本篇文章给同学们谈谈八年级下册数学周测冲刺卷,以及人教版八年级数学下册周测卷对应的知识点,希望对各位同学有所帮助,不要忘记分享给你的朋友哦!
本文目录一览:
推荐 初二数学下册练习
一、选择题
1. 当分式 有意义时,字母 应满足( )
A. B. C. D.
2.若点(-5,y1)、(-3,y2)、(3,y3)都在反比例函数y= -3x 的图像上,则( )
A.y1>y2>y3 B.y2>y1>y3
C.y3>y1>y2 D.y1>y3>y2
3.(08年四川乐山中考题)如图,在直角梯形 中, ,点 是边 的中点,若 ,则梯形 的面积为( )
A. B. C. D.25
4.函数 的图象经过点(1,-2),则k的值为( )
A. B. C. 2 D. -2
5.如果矩形的面积为6cm2,那么它的长 cm与宽 cm之间的函数关系用图象表示大致( )
6.顺次连结等腰梯形各边中点所得四边形是( )
A.梯形 B.菱形 C.矩形 D.正方形
7.若分式 的值为0,则x的值为( )
A.3 B.3或-3 C.-3 D.0
8.(2004年杭州中考题)甲、乙两人分别从两地同时出发,若相向而行,则a小时相遇;若同向而行,则b小时甲追上乙.那么甲的速度是乙的速度的( )
A. 倍 B. 倍 C. 倍 D. 倍
9.如图,把一张平行四边形纸片ABCD沿BD对折。使C点落在E处,BE与AD相交于点D.若∠DBC=15°,则∠BOD=
A.130 ° B.140 ° C.150 ° D.160°
10.如图,在高为3米,水平距离为4米楼梯的表面铺地毯,地毯的长度至少需多少米(
A.4 B.5 C.6 D.7
二、填空题
11.边长为7,24,25的△ABC内有一点P到三边距离相等,则这个距离为
12. 如果函数y= 是反比例函数,那么k=____, 此函数的解析式是__ ______
13.已知 - =5,则 的值是
14.从一个班抽测了6名男生的身高,将测得的每一个数据(单位:cm)都减去165.0cm,其结果如下:
−1.2,0.1,−8.3,1.2,10.8,−7.0
这6名男生中最高身高与最低身高的差是 __________ ;这6名男生的平均身高约为 ________ (结果保留到小数点后第一位)
15.如图,点P是反比例函数 上的一点,PD⊥ 轴于点D,则△POD的面积为
三、计算问答题
16.先化简,再求值: ,其中x=2
17.(08年宁夏中考题)汶川地震牵动着全国亿万人民的心,某校为地震灾区开展了“献出我们的爱” 赈灾捐款活动.八年级(1)班50名同学积极参加了这次赈灾捐款活动,下表是小明对全班捐款情况的统计表:
捐款(元) 10 15 30
50 60
人数 3 6 11
13 6
因不慎两处被墨水污染,已无法看清,但已知全班平均每人捐款38元.
(1)根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程.
(2)该班捐款金额的众数、中位数分别是多少?
18.已知如图:矩形ABCD的边BC在X轴上,E为对角线BD的中点,点B、D的坐标分别为
B(1,0),D(3,3),反比例函数y= 的图象经过A点,
(1)写出点A和点E的坐标;
(2)求反比例函数的解析式;
(3)判断点E是否在这个函数的图象上
19.已知:CD为 的斜边上的高,且 , , , (如图)
求证:
参考答案
1.D 2.B 3. A 4.D 5.C 6.B 7.C 8.C 9.C 10.B
11.3
12. -1或 y=-x-1或y=
13.1
14.19.1cm,164.3cm
15.1
16. 2x-1 ,3
17.解:(1) 被污染处的人数为11人
设被污染处的捐款数为 元,则
11 +1460=50×38
解得 =40
答:(1)被污染处的人数为11人,被污染处的捐款数为40元.
(2)捐款金额的中位数是40元,捐款金额的众数是50元.
