今天给各位同学分享七下数学名校周测卷答案的知识,其中也会对名校课堂七下电子版数学周测小卷进行解释,如果能碰巧解决你现在面临的问题,别忘了分享本站,现在开始吧!
本文目录一览:
- 1、人教版七年级数学下册期末测试题及答案
- 2、七年级下册数学第十七周测试卷和答案
- 3、成都七中育才学校2021届七下数学第13周周测
- 4、七年级数学检测试卷及答案
- 5、七年级下册数学bfb周周清测试卷(12)答案
- 6、七年级下册数学试卷及答案
人教版七年级数学下册期末测试题及答案
距离数学期末考试还有不到一个月的时间了,七年级学生们在这段时间内突击做一些试题是非常有帮助的。我整理了关于人教版 七年级数学 下册期末测试题,希望对大家有帮助!
人教版七年级数学下册期末试题
一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.下列式子中,是一元一次方程的是( ).
A. B. C. D.
2.下列交通标志中,是轴对称图形的是( ).
3.下列现象中,不属于旋转的是( ).
A.汽车在笔直的公路上行驶 B.大风车的转动
C.电风扇叶片的转动 D.时针的转动
4.若 ,则下列不等式中不正确的是( ).
A. B. C. D.
5.解方程 ,去分母后,结果正确的是( ).
A. B.
C. D.
6.已知:关于 的一元一次方程 的解是 ,则 的值为( ).
A. B.5 C. D.
7.下列长度的各组线段能组成一个三角形的是( ).
A.3 ,5 ,8 B.1 ,2 ,3
C.4 ,5 ,10 D.3 ,4 ,5
8.下列各组中,不是二元一次方程 的解的是( ).
A. B. C. D.
9.下列正多边形的组合中,能够铺满地面的是( ).
A.正三角形和正五边形 B.正方形和正六边形
C.正三角形和正六边形 D.正五边形和正八边形
10.如果不等式组 的整数解共有3个,则 的取值范围是( ).
A. B.
C. D.
二、填空题(本大题共6小题,每小题4分,共24分)
11.当 时,代数式 与代数式 的值相等.
12.已知方程 ,如果用含 的代数式表示 ,则 .
13.二元一次方程组 的解是 .
14. 的3倍与5的和大于8,用不等式表示为 .
15.一个多边形的内角和是它的外角和的2倍,则这个多边形是 边形.
16.如图,将直角 沿BC方向平移得到
直角 ,其中 , ,
,则阴影部分的面积是 .
三、解答题(本大题共10小题,共86分.解答应写出文字说明,证明过程或演算步骤)
17.(6分)解方程: 18.(6分)解方程组:
19.(6分)解不等式组 ,并把它的解集在数轴表示出来.
20.(6分)在一次美化校园活动中,七年级(1)班分成两个小组,第一组21人打扫操场,第二组18人擦玻璃,后来根据工作需要,要使第一组人数是第二组人数的2倍,问应从第二组调多少人到第一组?
21.(8分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如下表:
进价(元/只) 售价(元/只)
甲种节能灯 30 40
乙种节能灯 35 50
(1)求甲、乙两种节能灯各进多少只?
(2)全部售完100只节能灯后,该商场获利多少元?
22.(8分)如图,在五边形 中, , , , 平分 , 平分 ,求 的度数.
23.(10分)如图, 的顶点都在方格纸的格点上.
(1)画出 关于直线 的对称图形 ;
(2)画出 关于点 的中心对称图形 ;
(3)画出 绕点 逆时针旋转 后的图形△
24.(10分)如图,已知 ≌ ,点 在 上, 与 相交于点 ,
(1)当 , 时,线段 的长为 ;
(2)已知 , ,
①求 的度数;
②求 的度数.
25.(12分)为庆祝泉州文庙春晚,某市直学校组织学生制作并选送40盏花灯,共包括传统花灯、创意花灯和现代花灯三大种.已知每盏传统花灯需要25元材料费,每盏创意花灯需要23元材料费,每盏现代花灯需要20元材料费.
