文科数学模拟调研卷2(文科数学模拟试题一)

本篇文章给同学们谈谈文科数学模拟调研卷2,以及文科数学模拟试题一对应的知识点,希望对各位同学有所帮助,不要忘记分享给你的朋友哦!

本文目录一览:

2018年普通高等学校招生全国统一考试模拟调研卷文综(二)答案

2018年普通高等学校招生全国统一考试广东省模拟试卷

文科综合地理试题

第Ⅰ卷

一、选择题:本题共35小题,每小题4分,共140分。在每小题给出的四个选项中,只有项是符合题目要求的。

2017年第三季度中国互联网餐饮外卖市场总规模已经达到了582.7亿元人民币,下图示意2017年第三季度中国互联网餐饮外卖市场份额构成。据此完成1-3题。

1. 互联网餐饮外卖市场蓬勃兴起的主要原因是

A. 物流通达性增强 B. 餐饮行业质量的提升

C. 流动人口增加 D. 互联网技术发达

2. 与传统餐饮门店相比,互联网餐饮外卖门店

A. 服务范围更大 B. 食品种类更丰富

C. 投资成本更低 D. 投资风险更高

钟祥一中2018年祝贺:谭亦婷,王鸿烨,王雨轩,高考必胜

[img]

请问一下这是什么试卷?

高考文科数学,文理分科的时候数学也会分成文科数学和理科数学

黄冈市2011年高三模拟考试数学文答案

湖北省黄冈市黄州区一中2011届高三2011年数学模拟试卷二

选择题

1.则( )

A.21004 B.-21004 C.22008 D.-22008

A

解析 。

2.定义集合运算:.设,,则集合 的所有元素之和为( )

A.0 B.2 C.3 D.6

D

3.已知a,b∈R,且ab,则下列不等式中恒成立的是( )

A.a2b2 B.() a ()b C.lg(a-b)0 D.1

4.已知条件: =,条件:直线与圆相切,则是的

( )条件

A.充分不必要条件 B.必要不充分条件

C.充分必要条件 D.既不充分也不必要条件

A

解析 :直线与圆相切。

5. 已知集合的集合T= ( )

A、 B、 C、 D、

A

解析 ,因为,所以选(A)。

6.设,则等于( )

A. B. C. D.

D

解析 ,选(D)

7.已知圆,点(-2,0)及点(2,),从点观察点,要使视线不被圆挡住,则的取值范围是 ( )

A.(-∞,-1)∪(-1,+∞)

B.(-∞,-2)∪(2,+∞)

C.(-∞,)∪(,+∞)

D.(-∞,-4)∪(4,+∞)

C

解析 如图,,。所以的取值范围是(C)。

8.(文)( )

A. B. C. D.

D

解析 。

(理)从5男4女中选4位代表,其中至少有2位男生,且至少有1位女生,分别到四个不同的工厂调查,不同的分派方法有( )

A. 100种 B. 400种 C. 480种w.w.w.k.s.5 u.c.o.m D.2400种

D

解析 。

9.函数对任意正整数a、b满足条件,且。则

的值是( )

A.2007 B.2008 C.2006 D.2005

B

解析 因为,所以,即,所以

10.已知函数,则对于任意实数、,取值的情况是( )

A.大于0 B.小于0 C. 等于0 D.不确定

A

解析 函数是奇函数,且在R上单调增。不妨设,则,所以,所以,所以。

11.为了大力改善交通,庆祝国庆60周年,某地区准备在国庆60周年来临之际,开通A,

B两地之间的公交线路。已知A,B相距15公里,公交的规划要求如下:相邻两个站点之间的距离相等,经过每一站点的汽车前后间隔时间为3分钟,忽略停车时间,设计汽车的行使速度是60公里每小时,则在A,B两地之间投入运行的汽车至少需要( )辆。

A.9 B.10 C.11 D.12

B

解析 因为每3分钟一班,行使速度是60公里每小时,所以相邻两个站点之间的距离是3公里,所以从A,B单程需要6个站点,即需要6辆汽车,再加上从B到A需要4辆汽车,所以共需要10辆汽车。

12.已知等差数列{a}的前n项和为S,若,,则此数列{a}中绝

对值最小的项是( )

A B C D

C

解析 因为,,所以,所以,所以

,所以此数列{a}中绝对值最小的项是。

填空题

13.执行右边的程序框图,若,则输出的

解析 。

14.(文)利用随机模拟方法计算与围成的面积时,利用计算器产生两组0~1区间的均匀随机数,,然后进行平移与伸缩变换,,试验进行100次,前98次中落在所求面积区域内的样本点数为65,已知最后两次试验的随机数,及,,那么本次模拟得出的面积为