18.解:(1)A(1,3),E(2,32 )
(2)设所求的函数关系式为y=kx
把x=1,y=3代入, 得:k=3×1=3
∴ y=3x 为所求的解析式
(3)当x=2时,y=32
∴ 点E(2,32 )在这个函数的图象上。
19.证明:左边
∵ 在直角三角形中,
又∵ 即
∴ 右边
即证明出:
人教版八年级下册数学期末测试题2
一、细心填一填,一锤定音(每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,并将正确选项填入答题卡中)
题号 1 2 3 4 5 6 7 8 9 10 11 12
答案
1、同学们都知道,蜜蜂建造的蜂房既坚固又省料。那你知道蜂房蜂巢的厚度吗?事实上,蜂房的蜂巢厚度仅仅约为0.000073m。此数据用科学计数法表示为( )
A、 B、 C、 D、
2、若一个四边形的两条对角线相等,则称这个四边形为对角线四边形。下列图形不是对角线四边形的是( )
A、平行四边形 B、矩形 C、正方形 D、等腰梯形
3、某地连续10天的最高气温统计如下:
最高气温(℃) 22 23 24 25
天数 1 2 3 4
这组数据的中位数和众数分别是( )
A、24,25 B、24.5,25 C、25,24 D、23.5,24
4、下列运算中,正确的是( )
A、 B、 C、 D、
5、下列各组数中以a,b,c为边的三角形不是Rt△的是 ( )
A、a=2,b=3, c=4 B、a=5, b=12, c=13
C、a=6, b=8, c=10 D、a=3, b=4, c=5
6、一组数据 0,-1,5,x,3,-2的极差是8,那么x的值为( )
A、6 B、7 C、6或-3 D、7或-3
7、已知点(3,-1)是双曲线 上的一点,则下列各点不在该双曲线上的是( )
A、 B、 C、(-1,3) D、 (3,1)
8、下列说法正确的是( ) A、一组数据的众数、中位数和平均数不可能是同一个数
B、一组数据的平均数不可能与这组数据中的任何数相等
C、一组数据的中位数可能与这组数据的任何数据都不相等
D、众数、中位数和平均数从不同角度描述了一组数据的波动大小
9、如图(1),已知矩形 的对角线 的长为 ,连结各边中点 、 、 、 得四边形 ,则四边形 的周长为( )A、 B、 C、 D、
10、若关于x的方程 无解,则m的取值为( )
A、-3 B、-2 C、 -1 D、3
11、在正方形ABCD中,对角线AC=BD=12cm,点P为AB边上的任一点,则点P到AC、BD的距离之和为( )A、6cm B、7cm C、 cm D、 cm
12、如图(2)所示,矩形ABCD的面积为10 ,它的两条对角线交于点 ,以AB、 为邻边作平行四边形 ,平行四边形 的对角线交于点 ,同样以AB、 为邻边作平行四边形 ,……,依次类推,则平行四边形 的面积为( )
A、1 B、2 C、 D、
二、细心填一填,相信你填得又快又准
13、若反比例函数 的图像在每个象限内y随x的增大而减小,则k的值可以为_______(只需写出一个符合条件的k值即可)
14、某中学八年级人数相等的甲、乙两个班级参加了同一次数学测验,两班平均分和方差分别为 分, 分, ,则成绩较为整齐的是________(填“甲班”或“乙班”)。
15、如图(3)所示,在□ABCD中,E、F分别为AD、BC边上的一点,若添加一个条件_____________,则四边形EBFD为平行四边形。
16、如图(4),是一组数据的折线统计图,这组数据的平均数是 ,极差是 .
17、如图(5)所示,有一直角梯形零件ABCD,AD∥BC,斜腰DC=10cm,∠D=120°,则该零件另一腰AB的长是_______cm;
18、如图(6),四边形 是周长为 的菱形,点 的坐标是 ,则点 的坐标为 .
19、如图(7)所示,用两块大小相同的等腰直角三角形纸片做拼图游戏,则下列图形:①平行四边形(不包括矩形、菱形、正方形);②矩形(不包括正方形);③正方形;④等边三角形;⑤等腰直角三角形,其中一定能拼成的图形有__________(只填序号)。
20、任何一个正整数n都可以进行这样的分解: (s、t是正整数,且s≤t),如果 在n的所有这种分解中两因数之差的绝对值最小,我们就称 是最佳分解,并规定 。例如:18可以分解成1×18,2×9,3×6,这是就有 。结合以上信息,给出下列 的说法:① ;② ;③ ;④若n是一个完全平方数,则 ,其中正确的说法有_________.(只填序号)
三、开动脑筋,你一定能做对(解答应写出文字说明、证明过程或推演步骤)
21、解方程
22、先化简,再求值 ,其中x=2
23、某校八年级(1)班50名学生参加2007年济宁市数学质量监测考试,全班学生的成绩统计如下表:
成绩(分) 71 74 78 80 82 83 85 86 88 90 91 92 94
人数 1 2 3 5 4 5 3 7 8 4 3 3 2
请根据表中提供的信息解答下列问题:
(1)该班学生考试成绩的众数和中位数分别是多少?
