本篇文章给同学们谈谈勾股定理周测卷,以及勾股定理数学试卷对应的知识点,希望对各位同学有所帮助,不要忘记分享给你的朋友哦!
本文目录一览:
- 1、勾股定理试题及答案
- 2、八年级数学上册勾股定理单元测试卷
- 3、关于勾股定理的数学题
- 4、勾股定理十道典型题是什么?
- 5、给我找一下,14题这种类型的初二勾股定理的题。一定是这种相似类型的题啊,带解题答案步骤,谢谢
- 6、谁能帮我出一道关于勾股定理的题?
勾股定理试题及答案
《勾股定理》单元测试
(时间90分,满分120分)
一、填空题(每空3分,计30分)
1、在Rt△ABC中,∠C=90°(1)若a=5,b=12,则c=____;
(2)b=8,c=17,则S△ABC=____。
2、如果梯子底端离建筑物9m,那么15m长的梯子可达到建筑物的高度是__。
3、若一个三角形的三边之比为45∶28∶53,则这个三角形是____(按角分类)。
4、在△ABC中,若其三条边的长度分别为9、12、15,则以两个这样的三角形所拼成的长方形的面积是____。
5、△ABC中,AB=AC=17cm,BC=16cm,AD⊥BC于D,则AD=____。
6、直角三角形的三边长为连续偶数,则其周长为____。
7、下列各图中所示的线段的长度或正方形的面积为多少。(注:下列各图中的三角形均为直角三角形)
答:A=____,y=____,B=____。
二、选择题(每题4分,计20分)
1、在Rt△ABC中,∠C=90,周长为60,斜边与一条直角边之比为13∶5,则这个三角形三边长分别是()
A、5、4、3、;B、13、12、5;C、10、8、6;D、26、24、10
2、下列各组线段中的三个长度①9、12、15;②7、24、25;③32、42、52;④3a、4a、5a(a0);⑤m2-n2、2mn、m2+n2(m、n为正整数,且mn)其中可以构成直角三角形的有()
A、5组;B、4组;C、3组;D、2组
3、在同一平面上把三边BC=3,AC=4、AB=5的三角形沿最长边AB翻折后得到△ABC′,则CC′的长等于()
A、;B、;C、;D、
4、下列结论错误的是()
A、三个角度之比为1∶2∶3的三角形是直角三角形;
B、三条边长之比为3∶4∶5的三角形是直角三角形;
C、三条边长之比为8∶16∶17的三角形是直角三角形;
D、三个角度之比为1∶1∶2的三角形是直角三角形。
5、直角三角形有一条直角边的长为11,另外两边的长也是正整数,那么此三角形的周长是()
A、120;B、121;C、132;D、123
三、做一做(每题10分,计40分)
1、如图,每个小方格都是边长为1的正方形,求图中格点四边形ABCD的面积。
2、如图、为修通铁路需凿通隧道AC,测得∠A=50°,∠B=40°,AB=5km,BC=4km,若每天开凿隧道0.3km,试计算需要几天才能把隧道AC凿通?
3、在某一平地上,有一棵树高8米的大树,一棵树高3米的小树,两树之间相距12米。今一只小鸟在其中一棵树的树梢上,要飞到另一棵树的树梢上,问它飞行的最短距离是多少?(画出草图然后解答)
4、如图所示的一块地,∠ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,求这块地的面积。
四、创新题(本题10分)
观察下列表格:
列举
猜想
3、4、5
32=4+5
5、12、13
52=12+13
7、24、25
72=24+25
……
……
13、b、c
132=b+c
请你结合该表格及相关知识,求出b、c的值。
五、附加题试一试(本题20分)
如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?
[img]八年级数学上册勾股定理单元测试卷
勾股定理是三角形图形学习的最基础的知识点,也是解题的必备知识点,下面是我给大家带来的 八年级 数学上册《第1章 勾股定理》单元测试卷,希望能够帮助到大家!
八年级数学上册《第1章 勾股定理》单元测试卷
一、选择题
1.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()
A.如果∠C﹣∠B=∠A,则△ABC是直角三角形
B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°
C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形
D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形
2.下列各组数的三个数,可作为三边长构成直角三角形的是()
A.1,2,3 B.32,42,52 C. , , D.0.3,0.4,0.5
3.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为()
A.90 B.100 C.110 D.121
4.在Rt△ABC中,斜边长BC=3,AB2+AC2+BC2的值为()
A.18 B.9 C.6 D.无法计算
5.在Rt△ABC中,a,b,c为△ABC三边长,则下列关系正确的是()
A.a2+b2=c2 B.a2+c2=b2
C.b2+c2=a2 D.以上关系都有可能
6.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()
A.42 B.32 C.42或32 D.37或33
二.填空题
7.已知a,b,c分别是Rt△ABC的两条直角边长和斜边长,且a+b=14,c=10,则S△ABC=.
8.小强在操场上向东走200m后,又走了150m,再走250m回到原地,小强在操场上向东走了200m后,又走150m的方向是.
9.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2等于.
三.解答题
10.如图,AC⊥CE,AD=BE=13,BC=5,DE=7,求AC.
11.如图,有一个长方形的场院ABCD,其中AB=9m,AD=12m,在B处竖直立着一根电线杆,在电线杆上距地面8m的E处有一盏电灯.点D到灯E的距离是多少?
12.如图是一束平行的阳光从教室窗户射入的平面示意图,小强同学测量出BC=1m,
NC= m,BN= m,AC=4.5m,MC=6m,求MA的长.
13.如图,长方体的长为15,宽为10,高为20,点B离点C的距离是5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?
14.如图,在长方形纸片ABCD中,AB=18,把长方形纸片沿直线AC折叠,点B落在点E处,AE交DC于点F,若AF=13,求AD的长.
15.如图,对任意符合条件的直角三角形BAC,绕其锐角顶点逆时针旋转90°得△DAE,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和,根据图形写出一种证明勾股定理的 方法 .
北师大新版八年级数学上册《第1章 勾股定理》2016年单元测试卷
参考答案与试题解析
一、选择题
1.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()
A.如果∠C﹣∠B=∠A,则△ABC是直角三角形
B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°
C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形
D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形
【考点】KS:勾股定理的逆定理;K7:三角形内角和定理.
【分析】直角三角形的判定方法有:①求得一个角为90°,②利用勾股定理的逆定理.