10.72

解析 由,得:,点落在与围成的区域

内,由,得:,点也落在与

围成的区域内,所以本次模拟得出的面积为。

(理)极坐标方程表示的曲线是

一条直线和一个圆

解析 ,

则或。

15.(文)某师傅需用合板制作一个工作台,工作台由主体和附属两部分组成,主体部分全封闭,附属部分是为了防止工件滑出台面而设置的护墙,其大致形状的三视图如右图所示(单位长度: cm), 则按图中尺寸,做成的工作台用去的合板的面积为 (制作过程合板损耗和合板厚度忽略不计)。

解析 由三视图知该工作台是棱长为80的正方体上面围上一块矩形和两块直角三角形合板,如右图示,则用去的合板的面积。

(理)如果1N能拉长弹簧1cm,为了将弹簧拉长6cm,需做功 J。

0.18

解析 ,所以,所以。

16.(文)已知满足:,则函数的取值范围是

解析 ,其中。作出可行域得,即,又因为函数在上单调增,所以,所以。

(理) 设,则的最小值为

8

解析 设,由柯西不等式得:

,当且仅当同向时,等号成立。又,所以,所以的最小值为8。

解答题

17.如图,已知点和单位圆上半部分上的动点.

⑴若,求向量;

⑵求的最大值.

解析⑴依题意,,(不含1个或2个端点也对),

,(写出1个即可),

因为,所以,即,解得,

所以;

⑵,

。当时,取得最大值,。

18.(文)在新中国建立的60年,特别是改革开放30年以来,我国的经济快速增长,人民的生活水平稳步提高。某地2006年到2008年每年的用电量与GDP的资料如下:

日 期 2006年 2007年 2008年

用电量(x亿度) 11 13 12

GDP增长率(y(百分数)) 25 30 26

(1)用表中的数据可以求得,试求出y关于x的线性回归方程;

(2)根据以往的统计资料:当地每年的GDP每增长,就会带动1万就业。由于受金融危机的影响,预计2009年的用电量是8亿度,2009年当地新增就业人口是20万,请你估计这些新增就业人口的就业率。

解析 (1)由数据求得,所以.所以y关于x的线性回归方程为;

(2)当时,,所以预测2009年当地的GDP增长,从而可以带动当地的新增就业人口17万,估计这些新增就业人口的就业率。

(理)某单位有8名员工,其中有5名员工曾经参加过一种或几种技能培训,另外3名员工

没有参加过任何技能培训,现要从8名员工中任选3人参加一种新的技能培训。

(I)求恰好选到1名曾经参加过技能培训的员工的概率;

(II)这次培训结束后,仍然没有参加过任何技能培训的员工人数X是一个随机变量,求X

的分布列和数学期望.

解析(I)恰好选到1名已参加过其他技能培训的员工的概率

(II)随机变量X可能取的值是:0,1,2,3.

∴随机变量X的分布列是

X 0 1 2 3

P

∴X的数学期望。

19.(文)一个多面体的三视图(正前方垂直于平面)及直观图如图所示,M、N分别是A1B、B1C1的中点。

(1)计算多面体的体积;

(2)求证‖平面;

(3)若点是AB的中点,求证AM平面。

解析(1)如右图可知,在这个多面体的直观图中,AA1⊥平面ABC,且AC⊥BC,AC=BC=CC1=,所以;

(2)连,由矩形性质得:AB1与A1B交于点M,在△AB1C1中,由中位线性质得MN//AC1,又因为平面ACC1A1,所以MN‖平面;

(3)在矩形中,,,所以,所以,又因为平面平面,,所以平面,所以,即,又,所以平面,即AM平面。

(理)已知中,,,⊥平面,,、分别是、上的动点,且.

(1)求证不论为何值,总有平面⊥平面;

(2)若平面与平面所成的二面角的大小为,求的值。

解析(1)∵⊥平面,∴,又在中,,∴,又,∴⊥平面,又在中、分别是、上的动点,且,∴,∴⊥平面,又平面,∴不论为何值,总有平面⊥平面;

(2)过点作,∵⊥平面,∴⊥平面,又在中,,∴,如图,以为原点,建立空间直角坐标系.又在中,,,∴。又在中,,∴,则。

∵,∴,∵,∴,

又∵, ,

设是平面的法向量,则,因为,所以,因为=(0,1,0),所以,令得,,因为 是平面的法向量,且平面与平面所成的二面角为,,∴,∴或(不合题意,舍去),故当平面与平面所成的二面角的大小为时。

20.已知函数有极值.

(Ⅰ)求的取值范围;

(Ⅱ)若在处取得极值,且当时,恒成立,求的取值范围.

解析(Ⅰ)∵,∴, 要使有极值,则方程有两个实数解,从而△=,∴.

(Ⅱ)∵在处取得极值,∴,∴.