(1)如果该校选送10盏现代花灯,且总材料费不得超过895元,请问该校选送传统花灯、创意花灯各几盏?
(2)当三种花灯材料总费用为835元时,求选送传统花灯、创意花灯、现代花各几盏?
26.(14分)你可以直接利用结论“有一个角是 的等腰三角形是等边三角形”解决下列问题:
在 中, .
(1)如图1,已知 ,则 共有 条对称轴, °, °;
(2)如图2,已知 ,点 是 内部一点,连结 、 ,将 绕点 逆时针方向旋转,使边 与 重合,旋转后得到 ,连结 ,当 时,求 的长度.
(3)如图3,在 中,已知 ,点 是 内部一点, ,点 、 分别在边 、 上, 的周长的大小将随着 、 位置的变化而变化,请你画出点 、 ,使 的周长最小,要写出画图 方法 ,并直接写出周长的最小值.
本页可作为草稿纸使用
南安市2015—2016学年度下学期期末教学质量监测
初一数学试题参考答案及评分标准
说明:
(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.
(二)如解答的某一步出现错误,这一步没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.
(三)以下解答各行右端所注分数表示正确作完该步应得的累计分数.
(四)评分最小单位是1分,得分或扣分都不出现小数.
人教版七年级数学下册期末测试题参考答案
一、选择题(每小题4分,共40分).
1.A; 2.B; 3.A; 4.C; 5.B; 6.D; 7.D; 8.C; 9.C; 10.B.
二、填空题(每小题4分,共24分).
11、2; 12、 ; 13、 ; 14、 ; 15、六; 16、60.
三、解答题(10题,共86分).
17.(6分)解: ………………………………………………………2分
…………………………………………………………3分
…………………………………………………………4分
…………………………………………………………………5分
…………………………………………………………………6分
18.(6分)解: (如用代入法解,可参照本评分标准)
①×2,得 ③ …………………………………………1分
②+③,得 …………………………………………………2分
即 ………………………………………………………3分
将 代入①,得: ……………………………………4分
解得 ………………………………………………………5分
∴ . ……………………………………………………………6分
19.(6分)解:
解不等式①,得 ;………………………………………………2分
解不等式②,得 ,…………………………………………………4分
如图,在数轴上表示不等式①、②的解集如下:
………………5分
∴ 原不等式组的解集为: . ……………………………6分
20.(6分)解:设应从第二组调 人到第一组 …………………………………………1分
根据题意,得 ……………………………………3分
解得 ……………………………………………………………5分
答:应从第二组调5人到第一组. ………………………………………6分
21.(8分)解:(1)设商场购进甲种节能灯 只,购进乙种节能灯 只,……………1分
根据题意,得 , ……………………………3分
解这个方程组,得 …………………………………5分
答:甲、乙两种节能灯分别购进40、60只。……………………6分
(2)商场获利= (元)
………………………………………………………………7分
答:商场获利1300元………………………………………………8分
22.(8分)解:∵ …………………………1分
, ,
∴ ………………2分
∵ 平分
∴ …………………………………………………3分
同理可得, ………………………………………4分
∵ ……………………………………5分
∴
………………………………………6分
…………………………………………7分
…………………………………………………………………8分
23.(10分)解:(1)如图所示: 即为所求; …………………………………3分
(2)如图所示: 即为所求.…………………………………6分
(3)如图所示: 即为所求.…………………………………10分
24.(10分)解:(1)3 ………………………………………………………………… 2分
(2)①∵ ≌
∴ ,………………………………………… 3分
……………………………………… 4分
∵
∴ ………………………… 5分
∴ ……………6分
②∵ 是 的外角
∴ ………………………………… 7分
……………………………… 8分
∵ 是 的外角
∴ ……………………………… 9分
…………………………… 10分