【解答】解:A、根据三角形内角和定理,可求出角C为90度,故正确;
B、解得应为∠B=90度,故错误;
C、化简后有c2=a2+b2,根据勾股定理,则△ABC是直角三角形,故正确;
D、设三角分别为5x,3x,2x,根据三角形内角和定理可求得三外角分别为:90度,36度,54度,则△ABC是直角三角形,故正确.
故选B.
【点评】本题考查了直角三角形的判定.
2.下列各组数的三个数,可作为三边长构成直角三角形的是()
A.1,2,3 B.32,42,52 C. , , D.0.3,0.4,0.5
【考点】KS:勾股定理的逆定理.
【分析】根据勾股定理的逆定理即可判断.
【解答】解:∵0.32+0.42=0.25,0.52=0.25,
∴0.32+0.42=0.52,
∴0.3,0.4,0.5能构成直角三角形的三边.
故选D.
【点评】本题考查勾股定理的逆定理,解题的关键是记住勾股定理的逆定理的解题格式,属于中考常考题型.
3.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为()
A.90 B.100 C.110 D.121
【考点】KR:勾股定理的证明.
【专题】1 :常规题型;16 :压轴题.
【分析】延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.
【解答】解:如图,延长AB交KF于点O,延长AC交GM于点P,
所以四边形AOLP是正方形,
边长AO=AB+AC=3+4=7,
所以KL=3+7=10,LM=4+7=11,
因此矩形KLMJ的面积为10×11=110.
故选:C.
【点评】本题考查了勾股定理的证明,作出辅助线构造出正方形是解题的关键.
4.在Rt△ABC中,斜边长BC=3,AB2+AC2+BC2的值为()
A.18 B.9 C.6 D.无法计算
【考点】KQ:勾股定理.
【分析】利用勾股定理将AB2+AC2转化为BC2,再求值.
【解答】解:∵Rt△ABC中,BC为斜边,
∴AB2+AC2=BC2,
∴AB2+AC2+BC2=2BC2=2×32=18.
故选A.
【点评】本题考查了勾股定理.正确判断直角三角形的直角边、斜边,利用勾股定理得出等式是解题的关键.
5.在Rt△ABC中,a,b,c为△ABC三边长,则下列关系正确的是()
A.a2+b2=c2 B.a2+c2=b2
C.b2+c2=a2 D.以上关系都有可能
【考点】KQ:勾股定理.
【分析】根据勾股定理,分∠C是直角,∠B是直角,∠A是直角,三种情况讨论可得a,b,c之间的关系.
【解答】解:在Rt△ABC中,a,b,c为△ABC三边长,
∠C是直角,则有a2+b2=c2;
∠B是直角,则有a2+c2=b2;
∠A是直角,则有b2+c2=a2.
故选:D.
【点评】考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
6.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()
A.42 B.32 C.42或32 D.37或33
【考点】KQ:勾股定理.
【分析】本题应分两种情况进行讨论:
(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;
(2)当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相减即为BC的长,从而可将△ABC的周长求出.
【解答】解:此题应分两种情况说明:
(1)当△ABC为锐角三角形时,在Rt△ABD中,
BD= = =9,
在Rt△ACD中,
CD= = =5
∴BC=5+9=14
∴△ABC的周长为:15+13+14=42;
(2)当△ABC为钝角三角形时,
在Rt△ABD中,BD= = =9,
在Rt△ACD中,CD= = =5,
∴BC=9﹣5=4.
∴△ABC的周长为:15+13+4=32
∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.
故选C.
【点评】此题考查了勾股定理及解直角三角形的知识,在解本题时应分两种情况进行讨论,易错点在于漏解,同学们思考问题一定要全面,有一定难度.
二.填空题
7.已知a,b,c分别是Rt△ABC的两条直角边长和斜边长,且a+b=14,c=10,则S△ABC= 24 .
【考点】KQ:勾股定理;K3:三角形的面积.
【分析】直接利用勾股定理结合已知得出关于b的等式,进而求出答案.
【解答】解:∵a,b,c分别是Rt△ABC的两条直角边长和斜边长,且a+b=14,c=10,
∴a=14﹣b,则(14﹣b)2+b2=c2,
故(14﹣b)2+b2=102,
解得:b1=6,b2=8,
则a1=8,a2=6,
即S△ABC= ab= ×6×8=24.
故答案为:24.
【点评】此题主要考查了勾股定理以及三角形面积求法,正确得出直角边长是解题关键.
8.小强在操场上向东走200m后,又走了150m,再走250m回到原地,小强在操场上向东走了200m后,又走150m的方向是 北或南 .
【考点】KU:勾股定理的应用.
【分析】据题意作出图形,利用勾股定理的逆定理判定直角三角形即可确定答案.
【解答】解:解:如图,AB=200米,BC=BD=150米,AC=AD=250米,
根据2002+1502=2502得:∠ABC=∠ABD=90°,
∴小强在操场上向东走了200m后,又走150m的方向是向北或向南,
故答案为:向北或向南.
故答案为北或南
【点评】本题考查了勾股定理的应用,解题的关键是根据题意作出图形,难度中等.
9.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2等于 2π .
【考点】KQ:勾股定理.
【专题】11 :计算题.
【分析】根据半圆面积公式结合勾股定理,知S1+S2等于以斜边为直径的半圆面积.
【解答】解:S1= π( )2= πAC2,S2= πBC2,
所以S1+S2= π(AC2+BC2)= πAB2=2π.
故答案为:2π.
【点评】此题根据半圆的面积公式以及勾股定理证明:以直角三角形的两条直角边为直径的半圆面积和等于以斜边为直径的半圆面积,重在验证勾股定理.
三.解答题
10.如图,AC⊥CE,AD=BE=13,BC=5,DE=7,求AC.
【考点】KQ:勾股定理.
【分析】由已知可以利用勾股定理求得EC的长,从而可得到CD的长,再根据勾股定理求得AC的长即可.
【解答】解:∵AC⊥CE,AD=BE=13,BC=5,DE=7,
∴EC= =12,
∵DE=7,
∴CD=5,
∴AC= =12.
【点评】此题考查学生对直角三角形的性质及勾股定理的运用.
11.如图,有一个长方形的场院ABCD,其中AB=9m,AD=12m,在B处竖直立着一根电线杆,在电线杆上距地面8m的E处有一盏电灯.点D到灯E的距离是多少?
【考点】KU:勾股定理的应用.
【分析】在Rt△ABD中求出BD,然后在Rt△EBD中利用勾股定理即可得出DE的长度.
