今天给各位同学分享八年级上册数学期中调研B卷的知识,其中也会对数学八上期中试卷进行解释,如果能碰巧解决你现在面临的问题,别忘了分享本站,现在开始吧!
本文目录一览:
- 1、我想要一份八年级上册的数学期中试卷(含答案)
- 2、急求!!人教版八年级数学上册其中测试卷(B)卷、
- 3、八年级上册数学期中试卷及答案 2010数学金华
- 4、数学人教版八年级上册期中测试卷
- 5、初二数学(八年级上册)课内训练2-7章和期中复习测试卷A,B
- 6、八年级上册数学期中试卷(含答案)
我想要一份八年级上册的数学期中试卷(含答案)
一.填空题:(每小题3分,共30分)
1. |3.14- |=___________.
2. 在平面直角坐标系内点P(-3,a)与点Q(b,-1)关于y轴对称,则a+b的值为_________.
3. 等腰三角形的一个角是96,则它的另外两个角的度数是 。
4. 请你写出3个字(可以是数字、字母、汉字)要求它们都是轴对称图形_____、 _____ 、_____.
5. 如图,AC=BD,要使ΔABC≌ΔDCB,只要添加一个条件___________________.
6. 如图,ΔABC中,AB=AC=14cm,AB的垂直平分线MN交AC于D,ΔDBC的周长是24cm,则BC=___________.
7. 如图,ΔABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则ΔABD的面积为____________.
8. 如图,把锐角ΔABC绕点C顺时针旋转至ΔCDE处,且点E恰好落在AB上,若∠ECB=40°,则∠AED=____________.
9. 如图,在ΔABC中,∠A=90°,BD是∠ABC的平分线,DE是BC的垂直平分线,若AD=2cm,则CD=___________.
10.观察下列各式: ……请你将发现的规律用含n (n 1的整数)的等式表示出来___________________________.
二.选择题:(每小题3分,共18分)
11.在3.14, , , , , ,3.141141114……中,无理数的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
12. 一只小狗正在平面镜前欣赏自己的全身像(如图所示),此时,它所看到的全身像是( )
13. 如图,在∠AOB的两边上截取AO=BO ,OC=OD,连接AD、BC交于点P,连接OP,则图中全等三角形共有( )对;
A. 2 B. 3 C. 4 D. 5
14.下列语句: ① 的算术平方根是4 ② ③ 平方根等于本身的数是0和1 ④ = ,其中正确的有( )个
A. 1 B. 2 C. 3 D. 4
15.如图,ΔABC是不等边三角形,DE=BC,以D、E为两个端点作位置不同的三角形,使所作三角形与ΔABC全等,这样的三角形最多可以画出( )个。
A. 2 B. 4 C. 6 D. 8
16.如图,在ΔABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长为( )
A. 1 B. 2 C. 3 D. 4
三.(16题62分,17、18题各7分,共20分)
17.若 +∣x +3y-13∣=0,求x+y的平方根。
18.如图,已知BE⊥AD,CF⊥AD,且BE=CF,请你判断AD是ΔABC的中线还是角平分线?请说明你的理由.
19.如图,分别以直角ΔABC的直角边AC、BC为边,在ΔABC外作两个等边三角形ΔACE和ΔBCD,连接BE、AD. 求证:BE=AD
四.(每小题8分,共24分)
20.如图,已知∠ACB=∠ADB=90°,AC=AD,E在AB上,连接CE、DE
(1) 请你找出与点E有关的所有全等的三角形。
(2)选择(1)中的一对全等三角形加以证明。
21.如图,在△ABC中,∠C=90°,AC=BC,点D在BC上,且∠BAD=15°.
(1)求∠CAD的度数;(2)若AC= ,BD= ,求AD的长.
22. 如图,已知,EG∥AF,请你从下面三个条件中,再选出两个作为已知条件,另一个作为结论,推出一个正确的命题。并证明这个命题(只写出一种情况)①AB=AC ②DE=DF ③BE=CF
已知:EG∥AF,_______,_________.
求证:___________.
证明:
五.(每小题9分,共18分)
23.如图,阴影部分是由5个大小相同的小正方形组成的图形,请分别在图中方格内涂两个小正方形,使涂后所得阴影部分图形是轴对称图形。
24. 如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.