25.(12分)解:(1)设该校选送传统花灯 盏,则创意花灯(30- )盏,
依题意,得: ,……………2分
解得 ……………………………………………………3分
∵ 为正整数,
∴取 或 ……………………………………………………4分
当 时,该校选送传统花灯1盏,创意花灯29盏;………5分
当 时,该校选送传统花灯2盏,创意花灯28盏. … ……6分
(2)设选送传统花灯 盏,创意花灯 盏,则现代花灯 盏,
………………………………………………………………………7分
依题意,得: , ……………8分
解得 ,即 …………………………9分
∵ 、 必须为正整数,
∴ 应取 的倍数,即 或 ……………………………10分
方案一:当 , 时,即该校选送传统花灯 盏,创意花灯 盏,现代花灯 盏;………………………………11分
方案二:当 , 时,该校选送传统花灯 盏,创意花灯 盏,现代花灯 盏. …………………………………12分
26.(14分)解:(1)3, 60, 60; ……………………………………3分
(2)∵ ,
∴ 是等边三角形,
∴ [或者由(1)结论也得分)]……4分
∵ 是由 绕点 旋转而得到的,且边 与 重合
∴ ,……………………………………5分
……………………………………………………6分
∴ 是等边三角形, ………………………………………7分
∴ ………………………………………………8分
(3)画图正确(画对点 、点 中的一个点得1分)……………10分
画图方法:
①画点 关于边 的对称点 ,………………………………11分
②画点 关于边 的对称点 , ……………………………12分
③连结 ,分别交 、 于点 、 ,
此时 周长最小. ………………………………………13分
周长最小值为2. ……………………………………14分
人教版七年级数学下册期末测试题及答案相关 文章 :
1. 人教版七年级下学期期末数学试卷
2. 七年级数学期末测试卷答案
3. 七年级数学期末测试题
4. 七年级数学期末考试卷及答案
5. 七年级数学期末考试卷人教版
七年级下册数学第十七周测试卷和答案
一.选择
题(每小题3分,共24分)
1.
要了解一批数据在各个范围内所占比例的大小,将这批数据分组,落在各组的数据的个数叫做(
)
a.样本容量
b.频数
c.频率
d.极差
2.一个容量为70的样本最大值为141,最小值60,取组距为10,则可以分成(
)
a.10组
b.9组
c.8组
d.7组
3.
n名学生的身高分组整理后,在频数分布表中“165.5~170.5cm”这小组的频数是4,频率是0.10,而“155.5~160.5cm”这小组的频数是m,频率是0.20,则n和m依次是(
)
a.40和8
b.8和40
c.40和4
d.4和40
4.频数m、频率p、和数据总个数n的关系是(
)
a.m+p=n
b.n=mp
c.p=mn
d.
m=np
5.
(2010
包头)某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数在15~20次之间的频率是(
)
a.0.1
b.0.17
c.0.33
d.0.4
成都七中育才学校2021届七下数学第13周周测
只说重点:
成都七中育才学校2021届七下数学第13周周测,
不挂网公布的。
具体可询问学校教务处,
最直接的是问你的班主任。
[img]七年级数学检测试卷及答案
七年级上学期数学第一章测试题
(满分100分,时间45分钟)
一、认真选一选(每题5分,共30分)
1.下列说法正确的是( )
A.有最小的正数 B.有最小的自然数
C.有最大的有理数 D.无最大的负整数
2.下列说法正确的是( )
A.倒数等于它本身的数只有1 B.平方等于它本身的数只有1
C.立方等于它本身的数只有1 D.正数的绝对值是它本身
3.如图 , 那么下列结论正确的是( )
A.a比b大 B.b比a大
C.a、b一样大 D.a、b的大小无法确定
4.两个有理数相除,其商是负数,则这两个有理数( )
A.都是负数 B.都是正数 C.一正数一负数 D.有一个是零
5.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交水稻平均亩产820千克.某地今年计划栽插这种超级杂交水稻3 000亩,预计该地今年收获这种超级杂交水稻的总产量 (用科学记数法表示)是( )
A.2.5×106千克 B.2.5×105千克
C.2.46×106千克 D.2.46×105千克
6.若|2a|=-2a,则a一定是( )
A.正数 B.负数 C.正数或零 D.负数或零
二、认真填一填(每空2分,共30分)
7. -23 的相反数是 ;倒数是 ;绝对值是 .