【解答】解:在Rt△BAD中,∠BAD=90°, 米,
在Rt△EBD中,∠EBD=90°, 米.
故点D到灯E的距离是17米.
【点评】本题考查了勾股定理的应用,属于基础题,解答本题的关键是熟练掌握勾股定理的表达式.
12.如图是一束平行的阳光从教室窗户射入的平面示意图,小强同学测量出BC=1m,
NC= m,BN= m,AC=4.5m,MC=6m,求MA的长.
【考点】KU:勾股定理的应用.
【分析】先根据勾股定理的逆定理判断出△BCN的形状,再由勾股定理即可得出结论.
【解答】解:∵BC=1m,NC= m,BN= m,
∴BC2=1,NC2= ,BN2= ,
∴BC2+NC2=BN2,
∴AC⊥MC.
在Rt△ACM中,
∵AC=4.5m,MC=6m,MA2=AC2+CM2=56.25,
∴MA=7.5 m.
【点评】本题考查的是勾股定理的应用,先根据题意判断出AC⊥MC是解答此题的关键.
13.如图,长方体的长为15,宽为10,高为20,点B离点C的距离是5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?
【考点】KV:平面展开﹣最短路径问题.
【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体侧面展开,然后利用两点之间线段最短解答.
【解答】解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如第1个图:
∵长方体的宽为10,高为20,点B离点C的距离是5,
∴BD=CD+BC=10+5=15,AD=20,
在直角三角形ABD中,根据勾股定理得:
∴AB= = =25;
只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如第2个图:
∵长方体的宽为10,高为20,点B离点C的距离是5,
∴BD=CD+BC=20+5=25,AD=10,
在直角三角形ABD中,根据勾股定理得:
∴AB= = =5 ;
只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如第3个图:
∵长方体的宽为10,高为20,点B离点C的距离是5,
∴AC=CD+AD=20+10=30,
在直角三角形ABC中,根据勾股定理得:
∴AB= = =5 ;
∵255 ,
∴蚂蚁爬行的最短距离是25.
【点评】本题主要考查两点之间线段最短.
14.如图,在长方形纸片ABCD中,AB=18,把长方形纸片沿直线AC折叠,点B落在点E处,AE交DC于点F,若AF=13,求AD的长.
【考点】PB:翻折变换(折叠问题).
【分析】由折叠得:∠EAC=∠BAC,AE=AB=18,根据平行线性质得:AF=FC=13,再求出EF=5,利用勾股定理求出EC的长,即AD的长.
【解答】解:由折叠得:∠EAC=∠BAC,AE=AB=18,
∵四边形ABCD为长方形,
∴DC∥AB,
∴∠DCA=∠BAC,
∴∠EAC=∠DCA,
∴FC=AF=13,
∵AB=18,AF=13,
∴EF=18﹣13=5,
∵∠E=∠B=90°,
∴EC= =12,
∵AD=BC=EC,
∴AD=12.
【点评】本题是折叠问题,考查了长方形、折叠的性质,难度不大;属于常考题型,熟练掌握折叠前后的两个对应角相等;与平行线的内错角相等得出等腰三角形,根据等角对等边,求出边的长,利用勾股定理解决问题.
15.如图,对任意符合条件的直角三角形BAC,绕其锐角顶点逆时针旋转90°得△DAE,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和,根据图形写出一种证明勾股定理的方法.
【考点】KR:勾股定理的证明.
【分析】证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和,化简整理得到勾股定理.
【解答】解:由图可得:
正方形ACFD的面积=四边形ABFE的面积=Rt△BAE和Rt△BFE的面积之和,
即S正方形ACFD=S△BAE+S△BFE,
∴b2= c2+ ,
整理得:a2+b2=c2.
【点评】本题主要考查了勾股定理的证明,勾股定理的证明方法有很多种,一般采用拼图的方法证明.在解题时注意:先利用拼图的方法拼图,然后再利用面积相等,证明勾股定理.
关于勾股定理的数学题
勾股定理是比较简单的知识点了,关键是要灵活利用a2+b2=c2。以下是我粘过来的,希望对你有所帮助吧。新人教版八年级下册勾股定理全章知识点和典型例习题一、基础知识点:1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为,,斜边为,那么勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为大正方形面积为 所以方法三:,,化简得证 3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在中,,则,,②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理 如果三角形三边长,,满足,那么这个三角形是直角三角形,其中为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以,,为三边的三角形是直角三角形;若,时,以,,为三边的三角形是钝角三角形;若,时,以,,为三边的三角形是锐角三角形;②定理中,,及只是一种表现形式,不可认为是唯一的,如若三角形三边长,,满足,那么以,,为三边的三角形是直角三角形,但是为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即中,,,为正整数时,称,,为一组勾股数②记住常见的勾股数可以提高解题速度,如;;;等③用含字母的代数式表示组勾股数: (为正整数);(为正整数)(,为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:10、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。二、经典例题精讲题型一:直接考查勾股定理例1.在中,. ⑴已知,.求的长⑵已知,,求的长分析:直接应用勾股定理解:⑴⑵题型二:利用勾股定理测量长度例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米?解析:这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,.已知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理!根据勾股定理AC2+BC2=AB2, 即AC2+92=152,所以AC2=144,所以AC=12.例题2 如图(8),水池中离岸边D点1.5米的C处,直立长着一根芦苇,出水部分BC的长是0.5米,把芦苇拉到岸边,它的顶端B恰好落到D点,并求水池的深度AC.解析:同例题1一样,先将实物模型转化为数学模型,如图2. 由题意可知△ACD中,∠ACD=90?SPAN,在Rt△ACD中,只知道CD=1.5,这是典型的利用勾股定理“知二求一”的类型。标准解题步骤如下(仅供参考):解:如图2,根据勾股定理,AC2+CD2=AD2设水深AC= x米,那么AD=AB=AC+CB=x+0.5x2+1.52=( x+0.5)2解之得x=2.故水深为2米.题型三:勾股定理和逆定理并用——例题3 如图3,正方形ABCD中,E是BC边上的中点,F是AB上一点,且那么△DEF是直角三角形吗?为什么?解析:这道题把很多条件都隐藏了,乍一看有点摸不着头脑。仔细读题会意可以发现规律,没有任何条件,我们也可以开创条件,由可以设AB=4a,那么BE=CE=2 a,AF=3 a,BF= a,那么在Rt△AFD 、Rt△BEF和 Rt△CDE中,分别利用勾股定理求出DF,EF和DE的长,反过来再利用勾股定理逆定理去判断△DEF是否是直角三角形。 详细解题步骤如下:解:设正方形ABCD的边长为4a,则BE=CE=2 a,AF=3 a,BF= a在Rt△CDE中,DE2=CD2+CE2=(4a)2+(2 a)2=20 a2同理EF2=5a2, DF2=25a2在△DEF中,EF2+ DE2=5a2+ 20a2=25a2=DF2 ∴△DEF是直角三角形,且∠DEF=90?SPAN.注:本题利用了四次勾股定理,是掌握勾股定理的必练习题。题型四:利用勾股定理求线段长度——例题4 如图4,已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.