(1)求证:△DEF是等腰三角形;
(2)当∠A=40°时,求∠DEF的度数;
(3)△DEF可能是等腰直角三角形吗?为什么?
六.(10分)学完“轴对称”这一章后,老师布置了一道思考题:如图所示,点M,N分别在等边△ABC的BC、CA边上,且BM=CN,AM,BN交于点Q,求证:∠BQM=60°.
(1)请你完成这道思考题:
(2)做完(1)后,同学们在老师的启发下进行了反思,提出许多问题,如:
①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?②若将题中的点M,N分别移动到BC,CA的延长线上,是否仍能得到∠BQM=60 ?
③若将题中的条件“点M,N分别在正三角形ABC的BC、CA边上”改为“点M,N分别在正方形ABCD的BC,CD边上”,是否仍能得到∠BQM=60°?……请你作出判断,在下列横线上填写“是”或“否”:
①________;②_______;③________.并对②,③的判断,选择一个画出图形,并给出证明.
参考答案
一.1. -3.14 2. 2 3. 4. 答案不唯一 5. AB=DC或 6. 10cm 7. 5 8. 9. 4cm 10.
二.11. D 12. A 13. C 14. A 15. B 16. A
三.17.
18. 中线
19. 证
四.20. ⑴
⑵ 略
21. ⑴
⑵ AD=2m-2n
22. 略
五.23. 略
24. ⑴ 证 得DE=FE
⑵
⑶ 不可能,因为 ,不可能为90
六.⑴ 略
⑵ ① 是 ② 是 ③ 是 证明略
八年级上册数学半期检测试题
一、选择题:(每小题3分,共30分)
1.在下列各数 、 、 、 、 、 、 无理数的个数( )
A.1个 B.2个 C.3个 D.4个
2.下列各式错误的是 ( )
A. =±0.6 B. =0.6 C.- =-1.2 D. =±1.2
3. 的平方根是 ( )
A.6 B.±6 C. D.±
4.下列计算正确的是 ( )
A.a2 a3=a6 B.a3÷a=a3 C.(a2)3=a6 D.(3a2)4=9a4
5.如果x2+6x+k2恰好是另一个整式的平方,则k的值为 ( )
A.9 B.3 C.-3 D.±3
6.x4-3x2-4是下列哪一个选项的计算结果 ( )
A.(x2-4)(x2+1) B.(x2-1)(x2-4)
C.(x+2)(x-2)(x+1)(x-1) D.(x+2)(x-2)
7. 有一个因式是 ,则它的另一个因式是 ( )
A. B、 C、 D、
8. 三角形的三边长分别为6,8,10,它的最短边上的高为( )
A. 6 B. 4.5 C. 2.4 D. 8
9.已知一个直角三角形的两边长分别为3和4,则第三边长是( )
A.5 B.25 C. D.5或
10、如图1,由Rt△ABC的三边向外作正方形,若最大正方形Q的边长为13,
正方形N的边长为12,则正方形M的面积为( )
A.5 B.17 C.25 D.18
二、空题:(每小题3分,共24分)
11.一个数的平方根是它本身,则这个数的立方根是
12.填上适当的式子,使以下等式成立:
13.化简:
14.若
15.因式分解:3x2-12 =
16. 在△ABC中,∠C=90°, AB=5,则 + + =
17.直角三角形两直角边长分别为5和12,则它斜边上的高为
18.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是
三、解答下列各题:(本大题19~22题,每题4分,共24分,)
19.计算① ②
20、因式分解
①、 ②.x2-6xy+9y2-1
21、先化简,再求值。 4(x+1)2-7(x-1)(x+1)+3(1-x)2,其中x=﹣ ;
22.已知x-2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根。(4分)
四、解答下列各题﹙写出必要的推理或解答过程,共22分﹚:
23.(5分)如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿
∠CAB的角平分线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?
