广州2018数学调研卷(2018年广州数学中考试卷及答案)

本篇文章给同学们谈谈广州2018数学调研卷,以及2018年广州数学中考试卷及答案对应的知识点,希望对各位同学有所帮助,不要忘记分享给你的朋友哦!

本文目录一览:

广州市初中数学题

第一题

(1110011)2=64+32+16+2+1=115

第二题

1507=1X8^3+5X8^2+0X8^1+7X8^0

=512+320+0+7

=839

希望能帮到你,对了就采纳!

2018年广东高考数学试卷难度中等,数学试卷难度系数中等

2018年广东高考数学试卷难度中等,数学试卷难度系数中等

015年普通高考理科数学(广东卷)较好地贯彻了《2015年普通高等学校招生全国统一考试(广东卷)数学(理科)考试大纲的说明》的命题指导思想和考试内容与要求,延续了广东卷的命题风格,平稳平和、稳中有新、强调基础、注重能力,试题充分源于教材而高于教材,达到有利于科学选拔人才、有利于促进学生健康发展、有利于维护社会公平和稳定的目的。

一、大胆创新、难度降低

从总体来看,试卷结构(8+8+6)并没有变化,但最后三题知识点分布和以往不同。试卷的整体难度比稍有下降。选择填空题(1-15题)的考查点均以基础题为主,中档题的比例稍有降低,创新类题目难度降低。解答题的前3题(16-18题),难度基本保持一致。至于后3题(19-21题),改变了以往数列、解析几何、导数的排列顺序,大胆创新,除了压轴最后一题难度较高外,普遍难度降低,2015年高考对基础扎实的学生尤其有利。

二、重视主干双基考查,创新题有新意

由上表可以发现,2015年广东卷依旧注重主干知识考查,考点稳定,并且注重双基考查。从命题题型上来看,第8、19、20、21题这些常规难题位置难度降低。

第8题:2015年考了一个与空间结合的计数问题,相比于前些年的选择创新题比较简单,即使学生不会做,猜出答案的可能性也是很大的。

第19题:往年19题考都在考查数列,2015年换了一种题型,考查了函数与导数的知识,三问都比较简单,虽然第三问是一个不等式证明,但其中涉及到的不等式模型也是在高中讲课中时常提到的,问题不大。

第20题:2015年的解析几何题难度较低,第一个题型陈旧、常规对于扎实做好复习的考生不成问题,第二个出题模型选择的是圆,相对于圆锥曲线会更加容易。

第21题:2015年最大的改变在于压轴题,往年广东卷压轴题都考查函数与导数,而且广东的考法是以复杂取胜,2015年摒弃了这种出题模式还是很赞的。本题考查数列,前两问相对比较简单,第三问考查不等式放缩,综合性比较强,难度较大。

最后,学而思高考研究中心祝愿2015年高考学子能够取得优异的成绩,走进理想的大学。同时,对于决战2016年高考学子来说,2015年暑假开始准备一轮复习,祝愿新高三学子能够经历高三一年风雨,在这个暑假开始为高考打下坚实的基础,在2016年高考中取得理想的.成绩。笔者建议,广大高二考生备考时,应从教材出发,夯实基础,做到复习全面、系统,不留死角。在抓好基础知识的前提下,注重对高中数学主干知识的复习,对数列、圆锥曲线、函数与导数等重要知识的灵活运用。在完善知识体系的同时,也要重视能力的培养。

倪洋:学而思高考研究中心数学研究员学而思培优广州分校高三产品线负责人,毕业于清华大学,荣获全国高中数学联赛一等奖,从事高考教学及教研研究,对高考数学有深入了解。

杨志:学而思高考研究中心数学研究员学而思培优深圳分校高中数学教研负责人,毕业于华南理工大学,对高考数学有深入的研究。

学而思高考研究中心概述

学而思高考研究中心成立于2006年,是学而思培优旗下集高考、自招命题内容与政策研究、课程开发及信息服务于一体的综合性研究中心,下设高考研究办公室、自主招生研究办公室、政策与大学专业志愿填报研究办公室三大部门。汇集国内知名的高考专家和高考志愿填报专家团队包括高考命题人、阅卷人、特级教师等等,对高考命题趋势及发展走向的把握具有精准性和前瞻性,对高招政策及指导学生高考志愿规划、填报有着多年一线实战经验。学而思高中各学科一线教学团队,开展针对全国各省市高考的专业研究,结合学而思优质生源的学习反馈,二者合力为全国学生提供专业、权威、高效的高考培训与指导。9年来,学而思高考研究中心将研究成果与教学实际相结合,培养出了数以百计的国际竞赛金牌、国家竞赛金牌学员,数万高考及自招学员进入了心仪的名牌大学。

