八上数学周测卷2(八年级上册数学周考试卷)

今天给各位同学分享八上数学周测卷2的知识,其中也会对八年级上册数学周考试卷进行解释,如果能碰巧解决你现在面临的问题,别忘了分享本站,现在开始吧!

本文目录一览:

《优翼丛书》周周卷数学八年级(上)期末测试(一)第25题的第(2)小题怎么做

原来的工作效率=100÷2=50

现在的工作效率=50×2=100

100×(4.8-2.8)=200

200+100=300

答:a为300

[img]

BFB数学八年级上周周清测试卷答案

当地震发生时,如果我们正在教室上课应该怎样避震?(10分)

答:如果你在教室里,要在教师指挥下迅速抱头、闭眼、蹲到各自的课桌下。地震一停,迅速有秩序撤离,撤离时千万不要拥挤。

二、 当地震发生时,如果我们在家里应该选择什么位置避震最好?(10分)

答:如果你在室内,应就近躲到坚实的家具下,如写字台、结实的床、农村土炕的炕沿下,也可躲到墙角或管道多、整体性好的小跨度卫生间和厨房等处。注意不要躲到外墙窗下、电梯间,更不要跳楼,这些都是十分危险的。

三、 面对火灾时我们该如何逃生自救?(10分)

答:火灾袭来时要迅速逃生,不要贪恋财物。受到火势威胁时,要当机立断披上浸湿的衣物、被褥等向安全出口方向冲出去。穿过浓烟逃生时,要尽量使身体贴近地面,并用湿毛巾捂住口鼻。身上着火,千万不要奔跑,可就地打滚或用厚重衣物压灭火苗。遇火灾不可乘坐电梯,要向安全出口方向逃生。室外着火,门已发烫时,千万不要开门,以防大火窜入室内。要用浸湿的被褥、衣物等堵塞门窗,并泼水降温。若所有逃生线路被大火封锁,要立即退回室内,用打手电筒、挥舞衣物、呼叫等方式向窗外发送求救信号,等待救援。千万不要盲目跳楼,可利用疏散楼梯,阳台、排水管等逃生,或把床单、被套撕成条状连成绳索,紧拴在窗框、铁栏杆等固定物上,顺绳滑下,或下到未着火的楼层脱离险境。

四、 在道路上行走时应注意什么?(10分)

答: 1.走路要走人行道,没有人行道的,须靠路边行走。2.横过马路要走人行横道,过街天桥或地下通道。3.遵守交通信号,红灯停,绿灯行。4.不钻(跨)越交通隔离设施。5.不在汽车临近时或车辆前后横穿马路,不在在道路上扒车、追车、强行拦车或抛物击车。6.不在马路上追逐猛跑、嬉戏、打闹、游戏,不要边走路边看书。7.夜间步行要尽量选择穿戴浅颜色的衣帽和在有路灯的地方横过马路。

五、中小学生游泳四不要。(10分)

答:1、 没有家长带领,小孩子不能偷偷地结伴去游泳;2、 不能去不知水情、地方很偏僻的小河、池塘里游泳。3、 为预防抽筋,要做好下水前的准备,先活动活动身体,用水淋湿身体的各个部分,不能马上下水; 4、 对自己的水性要有自知之明,下水后不能嬉戏玩闹,在没有大人及安全措施的情况下不能逞能比赛。(10分)

六、未成年人发现有人溺水,应该选择哪种方法救人?(10分)

答:未成年人发现有人溺水,尽量不要下水营救,应大声呼救请成人过来营救,第二要用救生器材或当时可以利用的竹竿、木板、绳索等物件营救。第三就是溺水者不要慌乱,尽量让嘴和鼻子露出水面保持呼吸等待救援。 家长安全知识问卷:

一、 如果家用电器着火是否可用水灭火?我们应该教孩子怎么办?(10分)

答:家用电器着火不能用水灭火。扑灭家用电器发生的火灾方法是:首先立刻切断电源,拉闸要带上绝缘手套,人要离远些,避免切断电源时的电弧喷射烧伤脸部。用电工钳或干燥木柄斧子切断电源时,应将电源的相线、地线一根一根的分别切断,否则会引起短路,造成更大的灾难。扑救火灾时,要关闭门窗,防止风吹助燃。要立即用干燥的棉被、棉衣盖住火苗。切不可用水和灭火器喷淋电器设备的方法扑救,因为高温电器突然遇水冷却会爆炸伤人。火扑灭后,必须及时打开门窗通气。