解析:解题之前先弄清楚折叠中的不变量。合理设元是关键。详细解题过程如下:解:根据题意得Rt△ADE≌Rt△AEF∴∠AFE=90?SPAN, AF=10cm, EF=DE设CE=xcm,则DE=EF=CD-CE=8-x在Rt△ABF中由勾股定理得:AB2+BF2=AF2,即82+BF2=102,∴BF=6cm∴CF=BC-BF=10-6=4(cm)在Rt△ECF中由勾股定理可得:EF2=CE2+CF2,即(8-x) 2=x2+42∴64-16x+x2=2+16∴x=3(cm),即CE=3 cm注:本题接下来还可以折痕的长度和求重叠部分的面积。题型五:利用勾股定理逆定理判断垂直——例题5 如图5,王师傅想要检测桌子的表面AD边是否垂直与AB边和CD边,他测得AD=80cm,AB=60cm,BD=100cm,AD边与AB边垂直吗?怎样去验证AD边与CD边是否垂直?解析:由于实物一般比较大,长度不容易用直尺来方便测量。我们通常截取部分长度来验证。如图4,矩形ABCD表示桌面形状,在AB上截取AM=12cm,在AD上截取AN=9cm(想想为什么要设为这两个长度?),连结MN,测量MN的长度。①如果MN=15,则AM2+AN2=MN2,所以AD边与AB边垂直;②如果MN=a≠15,则92+122=81+144=225, a2≠225,即92+122≠ a2,所以∠A不是直角。利用勾股定理解决实际问题—— 例题6 有一个传感器控制的灯,安装在门上方,离地高4.5米的墙上,任何东西只要移至5米以内,灯就自动打开,一个身高1.5米的学生,要走到离门多远的地方灯刚好打开?解析:首先要弄清楚人走过去,是头先距离灯5米还是脚先距离灯5米,可想而知应该是头先距离灯5米。转化为数学模型,如图6 所示,A点表示控制灯,BM表示人的高度,BC∥MN,BC⊥AN当头(B点)距离A有5米时,求BC的长度。已知AN=4.5米,所以AC=3米,由勾股定理,可计算BC=4米.即使要走到离门4米的时候灯刚好打开。题型六:旋转问题:例1、如图,△ABC是直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,若AP=3,求PP′的长。变式1:如图,P是等边三角形ABC内一点,PA=2,PB=,PC=4,求△ABC的边长.分析:利用旋转变换,将△BPA绕点B逆时针选择60埃跸叨渭械酵桓鋈切沃校?/SPAN根据它们的数量关系,由勾股定理可知这是一个直角三角形. 变式2、如图,△ABC为等腰直角三角形,∠BAC=90埃?SPANE、F是BC上的点,且∠EAF=45埃?/SPAN试探究间的关系,并说明理由. 题型七:关于翻折问题例1、如图,矩形纸片ABCD的边AB=10cm,BC=6cm,E为BC上一点,将矩形纸片沿AE折叠,点B恰好落在CD边上的点G处,求BE的长.变式:如图,AD是△ABC的中线,∠ADC=45埃选?/SPANADC沿直线AD翻折,点C落在点C’的位置,BC=4,求BC’的长.题型八:关于勾股定理在实际中的应用:例1、如图,公路MN和公路PQ在P点处交汇,点A处有一所中学,AP=160米,点A到公路MN的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少? 题型九:关于最短性问题例5、如右图1-19,壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A处,它发现在自己的正上方油罐上边缘的B处有一只害虫,便决定捕捉这只害虫,为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从背后对害虫进行突然袭击.结果,壁虎的偷袭得到成功,获得了一顿美餐.请问壁虎至少要爬行多少路程才能捕到害虫?(π取3.14,结果保留1位小数,可以用计算器计算)变式:如图为一棱长为3cm的正方体,把所有面都分为9个小正方形,其边长都是1cm,假设一只蚂蚁每秒爬行2cm,则它从下地面A点沿表面爬行至右侧面的B点,最少要花几秒钟?三、课后训练:一、填空题1.如图(1),在高2米,坡角为30暗穆ヌ荼砻嫫痰靥海靥旱某ぶ辽傩?/SPAN________米. 图(1)2.种盛饮料的圆柱形杯(如图),测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做㎝。3.已知:如图,△ABC中,∠C = 90?/SPAN,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且BC = 8cm,CA = 6cm,则点O到三边AB,AC和BC的距离分别等于cm4.在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A处。另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高_____________________米。5.如图是一个三级台阶,它的每一级的长宽和高分别为20dm、3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是_____________.二、选择题1.已知一个Rt△的两边长分别为3和4,则第三边长的平方是() A、25 B、14 C、7 D、7或252.Rt△一直角边的长为11,另两边为自然数,则Rt△的周长为() A、121 B、120 C、132 D、不能确定3.如果Rt△两直角边的比为5∶12,则斜边上的高与斜边的比为() A、60∶13 B、5∶12 C、12∶13 D、60∶1694.已知Rt△ABC中,∠C=90埃?SPANa+b=14cm,c=10cm,则Rt△ABC的面积是() A、24cm2 B、36cm2 C、48cm2 D、60cm25.等腰三角形底边上的高为8,周长为32,则三角形的面积为() A、56 B、48 C、40 D、326.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要() A、450a元 B、225a 元 C、150a元 D、300a元7.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为() A、6cm2 B、8cm2 C、10cm2 D、12cm28.在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为A.42 B.32 C.42或32 D.37或339. 如图,正方形网格中的△ABC,若小方格边长为1,则△ABC是 ( )(A)直角三角形 (B)锐角三角形 (C)钝角三角形(D)以上答案都不对三、计算1、如图,A、B是笔直公路l同侧的两个村庄,且两个村庄到直路的距离分别是300m和500m,两村庄之间的距离为d(已知d2=400000m2),现要在公路上建一汽车停靠站,使两村到停靠站的距离之和最小。问最小是多少?2、如图1-3-11,有一块塑料矩形模板ABCD,长为10cm,宽为4cm,将你手中足够大的直角三角板 PHF 的直角顶点P落在AD边上(不与A、D重合),在AD上适当移动三角板顶点P:①能否使你的三角板两直角边分别通过点B与点C?若能,请你求出这时 AP 的长;若不能,请说明理由.②再次移动三角板位置,使三角板顶点P在AD上移动,直角边PH 始终通过点B,另一直角边PF与DC的延长线交于点Q,与BC交于点E,能否使CE=2cm?若能,请你求出这时AP的长;若不能,请你说明理由.四、思维训练:1、如图所示是从长为40cm、宽为30cm的矩形钢板的左上角截取一块长为20cm,宽为10cm的矩形后,剩下的一块下脚料。工人师傅要将它做适当的切割,重新拼接后焊成一个面积与原下脚料的面积相等,接缝尽可能短的正方形工件,请根据上述要求,设计出将这块下脚料适当分割成三块或三块以上的两种不同的拼接方案(在图2,3中分别画出切割时所沿的虚线,以及拼接后所得到的正方形,保留拼接的痕迹)。 2、葛藤是一种刁钻的植物,它自己腰杆不硬,为了争夺雨露阳光,常常饶着树干盘旋而上,它还有一手绝招,就是它绕树盘升的路线,总是沿着短路线—盘旋前进的。难道植物也懂得数学吗?如果阅读以上信息,你能设计一种方法解决下列问题吗?如果树的周长为3 cm,绕一圈升高4cm,则它爬行路程是多少厘米?如果树的周长为8 cm,绕一圈爬行10cm,则爬行一圈升高多少厘米?如果爬行10圈到达树顶,则树干高多少厘米?3、在,△ABC中,∠ACB=90埃?/SPANCD⊥AB于D,求证:。
以上回答你满意么?