8.计算:19972×0= ; 48÷(-6) = ;
-12 ×(-13 ) = ; -1.25÷(-14 ) = .
9.计算:(-2)3= ;(-1)10= ;--32= .
10.在近似数6.48中,精确到 位,有 个有效数字.
11.绝对值大于1而小于4的整数有 个;冬季的某日,上海最低气温是3oC,北京最低气温是-5 oC,这一天上海的最低气温比北京的最低气温高 oC.
12.如果x<0,y>0且x2=4,y2 =9,那么x+y=
三、计算下列各题(每小题6分,共24分)
13.(-5)×6+(-125) ÷(-5) 14.312 +(-12 )-(-13 )+223
15. (23 -14 -38 +524 )×48 16. -18÷(-3)2+5×(-12 )3-(-15) ÷5
四、应用题(每题8分,共16分)
17.某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+8,-3,+12,-7,-10,-3,-8,+1,0,+10.
(1)这10名同学中最高分是多少?最低分是多少?
(2)10名同学中,低于80分的所占的百分比是多少?
(3)10名同学的平均成绩是多少?
18.一个病人每天下午需要测量血压,下表为病人周一到周五收缩压的变化情况,该病人上周日的收缩压为160单位.
星期 一 二 三 四 五
收缩压的变化(与前一天相比较) +30 -20 +17 +18 -20
问:(1)本周哪一天血压最高?哪一天最低?
(2)与上周日相比,病人周五的血压是上升了还是下降了?
七年级上学期数学第一章测试题
一、 1. B 2. D 3. B 4. C 5. C 6. D
二、 7. 23 ;-32 ; 23 . 8. 0;-8 ; 16 ; 5.
9. -8 ;1 ; -9 . 10.百分, 三. 11. 四; 8 12. 1
三、13.5 14.6 15.1 16.38
四、17.(1)最高分是:80+12=92(分)最低分是:80-10=70(分) (2)510 ×100%=50%
(3)[80×10+(8-3+12-7-10-3-8+1+0+10)]÷10=80(分)
18.(1)周一最高,周二和周五最低(2)周五的血压为:160-20=140是下降了
七年级下册数学bfb周周清测试卷(12)答案
我也问过这样的问题,不过你这样是没用的,只能一题题打上去找才有点希望
七年级下册数学试卷及答案
知识有重量,但成就有光泽。有人感觉到知识的力量,但更多的人只看到成就的光泽。下面给大家分享一些关于七年级下册数学试卷及答案,希望对大家有所帮助。
一、选择题(本题共10小题,每小题3分,共30分)
1.(3分)下列各数: 、 、0.101001…(中间0依次递增)、﹣π、 是无理数的有()
A. 1个 B. 2个 C. 3个 D. 4个
考点: 无理数.
分析: 根据无理数的定义(无理数是指无限不循环小数)判断即可.
解答: 解:无理数有 ,0.101001…(中间0依次递增),﹣π,共3个,
故选C.
点评: 考查了无理数的应用,注意:无理数是指无限不循环小数,无理数包括三方面的数:①含π的,②开方开不尽的根式,③一些有规律的数.
2.(3分)(2001?北京)已知:如图AB∥CD,CE平分∠ACD,∠A=110°,则∠ECD等于()
A. 110° B. 70° C. 55° D. 35°
考点: 平行线的性质;角平分线的定义.
专题: 计算题.
分析: 本题主要利用两直线平行,同旁内角互补,再根据角平分线的概念进行做题.
解答: 解:∵AB∥CD,
根据两直线平行,同旁内角互补.得:
∴∠ACD=180°﹣∠A=70°.
再根据角平分线的定义,得:∠ECD= ∠ACD=35°.
故选D.
点评: 考查了平行线的性质以及角平分线的概念.
3.(3分)下列调查中,适宜采用全面调查方式的是()
A. 了解我市的空气污染情况
B. 了解电视节目《焦点访谈》的收视率
C. 了解七(6)班每个同学每天做家庭作业的时间
D. 考查某工厂生产的一批手表的防水性能
考点: 全面调查与抽样调查.
