100所名校数学必修一(100所名校高一数学卷)

本篇文章给同学们谈谈100所名校数学必修一,以及100所名校高一数学卷对应的知识点,希望对各位同学有所帮助,不要忘记分享给你的朋友哦!

本文目录一览:

全国100所名校最新高考模拟示范卷(一) 各科答案!

全国100所名校最新高考模拟示范卷语文卷及答案

1。D

2.B(施行:指法令法规等发生效力。实行:用行动来实现(纲领、政策.计划)等。流

传;多指事迹、作品等传下去或传播开。留传:遗留下来传给后代.侧重于时间上的传承;勾通:暗中串通、勾结,含贬义。沟通:互相通联,中性词)

3.B(A当仁不让:遇到应该做的事,积极主动去做,不退让;用于谦词,不恰当。C明

火执仗:公开干坏事,此处语义完全用反,D鳞次栉比:形容房屋、船只等排列得整齐密集,这里用来形容山蜂,属于用错对象)

4.C(A肯定与否定搭配不当。B主客颠倒,应是公民对“取消五一长假”不好接受。D成分残缺,“造假”后面加”的闹剧”)

5.A(B注意愿文“起初人们以为”。C这只是“这种嗡鸣声可能的来源”。D“共同制造的低频噪声”错)

6.B“某些动物已经拥有了这些技能“错.只是可能。C“已经建成”错,是正在研发。D“他认为飓风掀起海浪是导致地球嗡鸣声的原因”错,原文是说“可能是导致地球嗡鸣声的因素之一”)

7.A(B“发现了印尼海海啸的预警线索”错,原文是“以期发现”。C“雪崩给人类带来的

灾难将可以避免”过予绝对。D“已经有了科学的解释”错,原文只是“或许可以解释”)

8.A(“慢”应解释为“玩忽,轻视”)

9.C(①是盗贼出现的一个原因,④是说明在衣食足的基础上才能对百姓施以道德教化)

lO.D(作者引用孔子的名言,其主要用意是借此说明平息盗贼根本的办法是要根绝盗贼产生的社会土壤)

11.(1)为行么不可以平息呢?但是盗贼产生也有根源,能够阻止它产生的根源,盗贼有什么可令人忧心的呢?

(2)如今百姓衣食不足,徭役赋税不公平,道德教化不开展的原因,是地方官的过失吗?

参考译文:

天下正在忧心盗贼蜂起。有人问我说:“盗贼可以平息吗?”我回答说:“为什么不可以平息呢?但是盗贼产生也有根源,能够阻止它产生的根源,盗贼有什么可令人忧心的呢?”那人又说:“请问盗贼(产生)的根源是什么?”我田答他说:“穿的吃的不足,是盗贼产生的根源;徭役赋税不公平,是盗贼产生的根源;道德教化不开展,是盗贼产生的根源。第一个根源(指衣食不足)被忽视,就会掏别人的腰包开别人的箱柜而成盗贼;第二个根源(指赋税不公)被忽视,就会手拿兵刃抢劫良民而成盗贼;第三个根源(指道徳教化不开展)被忽视,就会攻占城池劫掠百姓而成盗贼。这就是所说的盗贼也有产生的根源。”