勾股定理十道典型题是什么?
勾股定理十道典型题是如下:
1、一架2.6m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4m,如果梯子的顶端A沿墙下滑0.5m,那么梯子底端B也外移0.5m吗?
2、小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD =30°;小丽沿河岸向前走30m选取点B,并测得∠CBD=60(A,B,D在一条直线上),请根据以,上数据,用你所学的数学知识,帮助小丽计算小河的宽度。
3、如图,折叠长方形ABCD的一边AD,使点D落在BC边的F点处,若AB=8cm,BC=10cm,求EC的长。
4、小明准备测量河水的深度,他把一根竹竿竖直插到离岸边1.5 m远的水底,竹竿高出水面0.5 m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好平齐,则河水的深度为多少?
5、若直角三角形两直角边的比是3: 4,斜边长是20,求此直角三角形的面积?
6、若等边三角形的边长为2,求它的面积?
7、直角三角形周长为12cm,斜边长为5cm,求直角三角形的面积?
8、若直角三角形的三边长分别是n+1,n+2, n+3,求n?
9、在RtOABC中,∠C=90,已知a=6, c=10,求b?
10、在RtOABC中,∠C=90,已知a=40, b=9,求c?已知c=25, b=15,求a?
给我找一下,14题这种类型的初二勾股定理的题。一定是这种相似类型的题啊,带解题答案步骤,谢谢
勾股定理是比较简单的知识点了,关键是要灵活利用a2+b2=c2.以下是我粘过来的,希望对你有所帮助吧.
新人教版八年级下册勾股定理全章知识点和典型例习题
一、基础知识点:
1.勾股定理
内容:直角三角形两直角边的平方和等于斜边的平方;
表示方法:如果直角三角形的两直角边分别为,斜边为,那么
勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方
2.勾股定理的证明
勾股定理的证明方法很多,常见的是拼图的方法
用拼图的方法验证勾股定理的思路是
①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变
②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理
常见方法如下:
方法一:化简可证.
方法二:
四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为大正方形面积为 所以方法三:,化简得证
3.勾股定理的适用范围
勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形
4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在中,则,②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题
5.勾股定理的逆定理
如果三角形三边长,满足,那么这个三角形是直角三角形,其中为斜边
①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以,为三边的三角形是直角三角形;若,时,以,为三边的三角形是钝角三角形;若,时,以,为三边的三角形是锐角三角形;
②定理中,及只是一种表现形式,不可认为是唯一的,如若三角形三边长,满足,那么以,为三边的三角形是直角三角形,但是为斜边
③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形
6.勾股数
①能够构成直角三角形的三边长的三个正整数称为勾股数,即中,为正整数时,称,为一组勾股数
②记住常见的勾股数可以提高解题速度,如;;;等
③用含字母的代数式表示组勾股数:
(为正整数);
(为正整数)(,为正整数)7.勾股定理的应用
勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.
8..勾股定理逆定理的应用
勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.
9.勾股定理及其逆定理的应用
勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:
10、互逆命题的概念
如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.
二、经典例题精讲
题型一:直接考查勾股定理
例1.在中,.
⑴已知,.求的长
⑵已知,求的长分析:直接应用勾股定理
⑴
⑵
题型二:利用勾股定理测量长度
例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米?
解析:这是一道大家熟知的典型的“知二求一”的题.把实物模型转化为数学模型后,.已知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理!
根据勾股定理AC2+BC2=AB2, 即AC2+92=152,所以AC2=144,所以AC=12.
例题2 如图(8),水池中离岸边D点1.5米的C处,直立长着一根芦苇,出水部分BC的长是0.5米,把芦苇拉到岸边,它的顶端B恰好落到D点,并求水池的深度AC.
解析:同例题1一样,先将实物模型转化为数学模型,如图2. 由题意可知△ACD中,∠ACD=90?SPAN,在Rt△ACD中,只知道CD=1.5,这是典型的利用勾股定理“知二求一”的类型.
标准解题步骤如下(仅供参考):
如图2,根据勾股定理,AC2+CD2=AD2
设水深AC= x米,那么AD=AB=AC+CB=x+0.5
x2+1.52=( x+0.5)2
解之得x=2.
故水深为2米.
题型三:勾股定理和逆定理并用——
例题3 如图3,正方形ABCD中,E是BC边上的中点,F是AB上一点,且那么△DEF是直角三角形吗?为什么?