分析: 由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
解答: 解:A、不能全面调查,只能抽查;
B、电视台对正在播出的某电视节目收视率的调查因为普查工作量大,适合抽样调查;
C、人数不多,容易调查,适合全面调查;
D、数量较大,适合抽查.
故选C.
点评: 本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
4.(3分)一元一次不等式组 的解集在数轴上表示为()
A. B. C. D.
考点: 在数轴上表示不等式的解集;解一元一次不等式组.
分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.
解答: 解: ,由①得,x2,由②得,x≥0,
故此不等式组的解集为:0≤x2,
在数轴上表示为:
故选B.
点评: 本题考查的是在数轴上表示不等式组的解集,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
5.(3分)二元一次方程2x+y=8的正整数解有()
A. 2个 B. 3个 C. 4个 D. 5个
考点: 解二元一次方程.
专题: 计算题.
分析: 将x=1,2,3,…,代入方程求出y的值为正整数即可.
解答: 解:当x=1时,得2+y=8,即y=6;当x=2时,得4+y=8,即y=4;当x=3时,得6+y=8,即y=2;
则方程的正整数解有3个.
故选B
点评: 此题考查了解二元一次方程,注意x与y都为正整数.
6.(3分)若点P(x,y)满足xy0,x0,则P点在()
A. 第二象限 B. 第三象限 C. 第四象限 D. 第二、四象限
考点: 点的坐标.
分析: 根据实数的性质得到y0,然后根据第二象限内点的坐标特征进行判断.
解答: 解:∵xy0,x0,
∴y0,
∴点P在第二象限.
故选A.
点评: 本题考查了点的坐标平面内的点与有序实数对是一一对应的关系.坐标:直角坐标系把平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.
7.(3分)如图,AB∥CD,∠A=125°,∠C=145°,则∠E的度数是()
A. 10° B. 20° C. 35° D. 55°
考点: 平行线的性质.
分析: 过E作EF∥AB,根据平行线的性质可求得∠AEF和∠CEF的度数,根据∠E=∠AEF﹣∠CEF即可求得∠E的度数.
解答: 解:过E作EF∥AB,
∵∠A=125°,∠C=145°,
∴∠AEF=180°﹣∠A=180°﹣125°=55°,
∠CEF=180°﹣∠C=180°﹣145°=35°,
∴∠E=∠AEF﹣∠CEF=55°﹣35°=20°.
故选B.
点评: 本题考查了平行线的性质,解答本题的关键是作出辅助线,要求同学们熟练掌握平行线的性质:两直线平行,同旁内角互补.
8.(3分)已知 是方程组 的解,则 是下列哪个方程的解()
A. 2x﹣y=1 B. 5x+2y=﹣4 C. 3x+2y=5 D. 以上都不是
考点: 二元一次方程组的解;二元一次方程的解.
专题: 计算题.
分析: 将x=2,y=1代入方程组中,求出a与b的值,即可做出判断.
解答: 解:将 方程组 得:a=2,b=3,
将x=2,y=3代入2x﹣y=1的左边得:4﹣3=1,右边为1,故左边=右边,
∴ 是方程2x﹣y=1的解,
故选A.
点评: 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.
9.(3分)下列各式不一定成立的是()
A. B. C. D.
考点: 立方根;算术平方根.
分析: 根据立方根,平方根的定义判断即可.
解答: 解:A、a为任何数时,等式都成立,正确,故本选项错误;
B、a为任何数时,等式都成立,正确,故本选项错误;
C、原式中隐含条件a≥0,等式成立,正确,故本选项错误;
D、当a0时,等式不成立,错误,故本选项正确;
故选D.
点评: 本题考查了立方根和平方根的应用,注意:当a≥0时, =a,任何数都有立方根
10.(3分)若不等式组 的整数解共有三个,则a的取值范围是()
A. 5a6 p="" 5≤a≤6="" d.="" 5≤a6="" c.="" 5
考点: 一元一次不等式组的整数解.