二、 我们该如何教孩子辨别天然气是否泄漏?如果家中出现天然气泄漏让孩子应该怎么办?(10分)

答:1.检查燃气管道和炉具,用抹布沾上肥皂水沿管道涂抹一遍,重点是各个接口,如燃气泄露会出现气泡,平时在煮饭时如有燃气泄露会有一股很浓的味道。 2. 燃气泄露处置办法:在没有明火的情况下,现场千万不要打或接电话,用毛巾沾水捂住鼻子和嘴,马上打开窗通风,如现场允许尽快关掉阀门和电源,如有明火:关掉电源和厨房门,直接拨打119救援。

三、 如果父母不在家,有陌生人敲门您的孩子会怎么办?孩子的做法对吗?(10分)

答:略。

四、 家长应该如何教育孩子安全横过马路?(10分)

答: 教育孩子应文明过马路:1.站队过马路;2.要走人行横道;3.要走地下通道;4.不要在道路上嬉戏打闹;5.不要跨越护栏;6.不要追、扒、拦车。

BBF数学八年级上周测月考单元评价卷(二十)答案?在线等!!!急!!!

这两个题都是第二个,很好解,告诉你我以前常用的最笨的也是最方便的办法,第一题你看看定义:一般地,形如y=kx+b(k,b是常数,k≠0)的函数叫做一次函数。其中x是自变量,y是x的函数。特别地,当b=0时,y=kx(k为常数,k≠0),y叫做x的正比例函数。不用多解释了。

第二题:你把X=0 和X=1分别算出Y的值得出两个坐标画个直线就知道这个不在那个象限了。最笨最有效的方法。望采纳

八年级上册数学平时测练题(二 ) 第二章 答案 2011

由题可知,在三角形和三角形中角EAD等于角FAD,角AED等于角AFD,AD等于AD,所以这两个三角形全等!

由上可知在三角形和三角形中,角BED等于角CFD等于90度,ED等于FD,BD等于CD,所以这两个三角形也全等,所以BD等于CF

注意:在证明全等时,必须要说明角AED等于角AFD等于90度,角BED等于角CFD等于90度,否则不能说明全等,因为当角BED为锐角时可以画出两条满足条件的线段BD(或者CD)

其实不必总是追随定理公式什么的!

高考题是绝对不会出纯定理就可以解决的题的,用自己的方法证明你的方法是正确的才最重要!

至于角角边什么的,我也都记不清楚了!不过你要注意,你要证全等的三角形是直角三角形!很特殊

我没看懂你写的,但你的第一句如果没有条件的话,就一定是错误的!

你想想,在三角形中,两个对应角相等,是不是就意味着三个角对应相等,由三个角对应相等就能证明两三角形相似,有因为对应的斜边也相等,是不是就可以证明全等了

8.因为AD垂直于CB,DB垂直于CB

所以角DBC=角ACB=90度

在RT三角形ABC和RT三角形DCB中

CB=BC

AB=DC

所以全等

所以角相等

10。由对顶角相等,两边相等的全等(SAS)然后由内错角得平行。

11。因为FB=CE

所以FB

FC=CE

FC

所以BC=EF

因为平行的到角相等

得到全等,于是得到边相等。

角CBD=BDA;所以BF=DF,AF=CF;在直角三角形CDF中,CD=3,CF

DF=9;且DF-CF=9;(CF

DF)*(DF-CF)=9;则DF-CF=1;可解得:DF=5,CF=4;则三角形BDF面积=DF*AB/2=5*3/2=7.5

BFB数学八年级上册周周清测试卷2答案

BFB数学八年级(上)周周清测试卷(三)第二章 特殊三角形(2.1—2。4) 的答案有么

求采纳为满意回答。

人教版八年级数学上册第二单元测试卷

想要提高数学的成绩,除了上课认真听讲,更重要的是多做基础单元测试题目。下面由我为你整理的人教版八年级数学上册第二单元测试卷,希望对大家有帮助!