富足的年代没有盗贼,是生活无忧;政治修明的年代没有盗贼,是贫富差距不大;教化盛行的年代没有大的社会乱子,是人心顺畅.如今不致力于人人丰衣足食却致力于天下没有盗贼,就像堵住水流却不去堵住它的源头;不致力于“教化”的方法使盗贼受到“感化”却致力于用刑法禁止做盗贼。这是纵火燃烧却要用杯水去扑灭大火。说到法律(的作用):(是)让偷东西者受刑。将伤人者处死,其惩罚的力度够重了;但是盗践却没有因此而平息,并不是不害怕处死。只因想到无法生活下去,以为(与其)眼睁睁等待死亡。不如铤而走险另找生路。说到法律(的规定):(是)让听有能够自首的盗贼,免除他们的罪行,有的还赏赐他们穿戴佩剑,官职和实禄,其恩泽够深了;但是盗贼却不受招安。并非不想活命,只是想到无法安定的生活下去,以为做百姓是太痛苦,当盗贼是太快活。然而不是人民愿意做强盗,而是由于朝廷用不合理的法令逼出来的。盗贼不来自首。也并非他们不想自首,而是由于朝廷用不合理的法令让他们不愿悔过自新。如果衣食向来能满足他们自身需求,礼义廉耻早就充满内心。他们就会唯恐不能列入良民的范圉,哪里还敢如此呢?所以用死威胁他们却不能让他们害怕,用活命劝勉他们却不能使他们感激奋发,那么即使烦劳专管捕逐盗贼的官吏,加重督促逮捕盗贼的科条法令.原本就不会起太大的作用。

现在有关部门不从源头上担忧考虑。如一味依靠惩办州县地方官,这就如同说牧守捕盗不力是有罪当罚,那么朝廷不去正本清源,养成盗贼,不是一样有罪当罚吗。所有百姓经过九年的拼种,就可以储蓄足够三年吃的余粮;有了足够三年吃的余粮,这以后可以把礼义教给他们。如今百姓衣食不足。徭役赋税不公平,道德教化不开展的原因,是地方官的过失吗?我担心这样做(指惩办州县地方官)不会有什么收效,而地方大小官吏都怕因此定为死罪而互相隐瞒:以致动乱事件增多的弊端,几乎又要出现了。所以孔子说:“要我办理诉讼案件,我不过也和其他办案人员一样;根本的办法是要根绝诉讼。”推而广之,也可说:“要我使用军事手段,我不过也和其他将领一样;根本的办法是要根绝战事!”再引申推广,也可以说“要我镇压盗贼,我也过也和其他州县官员一样;根本的办法是要根绝盗贼产生的土壤!”何不也返回到根本的 治理办法去呢?

自从西夏元昊侵扰边境,国内盗贼蜂起。山东一带更加厉害。天子派遣侍御吏督促逮捕,并且对它们加以招安,不能全部平息。于是下令州郡:“盗贼出现却不能捉住,长吏要牵连受罪。”要加重其事的惩处力度。我认为在防备方面做得不够完善,因此写了这篇文章。

12.(1)主要运用了衬托(用冰雪衬托梅之坚毅)、对比(用桃李对比以显示梅之高洁守志)的手法,突出了它耐寒(冰雪林中著此身)、清高(不同桃李混芳尘)、报春(散作乾坤万里春)的特征。

(2)王诗借对梅花形象特征的描写,表达了,坚持理想操守,不与世俗同流合污的思想感情。

杨诗借对梅花吹香破梦的描述,表达了恬然自得的心境和对梅花的无限喜爱之情。

13.(1)山原旷其盈视 川泽纡其骇瞩目 钟鸣鼎食之家 舸舰弥津 青雀黄龙之舳

(2)潮打空城寂寞回 淮水东边旧时月 雁字回时 月满西楼 凌万顷之茫然

14.作者用萤火虫的光亮来衬托夜的透明(干净)、清新、神奇。

15.(1)主要运用了比喻、拟人、排比的修辞手法。

(2)再现了“纯洁的夜”所具有的温暖、纯净、从容的特点,表达了作者对那种离自己已远去的生活状态的深深怀念。

16.现在的夜晚被灯光照耀着。失去了神秘;理代文明使人们觉得失去了自我的空间及心灵的自由。(意思对即可)

17.①“夜”所代表的宁静安详的生活状态离人们越来越远.可望而不可求即 ②表达作者对失去这种生活状态的无奈、失落之情。③照应主题,点明这种生活状态已成为一种历史。

i8。示例:(1)十首奥运歌曲音乐电视的制作工作已经过半。 (2)《永远的朋发》创作阵容大,成最受期待作品。

19.斯蒂芬霍金不是绝望的人 面对身体残疾的处境 他身残志坚 用思想解开了宇宙之谜 勾践不是绝望的人 面对家破国亡的处境 他卧薪尝胆 完成了兴复越国的壮举

20.示例:“嫦娥一号”奔月实现了中国人古老的梦想,见证了中华民族的伟大,作为一名高中生,我感到无比骄激和自豪,我一定要珍惜年华,刻苦学习,勇于刨新,为中华之崛起而奋斗,让中华巨龙永远腾飞在万里高空。