分析: 首先确定不等式组的解集,利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.
解答: 解:解不等式组得:2x≤a, p=""
∵不等式组的整数解共有3个,
∴这3个是3,4,5,因而5≤a6.
故选C.
点评: 本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
二、填空题(本题共8小题,每小题3分,共24分)
11.(3分)(2009?恩施州)9的算术平方根是 3 .
考点: 算术平方根.
分析: 如果一个非负数x的平方等于a,那么x是a的算术平方根,根据此定义即可求出结果.
解答: 解:∵32=9,
∴9算术平方根为3.
故答案为:3.
点评: 此题主要考查了算术平方根的等于,其中算术平方根的概念易与平方根的概念混淆而导致错误.
12.(3分)把命题“在同一平面内,垂直于同一条直线的两条直线互相平行”写出“如果…,那么…”的形式是:在同一平面内,如果 两条直线都垂直于同一条直线 ,那么 这两条直线互相平行 .
考点: 命题与定理.
分析: 根据命题题设为:在同一平面内,两条直线都垂直于同一条直线;结论为这两条直线互相平行得出即可.
解答: 解:“在同一平面内,垂直于同一条直线的两条直线互相平行”改写成“如果﹣﹣﹣,那么﹣﹣﹣”的形式为:“在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行”.
故答案为:两条直线都垂直于同一条直线,这两条直线互相平行.
点评: 本题考查了命题与定理:判断事物的语句叫命题,命题由题设和结论两部分组成;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.
13.(3分)将方程2x+y=25写成用含x的代数式表示y的形式,则y= 25﹣2x .
考点: 解二元一次方程.
分析: 把方程2x+y=25写成用含x的式子表示y的形式,需要把含有y的项移到方程的左边, 其它 的项移到另一边即可.
解答: 解:移项,得y=25﹣2x.
点评: 本题考查的是方程的基本运算技能,表示谁就该把谁放到方程的左边,其它的项移到另一边.
此题直接移项即可.
14.(3分)不等式x+40的最小整数解是 ﹣3 .
考点: 一元一次不等式的整数解.
分析: 首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.
解答: 解:x+40,
x﹣4,
则不等式的解集是x﹣4,
故不等式x+40的最小整数解是﹣3.
故答案为﹣3.
点评: 本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.
15.(3分)某校在“数学小论文”评比活动中,共征集到论文60篇,并对其进行了评比、整理,分成组画出频数分布直方图(如图),已知从左到右5个小长方形的高的比为1:3:7:6:3,那么在这次评比中被评为优秀的论文有(分数大于或等于80分为优秀且分数为整数) 27 篇.
考点: 频数(率)分布直方图.
分析: 根据从左到右5个小长方形的高的比为1:3:7:6:3和总篇数,分别求出各个方格的篇数,再根据分数大于或等于80分为优秀且分数为整数,即可得出答案.
解答: 解:∵从左到右5个小长方形的高的比为1:3:7:6:3,共征集到论文60篇,
∴第一个方格的篇数是: ×60=3(篇);
第二个方格的篇数是: ×60=9(篇);
第三个方格的篇数是: ×60=21(篇);
第四个方格的篇数是: ×60=18(篇);
第五个方格的篇数是: ×60=9(篇);
∴这次评比中被评为优秀的论文有:9+18=27(篇);
故答案为:27.
点评: 本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
16.(3分)我市A、B两煤矿去年计划产煤600万吨,结果A煤矿完成去年计划的115%,B煤矿完成去年计划的120%,两煤矿共产煤710万吨,求去年A、B两煤矿原计划分别产煤多少万吨?设A、B两煤矿原计划分别产煤x万吨,y万吨;请列出方程组 .
考点: 由实际问题抽象出二元一次方程组.
分析: 利用“A、B两煤矿去年计划产煤600万吨,结果A煤矿完成去年计划的115%,B煤矿完成去年计划的120%,两煤矿共产煤710万吨”列出二元一次方程组求解即可.