24、(5分)如图,在四边形ABCD中,∠B = ,AB = 4,BC = 3,CD = 12,AD = 13,
求此四边形ABCD的面积。
25、实践与探索:(6分)
(1)比较下列算式结果的大小:
42+32 2×4×3, (-2)2+12 2×(-2)×1,
242+ 2×24× , 22+22 2×2×2
(2)通过观察、归纳,比较:20072+20082 2×2007×2008
(3)请你用字母 、b写出能反映上述规律的式子: 。
26、( 6分 )(1)拼一拼,画一画:请你用4个长为a,宽为b的矩形拼成一个大正方形,并且正中间留下一个洞,这个洞恰好是一个小正方形。
(2)用不同方法计算中间的小正方形的面积,聪明的你能发现什么?
(3)当拼成的这个大正方形边长比中间小正方形边长多3cm时,它的面积就多24cm2,求中间小正方形的边长。
参考答案
一、 选择题
二 填空题
三、19、①、原式= ﹙4分﹚
②、原式= ﹙1分﹚
= ﹙2分﹚
= ﹙4分﹚
20、①原式= ﹙2分﹚
﹙4分﹚
②、原式=
21、原式= ﹙1分﹚
= ﹙2分﹚
= ﹙3分﹚
将代入 得13 ﹙4分﹚
22、由题意得; , ﹙1分﹚
﹙2分﹚
∴X=6,Y=8 ﹙3分﹚
∴ ﹙4分﹚
23、解:能,
∵△ABC为直角三角形,且AC=6cm,BC=8cm,
由勾股定理得;AB= ﹙2分﹚
又∵△ADE是△ADC翻折所得;
∴DC=DE,AC=AE=6CM,BE=10-6=4CM;
设DC=X,则BD=8-X
在Rt△BDE中,由勾股定理:
﹙4分﹚
整理得:16X=48
X=3
∴DC的长为3CM ﹙5分﹚
24 解:在Rt△ABC中,AC= ﹙2分﹚
∵ ﹙3分﹚
∴△ACD是Rt△
∴四边形ABCD面积= ﹙5分﹚
25 答案略 每空1分
26 ⑴ ⑵只要正确,就可得分,每问2分;
⑶ 因为拼成的大正方形的边长为a+b,中间小正方形边长为a-b,由题意得: ﹙1分﹚
解得: a=8, b=1.5
所以小正方形的边长为6.5 ﹙2分﹚
[img]急求!!人教版八年级数学上册其中测试卷(B)卷、
正方,长方,等边三角,等腰三角,等腰梯形,圆,椭圆,菱形环,月牙型,风筝型
八年级上册数学期中试卷及答案 2010数学金华
2007——2008学年第一学期期中考试试卷
八年级 数学 命题人:兰炼二中李平
亲爱的同学,貌似困难的数学最怕有信心的你,严谨的数学需要踏实仔细的你.祝你稳扎稳打,继续前进!
本试卷分为第I卷(选择题、填空题)和第II卷(解答题)两部分,第I卷1至2页,第II卷3至4页.全卷满分150分,考试时间120分钟.
第I卷(选择题、填空题 共96分)
注意事项:
请务必将1~24小题的答案填写在第II卷相应的答题卡上.
一、选择题(每小题4分,共48分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.
1.分析下列说法:①实数与数轴上的点一一对应;② 没有平方根;③任何实数的立方根有且只有一个;④平方根与立方根相同的数是0和 .
其中正确的有( )
A.1个 B.2个 C.3个 D.4个
2.如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC中,边长为无理数的边数是( )
A.0 B.1 C.2 D.3
3.下列关于 的说法中,错误的是( )
A. 是无理数 B.3< <4
C. 是12的算术平方根 D. 不能再化简
4.下列平方根中, 已经化简的是( )
A. B. C. D.
5.右图可以看作是一个等腰直角三角形旋转若干次而生成的则
每次旋转的度数可以是( )
A.900 B.600
C.450 D.300
6.将一正方形纸片按图5中⑴、⑵的方式依次对折后,再沿⑶中的虚线裁剪,最后将⑷中的纸片打开铺平,所得图案应该是下面图案中的( )
(1) (2) (3) (4)
A B C D
7.如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD的面积比是( )
A.3:4 B.5:8 C.9:16 D.1:2
8.若菱形的边长为1cm,其中一内角为60°,则它的面积为( )