人教版八年级数学上册第二单元测试卷

一、选择题

1.正三角形△ABC的边长为3,依次在边AB、BC、CA上取点A1、B1、C1,使AA1=BB1=CC1=1,则△A1B1C1的面积是()

A. B. C. D.

2.在Rt△ABC中,∠C=90°,AB=10.若以点C为圆心,CB为半径的圆恰好经过AB的中点D,则AC=()

A.5 B. C. D.6

3.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()

A.140° B.160° C.170° D.150°

4.如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=3,则BC的长为()

A.6 B.6 C.9 D.3

5.如图,在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD.若BD=1,则AC的长是()

A.2 B.2 C.4 D.4

6.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为()

A. B.1 C. D.2

7.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为()

A.0.5km B.0.6km C.0.9km D.1.2km

8.如图,一个矩形纸片,剪去部分后得到一个三角形,则图中∠1+∠2的度数是()

A.30° B.60° C.90° D.120°

9.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为()

A.2 B. C. D.

10.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()

A.120° B.90° C.60° D.30°

11.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()

A. B.2 C. D.2

12.将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()

A.3cm B.6cm C. cm D. cm

13.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于()

A. cm B.2cm C.3cm D.4cm

14.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()

A.3 B.4 C.5 D.6

15.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上一点,连接DE,则下列说法错误的是()

A.∠CAD=30° B.AD=BD C.BD=2CD D.CD=ED

二、填空题

16.由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是cm.

17.在△ABC中,∠B=30°,AB=12,AC=6,则BC=.

18.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD=.

19.如图,已知正方形ABCD的边长为4,对角线AC与BD相交于点O,点E在DC边的延长线上.若∠CAE=15°,则AE=.

20.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB=.

第2章 特殊三角形

人教版八年级数学上册第二单元测试卷参考答案与试题解析

一、选择题(共15小题)

1.正三角形△ABC的边长为3,依次在边AB、BC、CA上取点A1、B1、C1,使AA1=BB1=CC1=1,则△A1B1C1的面积是()

A. B. C. D.

【考点】等边三角形的判定与性质.

【专题】压轴题.

【分析】依题意画出图形,过点A1作A1D∥BC,交AC于点D,构造出边长为1的小正三角形△AA1D;由AC1=2,AD=1,得点D为AC1中点,因此可求出S△AA1C1=2S△AA1D= ;同理求出S△CC1B1=S△BB1A1= ;最后由S△A1B1C1=S△ABC﹣S△AA1C1﹣S△CC1B1﹣S△BB1A1求得结果.

【解答】解:依题意画出图形,如下图所示:

过点A1作A1D∥BC,交AC于点D,易知△AA1D是边长为1的等边三角形.

又AC1=AC﹣CC1=3﹣1=2,AD=1,

∴点D为AC1的中点,

∴S△AA1C1=2S△AA1D=2× ×12= ;

同理可求得S△CC1B1=S△BB1A1= ,

∴S△A1B1C1=S△ABC﹣S△AA1C1﹣S△CC1B1﹣S△BB1A1= ×32﹣3× = .

故选B.

【点评】本题考查等边三角形的判定与性质,难度不大.本题入口较宽,解题方法多种多样,同学们可以尝试不同的解题方法.

2.在Rt△ABC中,∠C=90°,AB=10.若以点C为圆心,CB为半径的圆恰好经过AB的中点D,则AC=()

A.5 B. C. D.6

【考点】等边三角形的判定与性质;含30度角的直角三角形;勾股定理.

【专题】计算题;压轴题.

【分析】连结CD,直角三角形斜边上的中线性质得到CD=DA=DB,利用半径相等得到CD=CB=DB,可判断△CDB为等边三角形,则∠B=60°,所以∠A=30°,然后根据含30度的直角三角形三边的关系先计算出BC,再计算AC.

【解答】解:连结CD,如图,

∵∠C=90°,D为AB的中点,

∴CD=DA=DB,

而CD=CB,

∴CD=CB=DB,

∴△CDB为等边三角形,

∴∠B=60°,

∴∠A=30°,

∴BC= AB= ×10=5,

∴AC= BC=5 .

故选C.

【点评】本题考查了等边三角形的判定与性质:三边都相等的三角形为等边三角形;等边三角形的三个内角都等于60°.也考查了直角三角形斜边上的中线性质以及含30度的直角三角形三边的关系.

3.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()

A.140° B.160° C.170° D.150°

【考点】直角三角形的性质.