解答: 解:设A矿原计划产煤x万吨,B矿原计划产煤y万吨,根据题意得:
,
故答案为:: ,
点评: 本题考查了由实际问题抽象出二元一次方程组的知识,解题的关键是从题目中找到两个等量关系,这是列方程组的依据.
17.(3分)在平面直角坐标系中,已知线段AB∥x轴,端点A的坐标是(﹣1,4)且AB=4,则端点B的坐标是 (﹣5,4)或(3,4) .
考点: 坐标与图形性质.
分析: 根据线段AB∥x轴,则A,B两点纵坐标相等,再利用点B可能在A点右侧或左侧即可得出答案.
解答: 解:∵线段AB∥x轴,端点A的坐标是(﹣1,4)且AB=4,
∴点B可能在A点右侧或左侧,
则端点B的坐标是:(﹣5,4)或(3,4).
故答案为:(﹣5,4)或(3,4).
点评: 此题主要考查了坐标与图形的性质,利用分类讨论得出是解题关键.
18.(3分)若点P(x,y)的坐标满足x+y=xy,则称点P为“和谐点”,如:和谐点(2,2)满足2+2=2×2.请另写出一个“和谐点”的坐标 (3, ) .
考点: 点的坐标.
专题: 新定义.
分析: 令x=3,利用x+y=xy可计算出对应的y的值,即可得到一个“和谐点”的坐标.
解答: 解:根据题意得点(3, )满足3+ =3× .
故答案为(3, ).
点评: 本题考查了点的坐标平面内的点与有序实数对是一一对应的关系.坐标:直角坐标系把平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.
三、解答题(本大题共46分)
19.(6分)解方程组 .
考点: 解二元一次方程组.
分析: 先根据加减消元法求出y的值,再根据代入消元法求出x的值即可.
解答: 解: ,
①×5+②得,2y=6,解得y=3,
把y=3代入①得,x=6,
故此方程组的解为 .
点评: 本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.
20.(6分)解不等式: ,并判断 是否为此不等式的解.
考点: 解一元一次不等式;估算无理数的大小.
分析: 首先去分母、去括号、移项合并同类项,然后系数化成1即可求得不等式的解集,然后进行判断即可.
解答: 解:去分母,得:4(2x+1)12﹣3(x﹣1)
去括号,得:8x+412﹣3x+3,
移项,得,8x+3x12+3﹣4,
合并同类项,得:11x11,
系数化成1,得:x1,
∵ 1,
∴ 是不等式的解.
点评: 本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.
解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.
21.(6分)学着说点理,填空:
如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC.
理由如下:
∵AD⊥BC于D,EG⊥BC于G,(已知)
∴∠ADC=∠EGC=90°,( 垂直定义 )
∴AD∥EG,( 同位角相等,两直线平行 )
∴∠1=∠2,( 两直线平行,内错角相等 )
∠E=∠3,(两直线平行,同位角相等)
又∵∠E=∠1(已知)
∴ ∠2 = ∠3 (等量代换)
∴AD平分∠BAC( 角平分线定义 )
考点: 平行线的判定与性质.
专题: 推理填空题.
分析: 根据垂直的定义及平行线的性质与判定定理即可证明本题.
解答: 解:∵AD⊥BC于D,EG⊥BC于G,(已知)
∴∠ADC=∠EGC=90°,(垂直定义)
∴AD∥EG,(同位角相等,两直线平行)
∴∠1=∠2,(两直线平行,内错角相等)
∠E=∠3,(两直线平行,同位角相等)
又∵∠E=∠1(已知)
∴∠2=∠3(等量代换)
∴AD平分∠BAC(角平分线定义 ).
点评: 本题考查了平行线的判定与性质,属于基础题,关键是注意平行线的性质和判定定理的综合运用.
22.(8分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的坐标分别为(﹣4,5),(﹣1,3).
(1)请在如图所示的网格平面内作出平面直角坐标系;
(2)请把△ABC先向右移动5个单位,再向下移动3个单位得到△A′B′C′,在图中画出△A′B′C′;
(3)求△ABC的面积.
考点: 作图-平移变换.