2l.参考2007年全国高考作文评分标准。

〔写作提示〕立意的角度爱:①从“心”和“身体”的和谐统一关系角度;②逆向思维,反弹琵琶:展开想象的翅膀,冲破传统的束缚,开拓创新;③批驳不切实际,异想天开、好离骛远的行为。

[img]

高一数学必修一知识点整理大全

数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。下面是我给大家带来的 高一数学 必修一知识点整理大全,以供大家参考!

高一数学必修一知识点整理大全

一、集合有关概念

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:

1.元素的确定性;

2.元素的互异性;

3.元素的无序性

说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{…}如{我校的 篮球 队员},{太平洋大西洋印度洋北冰洋}

1.用拉丁字母表示集合:A={我校的篮球队员}B={12345}

2.集合的表示 方法 :列举法与描述法。

注意啊:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集N_或N+整数集Z有理数集Q实数集R

关于“属于”的概念

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a:A

列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}

②数学式子描述法:例:不等式x-32的解集是{x?R|x-32}或{x|x-32}

4、集合的分类:

1.有限集含有有限个元素的集合

2.无限集含有无限个元素的集合

3.空集不含任何元素的集合例:{x|x2=-5}

二、集合间的基本关系

1.“包含”关系子集

注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B或集合B不包含集合A记作AB或BA

2.“相等”关系(5≥5,且5≤5,则5=5)

实例:设A={x|x2-1=0}B={-11}“元素相同”

结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

①任何一个集合是它本身的子集。A?A

②真子集:如果A?B且A?B那就说集合A是集合B的真子集,记作AB(或BA)

③如果A?BB?C那么A?C

④如果A?B同时B?A那么A=B

3.不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

三、集合的运算

1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合叫做AB的交集.

记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.

2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做AB的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.

3、交集与并集的性质:A∩A=AA∩φ=φA∩B=B∩A,A∪A=A

A∪φ=AA∪B=B∪A.

4、全集与补集

(1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

记作:CSA即CSA={x?x?S且x?A}

(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。

(3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U

高中数学知识点 总结

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 例如把28分解质因数 28=2×2×7

几个数公有的因数,叫做这几个数的公因数。其中最大的一个,叫做这几个数的最大公因数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公因数,6是它们的最大公因数。 公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:

1和任何自然数互质。 相邻的两个自然数互质。 两个不同的质数互质。

当合数不是质数的倍数时,这个合数和这个质数互质。 两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。

如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。

如果两个数是互质数,它们的最大公因数就是1。 几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、 ??

3的倍数有3、6、9、12、15、18 ?? 其中6、12、18??是2、3的公倍数,6是它们的最小公倍数。。

如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。

高一数学知识点总结

1.函数的奇偶性

(1)若f(x)是偶函数,那么f(x)=f(-x);

(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

2.复合函数的有关问题

(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;

3.函数图像(或方程曲线的对称性)

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;

(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;

4.函数的周期性

(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a0)恒成立,则y=f(x)是周期为2a的周期函数;

(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2|a|的周期函数;

(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4|a|的周期函数;

(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;

(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;

(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;

5.方程k=f(x)有解k∈D(D为f(x)的值域);

6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

7.(1)(a0,a≠1,b0,n∈R+);(2)logaN=(a0,a≠1,b0,b≠1);

(3)logab的符号由口诀“同正异负”记忆;(4)alogaN=N(a0,a≠1,N0);

8.判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

10.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).