【分析】利用直角三角形的性质以及互余的关系,进而得出∠COA的度数,即可得出答案.

【解答】解:∵将一副直角三角尺如图放置,∠AOD=20°,

∴∠COA=90°﹣20°=70°,

∴∠BOC=90°+70°=160°.

故选:B.

【点评】此题主要考查了直角三角形的性质,得出∠COA的度数是解题关键.

4.如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=3,则BC的长为()

A.6 B.6 C.9 D.3

【考点】含30度角的直角三角形;线段垂直平分线的性质.

【分析】根据线段垂直平分线上的点到线段两端距离相等可得AD=BD,可得∠DAE=30°,易得∠ADC=60°,∠CAD=30°,则AD为∠BAC的角平分线,由角平分线的性质得DE=CD=3,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2DE,得结果.

【解答】解:∵DE是AB的垂直平分线,

∴AD=BD,

∴∠DAE=∠B=30°,

∴∠ADC=60°,

∴∠CAD=30°,

∴AD为∠BAC的角平分线,

∵∠C=90°,DE⊥AB,

∴DE=CD=3,

∵∠B=30°,

∴BD=2DE=6,

∴BC=9,

故选C.

【点评】本题主要考查了垂直平分线的性质,角平分线上的点到角的两边距离相等的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.

5.如图,在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD.若BD=1,则AC的长是()

A.2 B.2 C.4 D.4

【考点】含30度角的直角三角形;线段垂直平分线的性质;勾股定理.

【分析】求出∠ACB,根据线段垂直平分线的性质求出AD=CD,推出∠ACD=∠A=30°,求出∠DCB,即可求出BD、BC,根据含30°角的直角三角形性质求出AC即可.

【解答】解:∵在Rt△ABC中,∠B=90°,∠A=30°,

∴∠ACB=60°,

∵DE垂直平分斜边AC,

∴AD=CD,

∴∠ACD=∠A=30°,

∴∠DCB=60°﹣30°=30°,

在Rt△DBC中,∠B=90°,∠DCB=30°,BD=1,

∴CD=2BD=2,

由勾股定理得:BC= = ,

在Rt△ABC中,∠B=90°,∠A=30°,BC= ,

∴AC=2BC=2 ,

故选A.

【点评】本题考查了三角形内角和定理,等腰三角形的性质,勾股定理,含30度角的直角三角形性质的应用,解此题的关键是求出BC的长,注意:在直角三角形中,如果有一个角等于30°,那么它所对的直角边等于斜边的一半.

6.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为()

A. B.1 C. D.2

【考点】含30度角的直角三角形;角平分线的性质;线段垂直平分线的性质.

【分析】先根据线段垂直平分线的性质得出BE=CE=2,故可得出∠B=∠DCE=30°,再由角平分线定义得出∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°,利用三角形内角和定理求出∠A=180°﹣∠B﹣∠ACB=90°,然后在Rt△CAE中根据30°角所对的直角边等于斜边的一半得出AE= CE=1.

【解答】解:∵在△ABC中,∠B=30°,BC的垂直平分线交AB于E,BE=2,

∴BE=CE=2,

∴∠B=∠DCE=30°,

∵CE平分∠ACB,

∴∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°,

∴∠A=180°﹣∠B﹣∠ACB=90°.

在Rt△CAE中,∵∠A=90°,∠ACE=30°,CE=2,

∴AE= CE=1.

故选B.

【点评】本题考查的是含30度角的直角三角形的性质,线段垂直平分线的性质,等腰三角形的性质,角平分线定义,三角形内角和定理,求出∠A=90°是解答此题的关键.

7.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为()

A.0.5km B.0.6km C.0.9km D.1.2km

【考点】直角三角形斜边上的中线.

【专题】应用题.

【分析】根据直角三角形斜边上的中线等于斜边的一半,可得MC=AM=1.2km.

【解答】解:∵在Rt△ABC中,∠ACB=90°,M为AB的中点,

∴MC= AB=AM=1.2km.

故选D.

【点评】本题考查了直角三角形斜边上的中线的性质:在直角三角形中,斜边上的中线等于斜边的一半.理解题意,将实际问题转化为数学问题是解题的关键.

8.如图,一个矩形纸片,剪去部分后得到一个三角形,则图中∠1+∠2的度数是()

A.30° B.60° C.90° D.120°

【考点】直角三角形的性质.