分析: (1)根据A点坐标,将坐标轴在A点平移到原点即可;
(2)利用点的坐标平移性质得出A,′B′,C′坐标即可得出答案;
(3)利用矩形面积减去周围三角形面积得出即可.
解答: 解:(1)∵点A的坐标为(﹣4,5),
∴在A点y轴向右平移4个单位,x轴向下平移5个单位得到即可;(2)如图所示:△A′B′C′即为所求;(3)△ABC的面积为:3×4﹣ ×3×2﹣ ×1×2﹣ ×2×4=4.
点评: 此题主要考查了平移变换以及三角形面积求法和坐标轴确定 方法 ,正确平移顶点是解题关键.
23.(10分)我市中考体育测试中,1分钟跳绳为自选项目.某中学九年级共有若干名女同学选考1分钟跳绳,根据测试评分标准,将她们的成绩进行统计后分为A、B、C、D四等,并绘制成下面的频数分布表(注:5~10的意义为大于等于5分且小于10分,其余类似)和扇形统计图(如图).
等级 分值 跳绳(次/1分钟) 频数
A 12.5~15 135~160 m
B 10~12.5 110~135 30
C 5~10 60~110 n
D 0~5 0~60 1
(1)m的值是 14 ,n的值是 30 ;
(2)C等级人数的百分比是 10% ;
(3)在抽取的这个样本中,请说明哪个分数段的学生最多?
(4)请你帮助老师计算这次1分钟跳绳测试的及格率(10分以上含10分为及格).
考点: 扇形统计图;频数(率)分布表.
分析: (1)首先根据B等级的人数除以其所占的百分比即可求得总人数,然后乘以28%即可求得m的值,总人数减去其他三个小组的频数即可求得n的值;
(2)用n值除以总人数即可求得其所占的百分比;
(3)从统计表的数据就可以直接求出结论;
(4)先计算10分以上的人数,再除以50乘以100%就可以求出结论.
解答: 解:(1)观察统计图和统计表知B等级的有30人,占60%,
∴总人数为:30÷60%=50人,
∴m=50×28%=14人,
n=50﹣14﹣30﹣1=5;(2)C等级所占的百分比为: ×100%=10%;(3)B等级的人数最多;(4)及格率为: ×100%=88%.
点评: 本题考查了频数分布表的运用,扇形统计图的运用,在解答时看懂统计表与统计图得关系式关键.
24.(10分)(2012?益阳)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.
(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?
(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.
考点: 一元一次不等式的应用;一元一次方程的应用.
专题: 压轴题.
分析: (1)假设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,利用购进A、B两种树苗刚好用去1220元,结合单价,得出等式方程求出即可;
(2)结合(1)的解和购买B种树苗的数量少于A种树苗的数量,可找出方案.
解答: 解:(1)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,根据题意得:
80x+60(17﹣x )=1220,
解得:x=10,
∴17﹣x=7,
答:购进A种树苗10棵,B种树苗7棵;(2)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,
根据题意得:
17﹣xx, p=""
解得:x ,
购进A、B两种树苗所需费用为80x+60(17﹣x)=20x+1020,
则费用最省需x取最小整数9,
此时17﹣x=8,
这时所需费用为20×9+1020=1200(元).
答:费用最省方案为:购进A种树苗9棵,B种树苗8棵.这时所需费用为1200元.
点评: 此题主要考查了一元一次不等式组的应用以及一元一次方程应用,根据一次函数的增减性得出费用最省方案是解决问题的关键.
七年级下册数学试卷及答案相关 文章 :
★ 七年级数学下册复习题答案
★ 七年级数学下册期末试卷题
★ 人教版七年级下数学期末试卷
★ 七年级下册苏科版数学期末测试卷
★ 2020七年级下数学复习重点试题
★ 七年级下数学练习册答案
★ 人教版七年级数学下册课本练习题答案
★ 七年级数学单元测试题
★ 七年级数学下册练习册参考答案
★ 2020七年级下册数学复习题
关于七下数学名校周测卷答案和名校课堂七下电子版数学周测小卷的介绍到此就结束了,不知道同学们从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。