A. B. C. D.
9.若在四边形内能找一点,使该点到各边的距离都相等,则这个四边形是( )
A.平行四边形,矩形,菱形 B.菱形,矩形,正方形
C.菱形,正方形 D.矩形,正方形
10.若平行四边形一边长为10cm,则两对角线的长可以是( )
A.4cm和6cm B.6cm和8cm
C.8cm和10cm D.10cm和12cm
11.如图,圆柱的轴截面ABCD是边长为4的正方形,动点P 从A点出发,沿着圆柱的侧面移动到BC的中点S的最短距 离是( )
A. B.
C. D.
12.如下图,经过平移和旋转变换可能将甲图案变成乙图案的是( )
(默认三角形都是全等的)
甲 乙 甲 乙 甲 乙 甲 乙
A B C D
二、填空题(每小题4分,共48分)
13.下列各数: 、 、 、 、0.01020304…中是无理数的有___ _个.
14.如图,是两个同心圆,其中两条直径互相垂直,其大圆的半径是2,则其阴影部分的面积之和 .(结果用π表示)
15.当x2时,化简 =________.
16.估算比较大小:(填“>”、“<”或“=” )
; .
17.下图中所有的四边形都是正方形,所有的三角形都是直角三角形(不包括组合图形)若最大的正方形的边长为 ,则正方形A、B、C、D的面积之和为
18.已知 ,聪明的同学你能不用计算器得出(1) ;(2) .
19.如右图所示AB=AC,则C表示的数为_____________.
20.观察分析下列数据,按规律填空: ,2, ,2 , ,…, (第n个数)
21.如下图,在□ABCD中,对角线AC、BD相交于O,AC+BD=18,BC=6,则△AOD的周长为 .
22.如图,一架云梯长10米,斜靠在一面墙上,梯子顶端离地面6米,要使梯子顶端离地面8米,则梯子的底部在水平面方向要向左滑动____ _米.
23.如图,□ABCD中,AE、CF分别是∠BAD和∠BCD的角平分线,根据现有的图形,请添加一个条件,使四边形AECF为菱形,则添加的一个条件可以是 (只需写出一个即可,图中不能再添加别的“点”和“线”).
24.工人师傅做铝合金窗框分为下面三个步骤:
(1)先截出两对符合规格的铝合金窗料(图(1)),使 , ;
(2)摆放成图(2)的四边形,则这时窗框的形状是 形,其依据是 .
(3)将直角尺靠窗框的一个角(如图(3)),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图(4)),说明窗框合格,这时窗框是 形,其依据是 .
(1)
第I卷答题卡
请将1~24小题的答案填写在下面相应的位置:(每小题4分)
题号 1 2 3 4 5 6 7 8 9 10 11 12
答案
13. 14. 15. 16. 17.
18. 19. 20.
21. 22. 23.
24.(1)
(2)
第II卷(解答题 共54分)
友情提示:解答题应写出必要的文字说明、证明过程或演算步骤
三、解答题(本大题共7个小题,满分54分)
25.计算:(每小题4分,共12分)
(1) (2)
(3)
26.画图(每小题3分,共6分)
(1)画出将小船先向右平移5格,再向下平移3格的图形;
(2)画出将△ABC绕点A沿顺时针方向旋转90°后的图形.
27.(6分)想一想:将等式 =3和 =7反过来的等式3= 和7= 还成立吗?
式子:9 = = 和4 = = 成立吗?仿照上面的方法,化简下列各式:(1)2 (2)11 (3)6
28.(7分)如图,一棵36米高的巨大的加利福尼亚红木在一次强烈的地震中折断落下,树顶落在离树根24米处。研究人员要查看断痕,须从树底向上爬多高?
29.(7分)如图,在□ABCD中,AC交BD于点O,点E、点F分别是OA、OC的中点,请判断线段BE、DF的关系,并证明你的结论.
30.(8分)实践操作题:
把一个等腰直角三角形ABC沿斜边上的高线CD(裁剪线)剪一刀,从这个三角形裁下一部分,与剩下部分能拼成一个平行四边形A/BCD(见示意图1).(以下探究过程中有画图要求的,工具不限,不必写画法和证明).