【专题】常规题型.

【分析】根据直角三角形两锐角互余解答.

【解答】解:由题意得,剩下的三角形是直角三角形,

所以,∠1+∠2=90°.

故选:C.

【点评】本题考查了直角三角形两锐角互余的性质,熟记性质是解题的关键.

9.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为()

A.2 B. C. D.

【考点】含30度角的直角三角形;勾股定理;等腰直角三角形.

【分析】在Rt△ACD中求出AD,在Rt△CDB中求出BD,继而可得出AB.

【解答】解:在Rt△ACD中,∠A=45°,CD=1,

则AD=CD=1,

在Rt△CDB中,∠B=30°,CD=1,

则BD= ,

故AB=AD+BD= +1.

故选D.

【点评】本题考查了等腰直角三角形及含30°角的直角三角形的性质,要求我们熟练掌握这两种特殊直角三角形的性质.

10.(2014•海南)在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()

A.120° B.90° C.60° D.30°

【考点】直角三角形的性质.

【分析】根据直角三角形两锐角互余列式计算即可得解.

【解答】解:∵直角三角形中,一个锐角等于60°,

∴另一个锐角的度数=90°﹣60°=30°.

故选:D.

【点评】本题考查了直角三角形两锐角互余的性质,熟记性质是解题的关键.

11.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()

A. B.2 C. D.2

【考点】等边三角形的判定与性质;勾股定理的应用;正方形的性质.

【分析】图1中根据勾股定理即可求得正方形的边长,图2根据有一个角是60°的等腰三角形是等边三角形即可求得.

【解答】解:如图1,

∵AB=BC=CD=DA,∠B=90°,

∴四边形ABCD是正方形,

连接AC,则AB2+BC2=AC2,

∴AB=BC= = = ,

如图2,∠B=60°,连接AC,

∴△ABC为等边三角形,

∴AC=AB=BC= .

【点评】本题考查了正方形的性质,勾股定理以及等边三角形的判定和性质,利用勾股定理得出正方形的边长是关键.

12.将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()

A.3cm B.6cm C. cm D. cm

【考点】含30度角的直角三角形;等腰直角三角形.

【分析】过另一个顶点C作垂线CD如图,可得直角三角形,根据直角三角形中30°角所对的边等于斜边的一半,可求出有45°角的三角板的直角边,再由等腰直角三角形求出最大边.

【解答】解:过点C作CD⊥AD,∴CD=3,

在直角三角形ADC中,

∵∠CAD=30°,

∴AC=2CD=2×3=6,

又∵三角板是有45°角的三角板,

∴AB=AC=6,

∴BC2=AB2+AC2=62+62=72,

∴BC=6 ,

故选:D.

【点评】此题考查的知识点是含30°角的直角三角形及等腰直角三角形问题,关键是先求得直角边,再由勾股定理求出最大边.

13.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于()

A. cm B.2cm C.3cm D.4cm

【考点】含30度角的直角三角形.

【专题】常规题型.

【分析】根据在直角三角形中,30度所对的直角边等于斜边的一半得出AE=2ED,求出ED,再根据角平分线到两边的距离相等得出ED=CE,即可得出CE的值.

【解答】解:∵ED⊥AB,∠A=30°,

∴AE=2ED,

∵AE=6cm,

∴ED=3cm,

∵∠ACB=90°,BE平分∠ABC,

∴ED=CE,

∴CE=3cm;

故选:C.

【点评】此题考查了含30°角的直角三角形,用到的知识点是在直角三角形中,30度所对的直角边等于斜边的一半和角平分线的基本性质,关键是求出ED=CE.

14.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()

A.3 B.4 C.5 D.6

【考点】含30度角的直角三角形;等腰三角形的性质.

【专题】计算题.

【分析】过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD﹣MD即可求出OM的长.

【解答】解:过P作PD⊥OB,交OB于点D,

在Rt△OPD中,cos60°= = ,OP=12,

∴OD=6,

∵PM=PN,PD⊥MN,MN=2,

∴MD=ND= MN=1,

∴OM=OD﹣MD=6﹣1=5.

故选:C.

【点评】此题考查了含30度直角三角形的性质,等腰三角形的性质,熟练掌握直角三角形的性质是解本题的关键.