11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

12.依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题

13.恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;

数学必修一知识点整理

集合与函数概念

一、集合有关概念

1.集合的含义

2.集合的中元素的三个特性:

(1)元素的确定性如:世界上最高的山

(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:XKb1.Com

非负整数集(即自然数集)记作:N

正整数集:N_或N+

整数集:Z

有理数集:Q

实数集:R

1)列举法:{a,b,c……}

2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{x?R|x-32},{x|x-32}

3)语言描述法:例:{不是直角三角形的三角形}

4)Venn图:

4、集合的分类:

(1)有限集含有有限个元素的集合

(2)无限集含有无限个元素的集合

(3)空集不含任何元素的集合

二、集合间的基本关系

1.“包含”关系—子集

注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

2.“相等”关系:A=B(5≥5,且5≤5,则5=5)

实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”

即:①任何一个集合是它本身的子集。A?A

②真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA)

③如果A?B,B?C,那么A?C

④如果A?B同时B?A那么A=B

3.不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

4.子集个数:

有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集

三、集合的运算

运算类型交集并集补集

定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.

由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).

基本初等函数

一、指数函数

(一)指数与指数幂的运算

1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中1,且∈_.

当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).

当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

注意:当是奇数时,当是偶数时,

2.分数指数幂

正数的分数指数幂的意义,规定:

0的正分数指数幂等于0,0的负分数指数幂没有意义

指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.

3.实数指数幂的运算性质

(二)指数函数及其性质

1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.

注意:指数函数的底数的取值范围,底数不能是负数、零和1.

2、指数函数的图象和性质

函数的应用

1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:

方程有实数根函数的图象与轴有交点函数有零点.

3、函数零点的求法:

求函数的零点:

1(代数法)求方程的实数根;

2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

4、二次函数的零点:

二次函数.

1)△0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.

2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

3)△0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.

高一数学必修一知识点整理大全相关 文章 :

★ 高中数学必修1知识点总结

★ 高一数学必修一知识点归纳

★ 高一数学必修一知识点汇总

★ 高一数学知识点汇总大全

★ 高中数学高一数学必修一知识点

★ 高一数学必修一知识点总结归纳

★ 高中数学必修一知识点总结

★ 高一数学必修1知识点归纳

★ 高一数学必修一知识点总结

★ 高一数学必修一集合知识点归纳

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

全国100所名校单元测试示范卷 高三 高考一轮复习用卷 数学地理政治历史 试题及答案

咱有2012年的高三地理(七)部分答案、开始是甲乙两图的,自然地理。第二题是恐龙什么时候灭绝。。选择题一共22道,昨天老师发的卷子结果没找到答案。今天刚刚讲了一部分。答案如下、