探究一:
(1)想一想:判断四边形A/BCD是平行四边形的依据是 ;
(2)做一做:按上述的裁剪方法,请你拼一个与图1位置或形状不同的平行四边形,
并在图2中画出示意图.
探究二:
在等腰直角三角形ABC中,请你找出其它的裁剪线,把分割成的两部分拼出不同类型的特殊四边形.
(1)试一试:你能拼出所有不同类型的特殊四边形有 ;它们的裁剪线分别是 ;
(2)画一画:请在图3中画出一个你拼得的特殊四边形示意图.
31.(8分)观察下列图形的变化过程,解答以下问题:
如图,在△ABC中,D为BC边上的一动点(D点不与B、C两点重合) .DE//AC交AB于E点,DF//AB交AC于F点.
(1)试探索AD满足什么条件时,四边形AEDF为菱形,并说明理由;
(2)在(1)的条件下,△ABC满足什么条件时,四边形AEDF为正方形.为什么?
数学人教版八年级上册期中测试卷
八年级第一学期数学期中试卷
一、填空题(每题2分,共26分)
1. 16的平方根是 , = ,— 的立方根是 .
2. 估算比较大小:(填“>”、“<”或“=”)
;—3 —2 。
3.已知等腰三角形,其中一边长为7,另外两边长5则周长为为 。
4.在数轴上与表示4- 的点的距离最近的整数点所表示的数是 .
5.已知CD垂直平分AB,若AC=4cm,AD=5cm,则四边形ADBC的周长是 。
6.若正数m是小于2+ 的整数,则m的值是 。
7.如图在△ABC中,BD平分∠ABC且BD⊥AC于D,DE∥BC与AB相交于E.
AB=5cm、AC=2cm,则△ADE的周长=_________cm.
8.如图,D是AB边上的中点,将 沿过D点的直线折叠,使点A落在BC上点F处,若 ,则 度.
9. 等腰三角形一腰上的高与另一边的夹角为80°,则顶角的度数为 。
10.在直角三角形中,已知一条直角边的长为8,斜边上的中线长为5,则其斜边的高为 。
二.选择题(每题3分,共15分)
11.2008年奥运会火炬接力活动的传递总路程约为137000000米,这个数保留两个有效数字并用科学记数法表示为 ( )
A. 1.37×108米 B. 1.4×108米 C.13.7×107米 D. 14×107米
12. 在 中有理数的个数是( )
A.2个 B.3个 C.4个D.5个
13.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在 位置,A点落在 位置,若 ,则 的度数是 ( )
A.50° B.60° C.70° D.80°
14.以下列各题的数组为三角形的三条边长:①5,12,13;②10,12,13;
③ , ,2;④15,25,35。其中能构成直角三角形的有( )
A.1组 B.2组 C.3组 D.4组
15.如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,
M为BC的中点,EF=5,BC=8,则△EFM的周长是 ( )
A.13 B.18 C.15 D. 21
三.解答题(共59分)
16.(6分)计算题:
① ; ②求x的值9x =121.
17.(6分)在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC的周长。
18.(6分)作图:请你在下图中用尺规作图法作出一个以线段AB为一边的等边三角形.(要求:写出已知、求作,保留作图痕迹,下结论,不写作法)
19.(6分)如图,已知:△ABC中,AB=AC,BD和CE分别是∠ABC和∠ACB的角平分线,且相交于O点。
⑴ 试说明△OBC是等腰三角形;
⑵ 连接OA,试判断直线OA与线段BC的关系?并说明理由。
20.(8分)如图,点B、C、E不在同一条直线上,∠BCE=150°,以BC、CE为边作等边三角形,连结BD、AE,(1)试说明BD=AE;(2)△ACE能否由△BCD绕C点按顺时针方向旋转而得到?若能,指出旋转度数;若不能,请说明理由。
21.(10分)如图,在△ABC中,AB=AC,点D、E、F分别
在BC、AB、AC边上,且BE=CF,BD=CE。
(1)求证:△DEF是等腰三角形;
(2)当∠A=40°时,求∠DEF的度数;
22.(7分)如图,A、D、F、B在同一直线上,AD=BF,AE=BC, 且 AE∥BC。
求证:(1)△AEF≌△BCD;(2) EF∥CD。
初二数学(八年级上册)课内训练2-7章和期中复习测试卷A,B
你还是好好学习吧,做做题,可以使自己进步啊!