15.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上一点,连接DE,则下列说法错误的是()

A.∠CAD=30° B.AD=BD C.BD=2CD D.CD=ED

【考点】含30度角的直角三角形;角平分线的性质;等腰三角形的判定与性质.

【专题】几何图形问题.

【分析】根据三角形内角和定理求出∠CAB,求出∠CAD=∠BAD=∠B,推出AD=BD,AD=2CD即可.

【解答】解:∵在△ABC中,∠C=90°,∠B=30°,

∴∠CAB=60°,

∵AD平分∠CAB,

∴∠CAD=∠BAD=30°,

∴∠CAD=∠BAD=∠B,

∴AD=BD,AD=2CD,

∴BD=2CD,

根据已知不能推出CD=DE,

即只有D错误,选项A、B、C的答案都正确;

故选:D.

【点评】本题考查了三角形的内角和定理,等腰三角形的判定,含30度角的直角三角形的性质的应用,注意:在直角三角形中,如果有一个角等于30°,那么它所对的直角边等于斜边的一半.

二、填空题

16.由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是 18 cm.

【考点】等边三角形的判定与性质.

【专题】应用题.

【分析】根据有一个角是60°的等腰三角形的等边三角形进行解答即可.

【解答】解:∵OA=OB,∠AOB=60°,

∴△AOB是等边三角形,

∴AB=OA=OB=18cm,

故答案为:18

【点评】此题考查等边三角形问题,关键是根据有一个角是60°的等腰三角形的等边三角形进行分析.

17.在△ABC中,∠B=30°,AB=12,AC=6,则BC= 6  .

【考点】含30度角的直角三角形;勾股定理.

【分析】由∠B=30°,AB=12,AC=6,利用30°所对的直角边等于斜边的一半易得△ABC是直角三角形,利用勾股定理求出BC的长.

【解答】解:∵∠B=30°,AB=12,AC=6,

∴△ABC是直角三角形,

∴BC= = =6 ,

故答案为:6 .°

【点评】此题考查了含30°直角三角形的性质,以及勾股定理,熟练掌握性质及定理是解本题的关键.

18.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD= 2 .

【考点】含30度角的直角三角形;角平分线的性质.

【分析】根据角平分线性质求出∠BAD的度数,根据含30度角的直角三角形性质求出AD即可得BD.

【解答】解:∵∠C=90°,∠B=30°,

∴∠CAB=60°,

AD平分∠CAB,

∴∠BAD=30°,

∴BD=AD=2CD=2,

故答案为2.

【点评】本题考查了对含30度角的直角三角形的性质和角平分线性质的应用,求出AD的长是解此题的关键.

19.如图,已知正方形ABCD的边长为4,对角线AC与BD相交于点O,点E在DC边的延长线上.若∠CAE=15°,则AE= 8 .

【考点】含30度角的直角三角形;正方形的性质.

【分析】先由正方形的性质可得∠BAC=45°,AB∥DC,∠ADC=90°,由∠CAE=15°,根据平行线的性质及角的和差得出∠E=∠BAE=∠BAC﹣∠CAE=30°.然后在Rt△ADE中,根据30°角所对的直角边等于斜边的一半即可得到AE=2AD=8.

【解答】解:∵正方形ABCD的边长为4,对角线AC与BD相交于点O,

∴∠BAC=45°,AB∥DC,∠ADC=90°,

∵∠CAE=15°,

∴∠E=∠BAE=∠BAC﹣∠CAE=45°﹣15°=30°.

∵在Rt△ADE中,∠ADE=90°,∠E=30°,

∴AE=2AD=8.

故答案为8.

【点评】本题考查了含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.也考查了正方形的性质,平行线的性质.求出∠E=30°是解题的关键.

20.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB= 5 .

【考点】含30度角的直角三角形;矩形的性质.

【分析】根据矩形的性质,可以得到△AOB是等边三角形,则可以求得OA的长,进而求得AB的长.

【解答】解:∵四边形ABCD是矩形,

∴OA=OB

又∵∠AOB=60°

∴△AOB是等边三角形.

∴AB=OA= AC=5,

故答案是:5.

关于八上数学周测卷2和八年级上册数学周考试卷的介绍到此就结束了,不知道同学们从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

本文转载自互联网,如有侵权,联系删除