1A 。2C。3D。4C。5C。6B。7B。8B。9C。10C。11C。12B。13C。14A。15C。16A。17A。18D。19D。20D。21B。22C

23:谷底受下沉气流影响,降水少。北地迎风坡降水多。表现林木苍翠,南壁植被稀少。

谁有高中数学必修一的全部知识点整理,一定要全。简洁,明了。

第一章 集合(jihe)与函数概念 一、集合(jihe)有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。 2、集合的中元素的三个特性: 1.元素的确定性; 2.元素的互异性; 3.元素的无序性 说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。 (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。 (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。 (4)集合元素的三个特性使集合本身具有了确定性和整体性。 3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} 1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} 2.集合的表示方法:列举法与描述法。 注意啊:常用数集及其记法: 非负整数集(即自然数集) 记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 关于“属于”的概念 集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 aA 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。 ①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式x-32的解集是{xR| x-32}或{x| x-32} 4、集合的分类: 1.有限集 含有有限个元素的集合 2.无限集 含有无限个元素的集合 3.空集 不含任何元素的集合 例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A 2.“相等”关系(5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同” 结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B ① 任何一个集合是它本身的子集。AA ②真子集:如果AB,且A B那就说集合A是集合B的真子集,记作A B(或B A) ③如果 AB, BC ,那么 AC ④ 如果AB 同时 BA 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 三、集合的运算 1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集. 记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}. 2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}. 3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A. 4、全集与补集 (1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集) 记作: CSA 即 CSA ={x  xS且 xA} (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。 (3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U 二、函数的有关概念 1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 注意:○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3 函数的定义域、值域要写成集合或区间的形式. 定义域补充 能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义. (又注意:求出不等式组的解集即为函数的定义域。) 2. 构成函数的三要素:定义域、对应关系和值域 再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) (见课本21页相关例2) 值域补充 (1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。 3. 函数图象知识归纳 (1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象. C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . 即记为C={ P(x,y) | y= f(x) , x∈A } 图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。 (2) 画法 A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来. B、图象变换法(请参考必修4三角函数) 常用变换方法有三种,即平移变换、伸缩变换和对称变换 (3)作用: 1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。 发现解题中的错误。 4.快去了解区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示. 5.什么叫做映射 一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作“f:A B” 给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象 说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。 6. 常用的函数表示法及各自的优点: ○1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;○2 解析法:必须注明函数的定义域;○3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;○4 列表法:选取的自变量要有代表性,应能反映定义域的特征. 注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值 补充一:分段函数 (参见课本P24-25) 在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集. 补充二:复合函数 如果y=f(u),(u∈M),u=g(x),(x∈A),则 y=f[g(x)]=F(x),(x∈A) 称为f、g的复合函数。 例如: y=2sinX y=2cos(X2+1) 7.函数单调性 (1).增函数 设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在区间D上是增函数。区间D称为y=f(x)的单调增区间 (睇清楚课本单调区间的概念) 如果对于区间D上的任意两个自变量的值x1,x2,当x1x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间. 注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D内的任意两个自变量x1,x2;当x1x2时,总有f(x1)f(x2) 。 (2) 图象的特点 如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的. (3).