解析:这道题把很多条件都隐藏了,乍一看有点摸不着头脑.仔细读题会意可以发现规律,没有任何条件,我们也可以开创条件,由可以设AB=4a,那么BE=CE=2 a,AF=3 a,BF= a,那么在Rt△AFD 、Rt△BEF和
Rt△CDE中,分别利用勾股定理求出DF,EF和DE的长,反过来再利用勾股定理逆定理去判断△DEF是否是直角三角形.
详细解题步骤如下:
设正方形ABCD的边长为4a,则BE=CE=2 a,AF=3 a,BF= a
在Rt△CDE中,DE2=CD2+CE2=(4a)2+(2 a)2=20 a2
同理EF2=5a2, DF2=25a2
在△DEF中,EF2+ DE2=5a2+
20a2=25a2=DF2
∴△DEF是直角三角形,且∠DEF=90?SPAN.
注:本题利用了四次勾股定理,是掌握勾股定理的必练习题.
题型四:利用勾股定理求线段长度——
例题4 如图4,已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.
解析:解题之前先弄清楚折叠中的不变量.合理设元是关键.
详细解题过程如下:
根据题意得Rt△ADE≌Rt△AEF
∴∠AFE=90?SPAN, AF=10cm, EF=DE
设CE=xcm,
则DE=EF=CD-CE=8-x
在Rt△ABF中由勾股定理得:
AB2+BF2=AF2,即82+BF2=102,
∴BF=6cm
∴CF=BC-BF=10-6=4(cm)
在Rt△ECF中由勾股定理可得:
EF2=CE2+CF2,即(8-x) 2=x2+42
∴64-16x+x2=2+16
∴x=3(cm),即CE=3 cm
注:本题接下来还可以折痕的长度和求重叠部分的面积.
题型五:利用勾股定理逆定理判断垂直——
例题5 如图5,王师傅想要检测桌子的表面AD边是否垂直与AB边和CD边,他测得AD=80cm,AB=60cm,BD=100cm,AD边与AB边垂直吗?怎样去验证AD边与CD边是否垂直?
解析:由于实物一般比较大,长度不容易用直尺来方便测量.我们通常截取部分长度来验证.如图4,矩形ABCD表示桌面形状,在AB上截取AM=12cm,在AD上截取AN=9cm(想想为什么要设为这两个长度?),连结MN,测量MN的长度.
①如果MN=15,则AM2+AN2=MN2,所以AD边与AB边垂直;
②如果MN=a≠15,则92+122=81+144=225, a2≠225,即92+122≠
a2,所以∠A不是直角.利用勾股定理解决实际问题——
例题6 有一个传感器控制的灯,安装在门上方,离地高4.5米的墙上,任何东西只要移至5米以内,灯就自动打开,一个身高1.5米的学生,要走到离门多远的地方灯刚好打开?
解析:首先要弄清楚人走过去,是头先距离灯5米还是脚先距离灯5米,可想而知应该是头先距离灯5米.转化为数学模型,如图6 所示,A点表示控制灯,BM表示人的高度,BC∥MN,BC⊥AN当头(B点)距离A有5米时,求BC的长度.已知AN=4.5米,所以AC=3米,由勾股定理,可计算BC=4米.即使要走到离门4米的时候灯刚好打开.
题型六:旋转问题:
例1、如图,△ABC是直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,若AP=3,求PP′的长.
变式1:如图,P是等边三角形ABC内一点,PA=2,PB=,PC=4,求△ABC的边长.
分析:利用旋转变换,将△BPA绕点B逆时针选择60埃跸叨渭械酵桓鋈切沃校?/SPAN
根据它们的数量关系,由勾股定理可知这是一个直角三角形.
变式2、如图,△ABC为等腰直角三角形,∠BAC=90埃?SPANE、F是BC上的点,且∠EAF=45埃?/SPAN
试探究间的关系,并说明理由.
题型七:关于翻折问题
例1、如图,矩形纸片ABCD的边AB=10cm,BC=6cm,E为BC上一点,将矩形纸片沿AE折叠,点B恰好落在CD边上的点G处,求BE的长.
变式:如图,AD是△ABC的中线,∠ADC=45埃选?/SPANADC沿直线AD翻折,点C落在点C’的位置,BC=4,求BC’的长.
题型八:关于勾股定理在实际中的应用:
例1、如图,公路MN和公路PQ在P点处交汇,点A处有一所中学,AP=160米,点A到公路MN的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?
题型九:关于最短性问题
例5、如右图1-19,壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A处,它发现在自己的正上方油罐上边缘的B处有一只害虫,便决定捕捉这只害虫,为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从背后对害虫进行突然袭击.结果,壁虎的偷袭得到成功,获得了一顿美餐.请问壁虎至少要爬行多少路程才能捕到害虫?(π取3.14,结果保留1位小数,可以用计算器计算)变式:如图为一棱长为3cm的正方体,把所有面都分为9个小正方形,其边长都是1cm,假设一只蚂蚁每秒爬行2cm,则它从下地面A点沿表面爬行至右侧面的B点,最少要花几秒钟?
三、课后训练:
一、填空题
1.如图(1),在高2米,坡角为30暗穆ヌ荼砻嫫痰靥海靥旱某ぶ辽傩?/SPAN________米.
图(1)
2.种盛饮料的圆柱形杯(如图),测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做㎝.
3.已知:如图,△ABC中,∠C = 90?/SPAN,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且BC = 8cm,CA = 6cm,则点O到三边AB,AC和BC的距离分别等于cm
4.在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A处.另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高_____________________米.
5.如图是一个三级台阶,它的每一级的长宽和高分别为20dm、3dm、
2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B
点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是_____________.
二、选择题
1.已知一个Rt△的两边长分别为3和4,则第三边长的平方是()
A、25 B、14 C、7 D、7或25
2.Rt△一直角边的长为11,另两边为自然数,则Rt△的周长为()
A、121 B、120 C、132 D、不能确定
3.如果Rt△两直角边的比为5∶12,则斜边上的高与斜边的比为()
A、60∶13 B、5∶12 C、12∶13 D、60∶169
4.已知Rt△ABC中,∠C=90埃?SPANa+b=14cm,c=10cm,则Rt△ABC的面积是()
A、24cm2 B、36cm2 C、48cm2 D、60cm2
5.等腰三角形底边上的高为8,周长为32,则三角形的面积为()
A、56 B、48 C、40 D、32
6.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要()
A、450a元 B、225a 元 C、150a元 D、300a元
7.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为() A、6cm2 B、8cm2 C、10cm2 D、12cm28.在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为A.42 B.32 C.42或32 D.37或339. 如图,正方形网格中的△ABC,若小方格边长为1,则△ABC是
( )(A)直角三角形
(B)锐角三角形 (C)钝角三角形(D)以上答案都不对三、计算1、如图,A、B是笔直公路l同侧的两个村庄,且两个村庄到直路的距离分别是300m和500m,两村庄之间的距离为d(已知d2=400000m2),现要在公路上建一汽车停靠站,使两村到停靠站的距离之和最小.问最小是多少?2、如图1-3-11,有一块塑料矩形模板ABCD,长为10cm,宽为4cm,将你手中足够大的直角三角板
PHF
的直角顶点P落在AD边上(不与A、D重合),在AD上适当移动三角板顶点P:①能否使你的三角板两直角边分别通过点B与点C?若能,请你求出这时
AP 的长;若不能,请说明理由.②再次移动三角板位置,使三角板顶点P在AD上移动,直角边PH
始终通过点B,另一直角边PF与DC的延长线交于点Q,与BC交于点E,能否使CE=2cm?若能,请你求出这时AP的长;若不能,请你说明理由.