好未来“高考无所畏”30天高考陪伴计划概述

2015年6月,好未来正式开启“高考无所畏”30天高考陪伴计划,联合集团旗下学而思、高考网、家长帮等子品牌为考生“保驾护航”,推出涵盖高考冲刺学习、生活、心理的高考攻略、高考试题解析、高考帮免费app、高考志愿填报等一系列高考产品、服务和活动。

6月2日,好未来联合去哪儿“高考特价房”在北京、上海、广州三座城市分别推出高考5折特价房。

6月3日,好未来同期发布两款移动教育产品——高考帮和考研帮,其中高考帮app定位于免费的高考志愿服务和高考资讯服务平台,而考研帮app定位于付费会员制的在线考研学习互助平台。

6月4日,好未来与北大才女、原创民谣歌手邵夷贝(别名邵小毛)联合发布单曲《无所畏》,全程为高考考生加油助阵。

6月15日,好未来旗下学而思培优、家长帮以及高考帮团队将会联合召开大学排行榜单发布会。

6月24日,北京地区将在国家会议中心举行数千人规模的高考志愿填报大会。

初三数学上期末调研测试卷及答案

对于初三数学期末考试的复习,制定计划做数学试题更有利于数学的学习和备考。

初三数学上期末调研测试卷

一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)

1.sin60°的值是

A. B. C.1 D.

2.图1是一个球体的一部分,下列四个选项中是它的俯视图的是

3.用配方法解方程 ,下列配方正确的是

A. B.

C. D.

4.图2是我们学过的反比例函数图象,它的函数解析式可能是

A. B. C. D.

5.如图3,已知∠BAD=∠CAD,则下列条件中不一定能使

△ABD≌△ACD的是

A.∠B=∠C B.∠BDA=∠CDA

C.AB=AC D.BD=CD

6.过某十 字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为

A. B. C. D.

7.矩形具有而菱形不具有的性质是

A.对角线互相平分 B.对角线互相垂直

C.对角线相等 D.是中心对称图形

8.关于二次函数 ,下列说法中正确的是

A.它的开口方向是向上 B.当x –1时,y随x的增大而增大

C.它的顶点坐标是(–2,3) D.当x = 0时,y有最小值是3

9.如图4,已知A是反比例函数 (x 0)图象上的一个

动点,B是x轴上的一动点,且AO=AB.那么当点A在图

象上自左向右运动时,△AOB的面积

A.增大 B.减小 C.不变 D.无法确定

10.如图5,已知AD是△ABC的高,EF是△ABC的中位线,

则下列结论中错误的是

A.EF⊥AD B.EF= BC

C.DF= AC D.DF= AB

11.某公司今年产值200万元,现计划扩大生产,使今后两年的产值都比前一年增长一个相同的百分数,这样三年(包括今年)的总产值就达到了1400万元.设这个百分数为x,则可列方程为

A.

B.

C.

D.

12.如图6,已知抛物线 与x轴分别交于A、B两点,顶点为M.将抛物线l1沿x轴翻折后再向左平移得到抛物线l2.若抛物线l2过点B,与x轴的另一个交点为C,顶点为N,则四边形AMCN的面积为

A.32 B.16 C.50 D.40

第二部分(非选择题,共64分)

二、填空题(每小题3分,共12分。)请把答案填在答题卷相应的表格里。

13.2011年深圳大运会期间,在一个有3000人的小区里,小明随机调查了其中的500人,发现有450人看深圳电视台的大运会晚间新闻.那么在该小区里随便问一人,他看深圳电视台的大运会晚间新闻的概率大约是答案请填在答题表内.

14.若方程 的一个根为1,则b的值为答案 请填在答题表内.