函数单调区间与单调性的判定方法 (A) 定义法: ○1 任取x1,x2∈D,且x1x2;○2 作差f(x1)-f(x2);○3 变形(通常是因式分解和配方);○4 定号(即判断差f(x1)-f(x2)的正负);○5 下结论(指出函数f(x)在给定的区间D上的单调性). (B)图象法(从图象上看升降)_ (C)复合函数的单调性 复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律如下: 函数 单调性 u=g(x) 增 增 减 减 y=f(u) 增 减 增 减 y=f[g(x)] 增 减 减 增 注意:1、函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 2、还记得我们在选修里学习简单易行的导数法判定单调性吗? 8.函数的奇偶性 (1)偶函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数. (2).奇函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数. 注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。 ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称). (3)具有奇偶性的函数的图象的特征 偶函数的图象关于y轴对称;奇函数的图象关于原点对称. 总结:利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称;○2 确定f(-x)与f(x)的关系;○3 作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 注意啊:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)有时判定f(-x)=±f(x)比较困难,可考虑根据是否有f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 . 9、函数的解析表达式 (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. (2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x) 10.函数最大(小)值(定义见课本p36页) ○1 利用二次函数的性质(配方法)求函数的最大(小)值○2 利用图象求函数的最大(小)值○3 利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b); 第二章 基本初等函数 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果 ,那么 叫做 的 次方根(n th root),其中 1,且 ∈ *. 当 是奇数时,正数的 次方根是一个正数,负数的 次方根是一个负数.此时, 的 次方根用符号 表示.式子 叫做根式(radical),这里 叫做根指数(radical exponent), 叫做被开方数(radicand). 当 是偶数时,正数的 次方根有两个,这两个数互为相反数.此时,正数 的正的 次方根用符号 表示,负的 次方根用符号- 表示.正的 次方根与负的 次方根可以合并成± ( 0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作 。 注意:当 是奇数时, ,当 是偶数时, 2.分数指数幂 正数的分数指数幂的意义,规定: , 0的正分数指数幂等于0,0的负分数指数幂没有意义 指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂. 3.实数指数幂的运算性质 (1) • ; (2) ; (3) . (二)指数函数及其性质 1、指数函数的概念:一般地,函数 叫做指数函数(exponential function),其中x是自变量,函数的定义域为R. 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 a1 0a1 图象特征 函数性质 向x、y轴正负方向无限延伸 函数的定义域为R 图象关于原点和y轴不对称 非奇非偶函数 函数图象都在x轴上方 函数的值域为R+ 函数图象都过定点(0,1) 自左向右看, 图象逐渐上升 自左向右看, 图象逐渐下降 增函数 减函数 在第一象限内的图象纵坐标都大于1 在第一象限内的图象纵坐标都小于1 在第二象限内的图象纵坐标都小于1 在第二象限内的图象纵坐标都大于1 图象上升趋势是越来越陡 图象上升趋势是越来越缓 函数值开始增长较慢,到了某一值后增长速度极快; 函数值开始减小极快,到了某一值后减小速度较慢; 注意:利用函数的单调性,结合图象还可以看出: (1)在[a,b]上, 值域是 或 ; (2)若 ,则 ; 取遍所有正数当且仅当 ; (3)对于指数函数 ,总有 ; (4)当 时,若 ,则 ; 二、对数函数 (一)对数 1.对数的概念:一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( — 底数, — 真数, — 对数式) 说明:○1 注意底数的限制 ,且 ; ○2 ; ○3 注意对数的书写格式. 两个重要对数: ○1 常用对数:以10为底的对数 ; ○2 自然对数:以无理数 为底的对数的对数 . 2、 对数式与指数式的互化 对数式 指数式 对数底数 ← → 幂底数 对数 ← → 指数 真数 ← → 幂 (二)对数的运算性质 如果 ,且 , , ,那么: ○1 • + ; ○2 - ; ○3 . 注意:换底公式 ( ,且 ; ,且 ; ). 利用换底公式推导下面的结论(1) ;(2) . (二)对数函数 1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞). 注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。 如: , 都不是对数函数,而只能称其为对数型函数. ○2 对数函数对底数的限制: ,且 . 2、对数函数的性质: a1 0a1 图象特征 函数性质 函数图象都在y轴右侧 函数的定义域为(0,+∞) 图象关于原点和y轴不对称 非奇非偶函数 向y轴正负方向无限延伸 函数的值域为R 函数图象都过定点(1,0) 自左向右看, 图象逐渐上升 自左向右看, 图象逐渐下降 增函数 减函数 第一象限的图象纵坐标都大于0 第一象限的图象纵坐标都大于0 第二象限的图象纵坐标都小于0 第二象限的图象纵坐标都小于0 (三)幂函数 1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数. 2、幂函数性质归纳. (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸; (3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴. 第三章 函数的应用 一、方程的根与函数的零点 1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。 2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。即: 方程 有实数根 函数 的图象与 轴有交点 函数 有零点. 3、函数零点的求法: 求函数 的零点: ○1 (代数法)求方程 的实数根; ○2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点: 二次函数 . 1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点. 2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点. 3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点

