今天给各位同学分享金太阳试卷高一数学知识点的知识,其中也会对金太阳高一数学试卷答案官网进行解释,如果能碰巧解决你现在面临的问题,别忘了分享本站,现在开始吧!
本文目录一览:
- 1、阁下提供的文库 高一数学必修1各章知识点总结答案有吗?
- 2、《金太阳》单元测试卷,高一下册,数学(2)(11)答案↗韩哥↗有赏100分
- 3、金太阳试卷凤庆一中高一级下学期数学期末试卷答案
- 4、谁知道高一数学必修一知识点总结n有点着急了啊,我在此先谢谢了3eY
- 5、高一数学三角函数类
- 6、有没有金太阳高一数学有没有21—11—188A3点卷子
阁下提供的文库 高一数学必修1各章知识点总结答案有吗?
不好意思,没有,其实这只是我自己用来复习的,总结知识点的,至于答案真没找到
《金太阳》单元测试卷,高一下册,数学(2)(11)答案↗韩哥↗有赏100分
哥们,这事你别想了,我找了N年了都没找到,网上根本没有,还是去借同学的吧!
金太阳试卷凤庆一中高一级下学期数学期末试卷答案
给你个网址,自己去看看有没有第四,五次联考的。有的话下载就可以了。
[img]谁知道高一数学必修一知识点总结n有点着急了啊,我在此先谢谢了3eY
金太阳新课标资源网
wx.jtyjy.com 高一数学必修1各章知识点总结 第一章 集合与函数概念 一、集合有关概念 1. 集合的含义 2. 集合的中元素的三个特性: (1) 元素的确定性如:世界上最高的山 (2) 元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3) 元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{ „ } 如:{我校的篮球队员},{太平洋,大西洋,印度洋, 北冰洋} (1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2) 集合的表示方法:列举法与描述法。 注意:常用数集及其记法: 非负整数集(即自然数集) 记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 1) 列举法:{a,b,c„„} 2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合 的方法。{xR| x-32} ,{x| x-32} 3) 语言描述法:例:{不是直角三角形的三角形} 4) Venn图: 4、集合的分类: (1) 有限集 含有有限个元素的集合 (2) 无限集 含有无限个元素的集合 (3) 空集 不含任何元素的集合 例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 注意:BA有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作AB或BA 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:① 任何一个集合是它本身的子集。AA ②真子集:如果AB,且A B那就说集合A是集合B的真子集,记作
AB(或
BA) ③如果 AB, BC ,那么 AC ④ 如果AB 同时 BA 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 有n个元素的集合,含有2n个子集,2n-1个真子集
三、集合的运算 运算类型 交 集 并 集 补 集 定 义 由所有属于A且属于B的元素所组成 的集合,叫做A,B的交集.记作AB(读 由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB 设S是一个集合,A是 S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
金太阳新课标资源网
wx.jtyjy.com
金太阳新课标资源网
wx.jtyjy.com
作‘A交
B’),即AB={x|xA,且xB}. (读作‘A并B’),即AB ={x|xA,或xB}). 记作ACS ,即 CSA=},|{AxSxx且 韦 恩 图 示 AB 图1 A B 图2 性 质 AA=A AΦ=Φ AB=BA ABA ABB AA=A AΦ=A AB=BA ABA ABB (CuA) (CuB) = Cu (AB) (CuA) (CuB) = Cu(AB) A (CuA)=U A (CuA)= Φ. 例题: 1.下列四组对象,能构成集合的是 ( ) A某班所有高个子的学生 B著名的艺术家 C一切很大的书 D 倒数等于它自身的实数 2.集合{a,b,c }的真子集共有 个 3.若集合M={y|y=x2 -2x+1,xR},N={x|x≥0},则M与N的关系是 . 4.设集合A=12xx ,B= xxa,若 AB,则a的取值范围是 5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40 人,化学实验做得正确得有31人, 两种实验都做错得有4人,则这两种实验都做对的有 人。 6. 用描述法表示图中阴影部分的点(含边界上的点)组成的集合M= . 7.已知集合A={x| x2+2x-8=0}, B={x| x2 -5x+6=0}, C={x| x2-mx+m2-19=0}, 若B∩C≠Φ,A∩C=Φ,求m的值 二、函数的有关概念 1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 注意: 1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。 求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. S A
金太阳新课标资源网
wx.jtyjy.com
金太阳新课标资源网
wx.jtyjy.com (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合. (6)指数为零底不可以等于零, (7)实际问题中的函数的定义域还要保证实际问题有意义.