自己动手,丰衣足食。
给你答案是害了你 有不懂的要问就还可以。。
八年级上册数学期中试卷(含答案)
年级上学期数学期中考试题
班级 学号 姓名
一、选择题(每小题3分,共30分)
1、在下列实数中: , ,|-3|, ,0.8080080008…, 无理数的个数有( )个
A、1 B、2 C、3 D、4
2、与数轴上的点一一对应的数是( )
A、实数 B、有理数 C、无理数 D、整数
3、下列命题正确的是( )
A、两组对边分别平行的四边形是矩形 B、有一个角是直角的平行四边形是矩形
C、有两个角是直角的四边形是矩形D、有一个角是直角,一组对边平行的四边形是矩形
4、正方形的对角线具有( )
A、平分 B、垂直 C、相等 D、垂直、平分且相等
5、下列图案既是中心对称图形,又是轴对称图形的是 ( )
A. B. C. D.
6、下列说法错误的是( )
A、1是(-1)2的算术平方根 B、 C、-27的立方根是-3
D、
7、从8:55到9:15,钟表的分针转动的角度是 ,时针转动的角度是 。( )
A. 120 0、10 0 B. 30 0、 15 0 C. 12 0、60 0 D. 10 0、120 0
8. 下列各式中正确的是 ( )
A. B. C. D.
9. 如图,正方形网格中的△ABC,若小方格边长为1,则△ABC是 ( )
A. 直角三角形 B. 锐角三角形
C. 钝角三角形 D. 以上答案都不对
10、将直角三角形三边扩大相同的倍数,得到的三角形是( )
(A)锐角三角形 (B)钝角三角形 (C)直角三角形 (D)任意三角形
二、填空题:(每空2分,共20分)
1、 的平方根是
2、一条线段AB的长是3cm,将它沿水平方向平移4cm后,得到线段CD,
CD的长是
3、若一个多边形的内角和等于它的外角和的3倍,则它是 边形
4、Rt△ABC 中,∠C=90 并且AC=5cm,AB=13cm,则BC= cm
5、平行四边形两邻角的比是3∶2,则这两个角的度数分别是
6、AC、BD是菱形的对角线,且AC=6cm,BD=8cm,则此菱形的面积是 cm2
7、△ABC和△DCE是等边三角形,则在右图中,△ACE
绕着 __ 点 __ 旋转 __ 度可得到△BCD。
8、矩形ABCD的周长是56cm,对角线AC、BD相交于点O,
△OAB与△OBC的周长差是4cm,则矩形ABCD
中较短的边长是 。
9、若ABC的三边分别是a、b、c,且a、b、c
满足(a+b)2-2ab=c2,则△ABC为 三角形
10、如图(1),以左边图案的中心为旋转中心,将
图案按 方向旋转 即可得到右边图案。
三、计算
四、作图题(共6分)
将左图绕O点逆时针旋转 ,将右图向右平移5格。
五、解答题(共30分)
1、 (5分)某人欲从A点横渡一条河,由于水流的影响,实际上岸地点
C偏离欲到达点B 240米,结果他在水中实际游了510米,求该河的宽度。
2、在矩形ABCD中,对角线AC、BD相交于点O,AB=OA=4㎝,
求BD和AD的长?(5分)
3、如图,在平行四边形ABCD中,点E、F在对角线AC上,且AE=CF
求证:四边形BEDF是平行四边形(6分)
4、已知:如图,在△ABC中,AB=AC,AD BC,垂足为D,AN是△ABC外角 CAM的平分线,CE AN,垂足为E,连接DE交AC于F(9分)
(1)求证:四边形ADCE为矩形
(2)求证:DF‖AB,DF= AB
(3)当△ABC满足什么条件时,四边形ADCE是一个正方形?简述你的理由。
八年级上册数学期中调研B卷的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于数学八上期中试卷、八年级上册数学期中调研B卷的信息别忘了在本站进行查找喔。