15.如图7,甲、乙两盏路灯相距20米,一天晚上,当小刚

从灯甲底部向灯乙底部直行16米时,发现自己的身影顶

部正好接触到路灯乙的底部,已知小刚的身高为1.6米,

那么路灯甲的高为答案请填在答题表内米.

16.如图8,四边形ABCD是边长为2的正方形,E是AD边上一点,将△CDE绕点C沿逆时针方向旋转至△CBF,连接EF交BC于点G.若EC=EG,则DE = 答案请填在答题表内.

三、解答题(本题共7小题,共52分)

17.(本题 5分)计算:

18.(本题5分)解方程:

19.(本题8分)如图9,等腰梯形ABCD中,AB//CD,AD = BC = CD,对角线BD⊥AD,DE⊥AB于E,CF⊥BD于F.

(1)求证:△ADE≌△CDF;(4分)

(2)若AD = 4,AE=2,求EF的长.(4分)

(1)转动该转盘一次,则指针指在红色区域内的概率为_______;

(2分)

(2)转动该转盘两次,如果指针两次指在的颜色能配成紫色(红

色和蓝色一起可配成紫色),那么游戏者便能获胜.请用列

表法或画树状图的方法求出游戏者能获胜的概率.(6分)

21.(本题8分)如图11,A、B、C是三座城市,A市在B市的正西方向.C市在A市北偏东60º的方向,在B市北偏东30º的方向.这三座城市之间有高速公路l1、l2、l3相互贯通.小亮驾车从A市出发,以平均每小时80公里的速度沿高速公路l2向C市驶去,3小时后小亮到达了C市.

(1)求C市到高速公路l1的最短距离;(4分)

(2)如果小亮以相同的速度从C市沿C→B→A的路线从高速公路返回A市.那么经过多长时间后,他能回到A市?(结果精确到0.1小时)( )(4分)

22.(本题9分)阅读材料:

(1)对于任意实数a和b,都有 ,∴ ,于是得到 ,当且仅当a = b时,等号成立.

(2)任意一个非负实数都可写成一个数的平方的形式。即:如果 ,则 .如:2= , 等.

例:已知a 0,求证: .

证明:∵a 0,∴

∴ ,当且仅当 时,等号成立。

请解答下列问题:

某园艺公司准备围建一个矩形花圃,其中一边靠墙(墙足够长),另外三边用篱笆围成(如图12所示).设垂直于墙的一边长为x米.

(1)若所用的篱笆长为36米,那么:

①当花圃的面积为144平方米时,垂直于墙的一边的长为多少米?(3分)

②设花圃的面积为S米2,求当垂直于墙的一边的长为多少米时,这个花圃的面积最大?并求出这个最大面积;(3分)

(2)若要围成面积为200平方米的花圃,需要用的篱笆最少是多少米?(3分)

23(本题9分)如图13-1,已知抛物线 (a≠0)与x轴交于A(–1,0)、B(3,0)两点,与y轴交于点C(0,3).

(1)求抛物线的函数表达式;(3分)

(2)若矩形EFMN的顶点F、M在位于x轴上方的抛物线上,一边EN在x轴上(如图13-2).设点E的坐标为(x,0),矩形EFMN的周长为L,求L的最大值及此时点E的坐标;(3分)

(3)在(2)的前提下(即当L取得最大值时),在抛物线对称轴上是否存在一点P,使△PMN沿直线PN折叠后,点M刚好落在y轴上?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由.(3分)

初三数学上期末调研测试卷答案

一、选择题(每小题3分,共36分)

BCBAD ACBCD DA

二、填空题(每小题3分,共12分)

13.0.9; 14. 4 ; 15. 8 ; 16.