相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母 无关);②定义域一致
(两点必须同时具备) (见课本21页相关例2) 2.值域 : 先考虑其定义域 (1)观察法 (2)配方法 (3)代换法 3. 函数图象知识归纳 (1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . (2) 画法 A、 描点法: B、 图象变换法 常用变换方法有三种 1) 平移变换 2) 伸缩变换 3) 对称变换 4.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间 (2)无穷区间 (3)区间的数轴表示. 5.映射 一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)B(象)” 对于映射f:A→B来说,则应满足: (1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的; (2)集合A中不同的元素,在集合B中对应的象可以是同一个; (3)不要求集合B中的每一个元素在集合A中都有原象。 6.分段函数 (1)在定义域的不同部分上有不同的解析表达式的函数。 (2)各部分的自变量的取值情况. (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集. 补充:复合函数 如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。 二.函数的性质 1.函数的单调性(局部性质) (1)增函数 设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当
x1x
2时,都有f(x1)f(x2),那么就说f(x)
在区间D上是增函数.区间D称为y=f(x)的单调增区间. 如果对于区间D上的任意两个自变量的值x1,x2
,当x1x2
时,都有f(x1)
金太阳新课标资源网
wx.jtyjy.com
金太阳新课标资源网
wx.jtyjy.com >
f(x2),那么就说f(x)在这个区间上是减函数.区间
D称为y=f(x)的单调 减区间. 注意:函数的单调性是函数的局部性质; (2) 图象的特点 如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的. (3).函数单调区间与单调性的判定方法 (A) 定义法: ○ 1 任取x1,x2∈D,且x1x2; ○ 2 作差f(x1)-f(x2); ○ 3 变形(通常是因式分解和配方); ○ 4 定号(即判断差f(x1)-f(x2)的正负); ○ 5 下结论(指出函数f(x)在给定的区间D上的单调性). (B)图象法(从图象上看升降) (C)复合函数的单调性 复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减” 注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 8.函数的奇偶性(整体性质) (1)偶函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数. (2).奇函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数. (3)具有奇偶性的函数的图象的特征 偶函数的图象关于y轴对称;奇函数的图象关于原点对称. 利用定义判断函数奇偶性的步骤: ○ 1首先确定函数的定义域,并判断其是否关于原点对称; ○ 2确定f(-x)与f(x)的关系; ○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 . 9、函数的解析表达式 (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. (2)求函数的解析式的主要方法有: 1) 凑配法 2) 待定系数法 3) 换元法 4) 消参法 10.函数最大(小)值(定义见课本p36页) ○ 1 利用二次函数的性质(配方法)求函数的最大(小)值 ○ 2 利用图象求函数的最大(小)值
金太阳新课标资源网
wx.jtyjy.com
金太阳新课标资源网
wx.jtyjy.com ○ 3 利用函数单调性的判断函数的最大(小)值: 如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b); 如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b); 例题: 1.求下列函数的定义域:
⑴2 21533 xxy x
⑵2 11( )1 xyx 2.设函数fx()的定义域为[]01,,则函数fx()2的定义域为
_ _ 3.若函数(1)fx的定义域为[]23,,则函数(21)fx的定义域是
4.函数 22(1)()(12) 2(2)xxfxxxxx ,若()3fx,则x
= 5.求下列函数的值域: ⑴223yxx ()xR ⑵2 23y xx [1,2]x
(3)12yxx
(4)2 45 yxx 6.已知函数 2 (1)4fxxx,求函数 ()fx,(21)fx的解析式 7.已知函数()fx满足2()()34fxfxx,则()fx
= 。 8.设()fx是R上的奇函数,且当[0,)x时
, 3 ()(1)fxxx ,则当(,0)x时 ()fx
= ()fx在R上的解析式为
9.求下列函数的单调区间: ⑴ 223yxx
⑵2 23yxx ⑶
2 61yxx 10.判断函数13xy的单调性并证明你的结论. 11.
设函数2 2 11)(x xxf
判断它的奇偶性并且求证:)()1(xfx f. 第二章 基本初等函数 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果axn ,那么x叫做a的n次方根,其中n1, 且n∈N* . 负数没有偶次方根;0的任何次方根都是0
,记作00n 。 当n
是奇数时,aa nn ,当n
是偶数时, )0()0(||aaaa aa nn 2.分数指数幂 正数的分数指数幂的意义,规定:
) 1,,,0(* nNnmaaa n mn m ,
高一数学三角函数类
(1+tana)/(1-tana)=3+2√2
1+tana=(3+2√2)(1-tana)
乘开整理得:(2+√2)tana=1+√2
tana=(1+√2)/(2+√2)=(1+√2)/[√2*(√2+1)]=1/√2=√2/2
代入即可。
有没有金太阳高一数学有没有21—11—188A3点卷子
金色的太阳?是改造版的。我不知道我还有没有选择: duacdba cddcc dcbbc cbdcb ddb 36。温带落叶阔叶林,温带季风煤(3)丘陵,平原,山脉,山脉(4)关中,断层沉降,河流冲击(5)流道小,变化大,冰期,含沙量,冰多,你看到的答案一样是否定的,在这种情况下,我会继续。.
金太阳试卷高一数学知识点的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于金太阳高一数学试卷答案官网、金太阳试卷高一数学知识点的信息别忘了在本站进行查找喔。