又∵∠AOB=60°

∴△AOB是等边三角形.

∴AB=OA= AC=5,

故答案是:5.

周测小卷八上数学的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于八上数学周周卷的答案、周测小卷八上数学的信息别忘了在本站进行查找喔。

本文转载自互联网,如有侵权,联系删除