四、思维训练:1、如图所示是从长为40cm、宽为30cm的矩形钢板的左上角截取一块长为20cm,宽为10cm的矩形后,剩下的一块下脚料.工人师傅要将它做适当的切割,重新拼接后焊成一个面积与原下脚料的面积相等,接缝尽可能短的正方形工件,请根据上述要求,设计出将这块下脚料适当分割成三块或三块以上的两种不同的拼接方案(在图2,3中分别画出切割时所沿的虚线,以及拼接后所得到的正方形,保留拼接的痕迹). 2、葛藤是一种刁钻的植物,它自己腰杆不硬,为了争夺雨露阳光,常常饶着树干盘旋而上,它还有一手绝招,就是它绕树盘升的路线,总是沿着短路线—盘旋前进的.难道植物也懂得数学吗?如果阅读以上信息,你能设计一种方法解决下列问题吗?如果树的周长为3 cm,绕一圈升高4cm,则它爬行路程是多少厘米?如果树的周长为8 cm,绕一圈爬行10cm,则爬行一圈升高多少厘米?如果爬行10圈到达树顶,则树干高多少厘米?3、在,△ABC中,∠ACB=90埃?/SPANCD⊥AB于D,求证:.
谁能帮我出一道关于勾股定理的题?
.等边三角形的高是h,则它的面积是( )
A. h2B. h2 C. h2 D. h2
答案:B
说明:如图,ΔABC为等边三角形,AD⊥BC,且AD=h,因为∠B=60º,AD⊥BC,所以∠BAD=30º;设BD=x,则AB=2x,且有x2+h2=(2x)2,解之得x= h,因为BC=2BD= h,所以SΔABC= BC•AD= • h•h= h2,所以答案为B.
2.直角三角形的周长为12cm,斜边长为5cm,其面积为( )
A. 12cm2 B. 10cm 2 C. 8cm2 D. 6cm2
答案:D
说明:设直角三角形的两条直角边长分别为xcm、ycm,依题意得:
由①得x+y=7③,由③得(x+y)2=72,即x2+y2+2xy=49,因为x2+y2=25,所以25+2xy=49,即xy=12,这样就有S= xy = ×12=6,所以答案为D.
3.下列命题是真命题的个数有( )
①直角三角形的最大边长为 ,短边长为1,则另一条边长为
②已知直角三角形的面积为2,两直角边的比为1:2,则它的斜边长为
③在直角三角形中,若两条直角边长为n2−1和2n,则斜边长为n2+1
④等腰三角形面积为12,底边上的高为4,则腰长为5
A.1个 B.2个 C.3个 D.4个
答案:D
说明:①因为另一条直角边长的平方为( )2−12=3−1=2,所以另一条边长为 是正确的;②设两直角边为k和2k,而由已知 •k•2k=2,所以k= ,故两直角边长为 ,2 ,所以斜边长为 = ,故②正确;③因为(n2−1)2+(2n)2=n4−2n2+1+4n2=n4+2n2+1=(n2+1)2,故③正确;④由面积、底边上的高可得底边为6,故底边的一半为3,所以斜边长为 =5,故④正确;所以答案为D.
4.直角三角形的面积为S,斜边上的中线长为m,则这个三角形的周长是( )
A. + 2m B. +m C.2( +m) D.2 +m
答案:C
说明:如图,设AC=x,BC=y,则 xy=S;因为CD为中线,且CD=m,所以AB=2CD=2m,所以x2+y2=( 2m)2=4m2,(x+y)2=x2+2xy+y2=(x2+y2)+2xy=4m2+4S,即x+y= ,所以ΔABC的周长为:AC+BC+AB=x+y+2m = +2m=2( +m),答案为C.
5.如图,已知边长为5的等边ΔABC纸片,点E在AC边上,点F在AB边上,沿着EF折叠,使点A落在BC边上的点D的位置,且ED⊥BC,则CE的长是( )
A.10 −15 B.10−5 C.5 −5 D.20−10
答案:D
说明:设DC=x,因为∠C=60º,ED⊥BC,所以EC=2x
因为ΔAEF≌ΔDEF,所以AE=DE=5−2x
由勾股定理得:x2+(5−2x)2=(2x)2,即x2−20x+25=0,解得x= =10±5
因为DCBC=5,所以x=10+5 应舍去,故x=10−5 ,所以CE=2x=2(10−5 )=20−10 ,答案为D.
6.如果直角三角形的三条边长分别为2、4、a,那么a的取值可以有( )
A.0个 B.1个 C.2个 D.3个
答案:C
说明:①若a为斜边长,则由勾股定理有22+42=a2,可得a=2 ;②若a为直角边长,则由勾股定理有22+a2=42,可得a=2 ,所以a的取值可以有2个,答案为C.
7.小明搬来一架2.5米长的木梯,准备把拉花挂在2.4米高的墙上,则梯脚与墙脚的距离为( )米
A.0.7 B. 0.8 C.0.9 D.1.0
答案:A
说明:因为墙与地面的夹角可看作是直角,所以利用勾股定理,可得出梯脚与墙脚的距离为 = = =0.7,答案为A.
8.一个直角三角形的斜边长比直角边长大2,另一直角边长为6,则斜边长为( )
A.6 B. 8 C.10 D.12
答案:C
说明:设直角边长为x,则斜边为x+2,由勾股定理得x2+62=(x+2)2,解之得x=8,所以斜边长为8+2=10,答案为C.