∴,∵,∴当时,,函数单调递增,当时,,函数单调递减.∴时,在处取得最大值, ∵时,恒成立,

∴,即,∴或,即的取值范围是。

21.已知椭圆,的右焦点为F,上顶点为A,P为C1上任一点,圆心在y轴上的圆C2与斜率为的直线切于点B,且AF‖。

(1)求圆的方程及椭圆的离心率。

(2)过P作圆C2的切线PE,PG,若的最小值为,求椭圆的方程。

解析(1)由圆心在y轴上的圆C2与斜率为1的直线切于点B,所以圆心在过B且垂直于的直线上,又圆心在y轴上,则圆心C2(0,3),

圆心到直线的距离,所以所求圆C2方程为:,又AF‖,,所以有,即,椭圆的离心率为;

(2)设

在中, ,由椭圆的几何性质有:

,所以有,因,所以,

所以椭圆的方程为。

22.(文科)(1)若数列是数列的子数列,试判断与的大小关系;

(2)在数列中,已知是一个公差不为零的等差数列,a5=6。

当且

②若存在自然数

构成一个等比数列。求证:当a3是整数时,a3必为12的正约数。

解析(1);

(2)①因为,从而,

,;

②因为,即

因为必为12的正约数。

(理科)已知数列R)对于。

(Ⅰ)当;

(Ⅱ)若,求数列的通项;

(Ⅲ)证明在数列中,存在一项满足≤3。

解析(I),;

当。因此 。

(II),,。

∴猜想对于任意正整数l有(即是周

期为4的数列)。

下面用数学归纳法证明。

(i)时,成立;

(ii)假设当时,成立。

,,

,。

由(i)(ii)可知对任意。

同理可证 。

(III)假设对所有的n,,所以数列是首项

为a,公差为-3的等差数列,所以,所以存在充分大的

n,使得,这与假设矛盾,∴假设不成立,∴在数列中,存在一项满足≤3。

2022全国新高考Ⅱ卷文科数学试题及答案解析

在高考结束后,很多考生都会对答案,提前预估自己的分数,这样方便大家提前准备志愿填报。下面是我分享的2022全国新高考Ⅱ卷文科数学试题及答案解析,欢迎大家阅读。

2022全国新高考Ⅱ卷文科数学试题及答案解析

2022全国新高考Ⅱ卷文科数学试题还未出炉,待高考结束后,我会第一时间更新2022全国新高考Ⅱ卷文科数学试题,供大家对照、估分、模拟使用。

2022高考数学大题题型 总结

一、三角函数或数列

数列是高考必考的内容之一。高考对这个知识点的考查非常全面。每年都会有等差数列,等比数列的考题,而且经常以综合题出现,也就是说把数列知识和指数函数、对数函数和不等式等其他知识点综合起来。

近几年来,关于数列方面的考题题主要包含以下几个方面:

(1)数列基本知识考查,主要包括基本的等差数列和等比数列概念以及通项公式和求和公式。

(2)把数列知识和其他知识点相结合,主要包括数列知识和函数、方程、不等式、三角、几何等其他知识相结合。

(3)应用题中的数列问题,一般是以增长率问题出现。

二、立体几何

高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着多一点思考,少一点计算的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。

三、统计与概率

1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5.了解随机事件的发生存在着规律性和随机事件概率的意义。

6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。

7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。

8.会计算事件在n次独立重复试验中恰好发生k次的概率.

四、解析几何(圆锥曲线)

高考解析几何剖析:

1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;

2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。

有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:

(1)、几何问题代数化。

(2)、用代数规则对代数化后的问题进行处理。

五、函数与导数

导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:

1.导数的常规问题:

(1)刻画函数(比初等 方法 精确细微);

(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);

(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

2022高考解答题评分标准

解答题阅卷的评分原则一般是:第一问,错或未做,而第二问对,则第二问得分全给;前面错引起后面方法用对但结果出错,则后面给一半分。

解题策略:

(1)常见失分因素:

1.对题意缺乏正确的理解,应做到慢审题快做题;

2.公式记忆不牢,考前一定要熟悉公式、定理、性质等;

3.思维不严谨,不要忽视易错点;

4.解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,避免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;

5.计算能力差失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;

6.轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。

2022全国新高考Ⅱ卷文科数学试题及答案解析相关 文章 :

★ 2022高考全国甲卷数学试题及答案

★ 2022年全国乙卷高考语文真题试卷及答案解析(未公布)

★ 2022年浙江高考数学试卷

★ 2022新高考2卷语文试题及答案一览

★ 2022全国高考试卷分几类

★ 2022高考数学必考知识点归纳最新

★ 2022年高考数学必考知识点总结最新

★ 2022高考文综理综各题型分数值一览

★ 2022年新高考Ⅰ卷语文题目与答案参考

★ 2022新高考Ⅱ卷选择创造未来作文12篇

文科数学模拟调研卷2的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于文科数学模拟试题一、文科数学模拟调研卷2的信息别忘了在本站进行查找喔。

本文转载自互联网,如有侵权,联系删除