评论(0)91

提问者 的感言: 谢谢你 2011-06-19

其他回答(1)

热心问友 2011-06-19

第一部分:代数

(一)集合和简易逻辑

1.了解集合的意义及其表示方法。了解空集、全集、子集、交集、并集、补集的概念及其表示方法。了解符号 的含义,能运用这些符号表示集合与集合、元素与集合的关系。

2.了解充分条件、必要条件、充分必要条件的概念。

(二)函数

1.了解函数的概念,会求一些常见函数的定义域。

2.了解函数的单调性和奇偶性的概念,会判断一些常见函数的单调性和奇偶性。

3.理解一次函数、反比例函数的概念,掌握它们的图像和性质,会求它们的解析式。

4.理解二次函数的概念,掌握它的图像和性质以及函数 与 的图像间的关系;会求二次函数的解析式及最大值或最小值。能运用二次函数的知识解决在关问题。

5.理解分数指数幂的概念,掌握有理指数幂的运算性质。掌握指数函数的概念、图像和性质。

6.理解对数的概念,掌握对数的运算性质。掌握对数函数的概念、图像的性质。

(三)不等式和不等式组

1.了解不等式的性质。会解一元一次不等式、一元一次不等式组和可化为一元一次不等式组的不等式,会解一元二次不等式。会表示等式或不等式组的解集。

2.会解形如 和 的绝对值不等式。

(四)数列

1.了解数列及其通项、前n项和的概念。

2.理解等差数列、等差中项的概念,会运用等差数列的通项公式、前n项和的公式解决有关问题。

3.理解等比数列、等比中项的概念,会运用等比数列的通项公式、前n项和的公式解决有关问题。

(五)导数

1.理解导数的概念及其几何意义。

2.掌握函数 ( 为常数), 的导数公式,会求多项式函数的导数。

3.了解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值。

4.会求有关曲线的切线方程,会用导数求简单实际问题的最大值与最小值。

第二部分:三角

(一)三角函数及其有关概念

1.了解任意角的概念,理解象限角和终边相同的角的概念。

2.了解弧度的概念,会进行弧度与角度的换算。

3.理解任意角三角函数的概念。了解三角函数在各象限的符号和特殊角的三角函数值。

(二)三角函数式的变换

1.掌握同角三角函数间的基本关系式、诱导公式,会运用它们进行计算、化简和证明。

2.掌握两角和、两角差、二倍角的正弦、余弦、正切的公式,会用它们进行计算、化简和证明。

(三)三角函数的图像和性质

1.掌握正弦函数、余弦函数的图像和性质,会用这两个函数的性质(定义域、值域、周期性、奇偶性和单调性)解决有关问题。

2.了解正切函数的图像和性质。

3.会求函数 的周期、最大值和最小值。

4.会由已知三角函数值求角,并会用符号 表示。

(四)解三角形

1.掌握直角三角形的边角关系,会用它们解直角三角形。

2.掌握正弦定理和余弦定理,会用它们解斜三角形。

第三部分:平面解析几何

(一)平面向量

1.理解向量的概念,掌握向量的几何表示,了解共线向量的概念。

2.掌握向量的加、减运算。掌握数乘向量的运算。了解两个向量共线和条件。

3.了解平面向量的分解定理。

4.掌握向量的数量积运算,了解其几何意义和处理长度、角度及垂直问题的应用。了解向量垂直的条件。

5.了解向量的直角坐标的概念,掌握向量的坐标运算。

6.掌握平面内两点间的距离公式、线段的中点公式和平移公式。

(二)直线

1.理解直线的倾斜角和斜率的概念,会求直线的斜率。

2.会求直线方程,会用直线方程解决有关问题。

3.了解两条直线平行与垂直的条件以及点到直线的距离公式,会用它们解决简单的问题。

(三)圆锥曲线

1.了解曲线和方程的关系,会求两条曲线的交点。

2.掌握圆的标准方程的一般方程以及直线与圆的位置关系,能灵活运用它们解决有关问题。

3.理解椭圆、双曲线、抛物线的概念,掌握它们的标准方程和性质,会用它们解决有关问题。

第四部分:概率与统计初步

(一)排列、组合

1.了解分类计数原理和分步计数原理。

2.了解排列、组合的意义,会用排列数、组合数的计算公式。

3.会解排列、组合的简单应用题。

(二)概率初步

1.了解随机事件及其概率的意义。

2.了解等可能性事件的概率的意义,会用计数方法和排列组合基本公式计算一些等可能性事件的概率。

3.了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率。

4.了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率。

5.会计算事件在n次独立重复试验中恰好发生k次的概率。

(三)统计初步

了解总体和样本的概念,会计算样本平均数和样本方差。

求数学试卷答案 金太阳全国100所名校单元测试卷 高一下 12卷的 急需

网上有,在百度里输入“金太阳”三个字,然后根据自己的情况找相应的试卷答案。不要急,最好还是自己做一遍吧。。。

关于100所名校数学必修一和100所名校高一数学卷的介绍到此就结束了,不知道同学们从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

本文转载自互联网,如有侵权,联系删除