9.如图,在ΔABC中,若ABAC,AE为BC上的中线,AF为BC边上的高,求证:AB2−AC2=2BC·EF
证明:因为AF⊥BC,所以在RtΔAFB中,由勾股定理得:AB2=AF2+BF2
在RtΔAFC中,由勾股定理得:AC2=AF2+FC2
所以AB2−AC2=BF2−FC2=(BF+FC)(BF−FC)=BC•(BF−FC)
因为BF=BE+EF,FC=EC−EF,BE=EC
所以BF−FC=2EF
所以AB2−AC2=BC•2EF=2BC•EF
10.如图,ΔABC中,∠A=90º,E是AC的中点,EF⊥BC,F为垂足,BC=9,FC=3,求 AB.
解:如图,作AD⊥BC
因为EF⊥BC,所以AD//EF
因为E为AC中点,所以F为DC的中点
因为FC=3,所以DF=3,DC=3+3=6
因为BC=9,所以BD=9−6=3
设EC=x,则AC=2x
由勾股定理得:AC2=AD2+DC2,AB2=AD2+BD2
所以AC2−AB2=DC2−BD2①
即AC2−AB2=62−32=27
因为∠A=90º,由勾股定理得AB2+AC2=BC2=81②
由②−①得2AB2=81−27=54,所以AB2=27,即AB= =3
习题精选二
1.判断题
⑴在一个三角形中,如果一边上的中线等于这条边的一半,那么这条边所对的角是直角.
⑵命题:“在一个三角形中,有一个角是30°,那么它所对的边是另一边的一半.”的逆命题是真命题.
⑶勾股定理的逆定理是:如果两条直角边的平方和等于斜边的平方,那么这个三角形是直角三角形.
⑷△ABC的三边之比是1:1: ,则△ABC是直角三角形.
答案:对,错,错,对;
2.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是( )
A.如果∠C-∠B=∠A,则△ABC是直角三角形.
B.如果c2=b2—a2,则△ABC是直角三角形,且∠C=90°.
C.如果(c+a)(c-a)=b2,则△ABC是直角三角形.
D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形.
答案:D
3.下列四条线段不能组成直角三角形的是( )
A.a=8,b=15,c=17B.a=9,b=12,c=15C.a= ,b= ,c= D.a:b:c=2:3:4
答案:D
4.已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?
⑴a= ,b= ,c= ; ⑵a=5,b=7,c=9;
⑶a=2,b= ,c= ; ⑷a=5,b= ,c=1.
答案:⑴是,∠B;⑵不是;⑶是,∠C;⑷是,∠A.
5.叙述下列命题的逆命题,并判断逆命题是否正确.
⑴如果a3>0,那么a2>0;
⑵如果三角形有一个角小于90°,那么这个三角形是锐角三角形;
⑶如果两个三角形全等,那么它们的对应角相等;
⑷关于某条直线对称的两条线段一定相等.
答案:⑴如果a2>0,那么a3>0;假命题.
⑵如果三角形是锐角三角形,那么有一个角是锐角;真命题.
⑶如果两个三角形的对应角相等,那么这两个三角形全等;假命题.
⑷两条相等的线段一定关于某条直线对称;假命题.
6.填空题.
⑴任何一个命题都有 ,但任何一个定理未必都有 .
⑵“两直线平行,内错角相等.”的逆定理是 .
⑶在△ABC中,若a2=b2-c2,则△ABC是 三角形, 是直角;若a2<b2-c2,则∠B是 .
⑷若在△ABC中,a=m2-n2,b=2mn,c=m2+n2,则△ABC是 三角形.
答案:⑴逆命题,逆定理;⑵内错角相等,两直线平行;⑶直角,∠B,钝角;⑷直角.
⑸小强在操场上向东走80m后,又走了60m,再走100m回到原地.小强在操场上向东走了80m后,又走60m的方向是 .
答案:向正南或正北.
7.若三角形的三边是 ⑴1、、2; ⑵ ; ⑶32,42,52 ⑷9,40,41; ⑸(m+n)2-1,2(m+n),(m+n)2+1;则构成的是直角三角形的有( )
A.2个 B.3个 C.4个D.5个
答案:B
8.若△ABC的三边a、b、c,满足(a-b)(a2+b2-c2)=0,则△ABC是( )
A.等腰三角形;B.直角三角形;C.等腰三角形或直角三角形;D.等腰直角三角形.
答案:C
9.如图,在操场上竖直立着一根长为 2米的测影竿,早晨测得它的影长为 4米,中午测得它的影长为 1米,则A、B、C三点能否构成直角三角形?为什么?
答案:能,因为BC2=BD2+CD2=20,AC2=AD2+CD2=5,AB2=25,所以BC2+AC2=AB2
10.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?
答案:由△ABC是直角三角形,可知∠CAB+∠CBA=90°,所以有∠CAB=40°,航向为北偏东50°.
11.如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量.小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米, DA=12米,又已知∠B=90°.
提示:连结AC.AC2=AB2+BC2=25,AC2+AD2=CD2,因此∠CAB=90°,
S四边形=S△ADC+S△ABC=36平方米.
12.已知:在△ABC中,∠ACB=90°,CD⊥AB于D,且CD2=AD·BD.求证:△ABC中是直角三角形.
提示:∵AC2=AD2+CD2,BC2=CD2+BD2,∴AC2+BC2=AD2+2CD2+BD2=AD2+2AD·BD+BD2=(AD+BD)2=AB2,∴∠ACB=90°.
13.在△ABC中,AB=13cm,AC=24cm,中线BD=5cm.求证:△ABC是等腰三角形.
提示:因为AD2+BD2=AB2,所以AD⊥BD,根据线段垂直平分线的判定可知AB=BC.
14.已知:如图,∠1=∠2,AD=AE,D为BC上一点,且BD=DC,AC2=AE2+CE2.求证:AB2=AE2+CE2.
提示:有AC2=AE2+CE2得∠E=90°;由△ADC≌△AEC,得AD=AE,CD=CE,∠ADC=∠BE=90°,根据线段垂直平分线的判定可知AB=AC,则AB2=AE2+CE2.
15.已知△ABC的三边为a、b、c,且a+b=4,ab=1,c= ,试判定△ABC的形状.
提示:直角三角形,用代数方法证明,因为(a+b)2=16,a2+2ab+b2=16,ab=1,所以a2+b2=14.又因为c2=14,所以a2+b2=c2 .
关于勾股定理周测卷和勾股定理数学试卷的介绍到此就结束了,不知道同学们从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。