三、解答题

17.解:原式 = 2分(每写对一个函数值得1分)

= 3–1 4分(每算对一个运算得1分)

= 2 5 分

18.解法一:移项得 1分

配方得

2分

即 或 3分

∴ , 5分

解法二:∵ , ,

∴ 1分

∴ 3分

∴ , 5分

解法三:原方程可化为 1分

∴x–1 = 0或x–3 = 0 3分

∴ , 5分

19.(1)证明:∵DE⊥AB,AB//CD

∴DE⊥CD

∴∠1+∠3=90º 1分

∵BD⊥AD

∴∠2+∠3=90º

∴∠1=∠2 2分

∵CF⊥BD,DE⊥AB

∴∠CFD=∠AED=90º 3分

∵AD=CD

∴△ADE≌△CDF 4分

(2)解:∵DE⊥AB,AE=2,AD=4

∴∠2=30º,DE= 5分

∴∠3=90º–∠2=60º

∵△ADE≌△CDF

∴DE=DF 6分

∴△DEF是等边三角形

∴EF=DF= 7分

(注:用其它方法解答的,请根据此标准酌情给分)

20.(1) 2分

红 黄 蓝

红 (红,红) (黄,红) (蓝,红)

黄 (红,黄) (黄,黄) (蓝,黄)

蓝 (红,蓝) (黄,蓝) (蓝,蓝)

(2)解:列表得

结果共有9种可能,其中能成紫色的有2种

∴P(获胜)=

(说明:第(2)小题中,列表可画树状图得4分,求出概率得2分,共6分)

21.(1)解:过点C作CD⊥l1于点D,则已知得 1分

AC=3×80=240(km),∠CAD=30º 2分

∴CD= AC= ×240=120(km)3分

∴C市到高速公路l1的最短距离是120km。4分

(2)解:由已知得∠CBD=60º

在Rt△CBD中,

∵sin∠CBD=

∴BC= 5分

∵∠ACB=∠CBD–∠CAB=60º–30º=30º

∴∠ACB=∠CAB=30º

∴AB=BC= 6分

∴t = 7分

答:经过约3.5小时后,他能回到A市。8分

(注:用其它方法解答的,请根据此标准酌情给分)

22.(1)解:由题意得 1分

化简后得

解得: , 2分

答:垂直于墙的一边长为6米或12米。 3分

(2)解:由题意得

S = 4分

= 5分

∵a =–20,∴当x = 9时,S取得最大值是162

∴当垂直于墙的一边长为9米时,S取得最大值,最大面积是162m2。6分

(3)解:设所需的篱笆长为L米,由题意得

7分

即: 8分

∴若要围成面积为200平方米的花圃,需要用的篱笆最少是40米,9分

23.(1)解:由题意可设抛物线为 1分

抛物线过点(0,3)

解得:a =–1 2分

抛物线的解析式为:

即: 3分

(2)解:由(1)得抛物线的对称轴为直线x = 1

∵E(x,0),

∴F(x, ),EN = 4分

化简得 5分

∵–20,

∴当x = 0时,L取得最大值是10,

此时点E的坐标是(0,0) 6分

(3)解:由(2)得:E(0,0),F(0,3),M(2,3),N(2,0)

设存在满足条件的点P(1,y),

并设折叠后点M的对应点为M1

∴ NPM=NPM1=90,PM=PM1

PG = 3–y,GM=1,PH = | y |,HN = 1

∵∠NPM=90º

解得: ,

∴点P的坐标为(1, )或(1, )7分

当点P的坐标为(1, )时,连接PC

∵PG是CM的垂直平分线,∴PC=PM

∵PM=PM1,∴PC=PM=PM1

∴∠M1CM = 90º

∴点M1在y轴上8分

同理可得当点P的坐标为(1, )时,点M1也在y轴上9分

故存在满足条件的点P,点P的坐标为(1, )或(1, )

(说明:能正确求出一个点的坐标并能说明点M刚好落在y轴上,得2分)

[img]

跪求2018高考调研文科数学总复习电子版,答案就行了

习题虽然都有答案,但是都是在自己完全答完题之后对的,在网上是问不到答案的哈

不是对着答案抄袭的,那样效果不是很好,多看书

2018年至2019年学年度第二学期期中调研检测(三年级数学试题(卷))怎么写质量分析?

学习成绩的质量分析不过就是一种概率学的问题,求的是人平均分数,和及格人数比,和全年级分数对比率,和以前的学习成绩对比率等等。

广州2018数学调研卷的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于2018年广州数学中考试卷及答案、广州2018数学调研卷的信息别忘了在本站进行查找喔。

本文转载自互联网,如有侵权,联系删除