(2)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中偏上水平?试说明理由.
24、如图(8)所示,由5个大小完全相同的小正方形摆成如图形状,现移动其中的一个小正方形,请在
图(8-1)、图(8-2)、图(8-3)中分别画出满足以下要求的图形.(用阴影表示)
(1)使所得图形成为轴对称图形,而不是中心对称图形;
(2)使所得图形成为中心对称图形,而不是轴对称图形;
(3)使所得图形既是轴对称图形,又是中心对称图形.
25、某青少年研究机构随机调查了某校100名学生寒假零花钱的数量(钱数取整数元),以便研究分析并引导学生树立正确的消费观.现根据调查数据制成了如下图所示的频数分布表.
(1)请将频数分布表和频数分布直方图补充完整;
(2)研究认为应对消费150元以上的学生提出勤俭节约合理消费的建议.试估计应对该校1200名学生中约多少名学生提出该项建议?
(3)你从以下图表中还能得出那些信息?(至少写出一条)
分组(元) 组中值(元) 频数 频率
0.5~50.5 25.5 0.1
50.5~100.5 75.5 20 0.2
100.5~150.5
150.5~200.5 175.5 30 0.3
200.5~250.5 225.5 10 0.1
250.5~300.5 275.5 5 0.05
合计 100
26、如图(9)所示,一次函数 的图像与反比例函数 的图像交于M 、N两点。
(1)根据图中条件求出反比例函数和一次函数的解析式;
(2)当x为何值时一次函数的值大于反比例函数的值?
27、 如图(10)所示,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm。求CE的长?
28、如图(11)所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24 cm,BC=26 cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动。点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动。
(1)经过多长时间,四边形PQCD是平行四边形?
(2)经过多长时间,四边形PQBA是矩形?
(3)经过多长时间,四边形PQCD是等腰梯形?
八年级数学试题答案
一、选择题(3分×12=36分)
题号 1 2 3 4 5 6 7 8 9 10 11 12
答案 B A A D A C D C A B A D
二、填空题(3分×8=24分)
13、k4的任何值(答案不唯一); 14、___甲班___; 15、答案不唯一; 16、 46.5 , 31 ;
17、 cm; 18、 (0,3) ; 19、__①③⑤__; 20、 __①③④__.
三、开动脑筋,你一定能做对(共60分)
21、(6分)解:方程两边同乘 得:
解得:
检验:把 代入 =0
所以-2是原方程的增根, 原方程无解.
22、(6分)解: 原式=
把x=2 代入原式=8
23、(8分)(1)众数为88,中位数为86;
(2)不能,理由略.
24、(6分)
25、(9分)
(1)略
(2) (名)
(3)略
26、(8分)解: (1)反比例函数解析式为:
一次函数的解析式为:
(2) 当 或 时一次函数的值大于反比例函数的值.
27、(8分)CE=3
28、(9分)(1)(3分)设经过 ,四边形PQCD为平行四边形,即PD=CQ,所以 得
(2)(3分) 设经过 ,四边形PQBA为矩形, 即AP=BQ,所以 得
(3)(3分) 设经过 ,四边形PQCD是等腰梯形.(过程略)
人教版八年级下册数学期末测试题3
一、选择题(每题2分,共24分)
1、下列各式中,分式的个数有( )
、 、 、 、 、 、 、
A、2个 B、3个 C、4个 D、5个
2、如果把 中的x和y都扩大5倍,那么分式的值( )
A、扩大5倍 B、不变 C、缩小5倍 D、扩大4倍
3、已知正比例函数y=k1x(k1≠0)与反比例函数y= (k2≠0)的图象有一个交点的坐标为(-2,-1),则它的另一个交点的坐标是 A. (2,1) B. (-2,-1) C. (-2,1) D. (2,-1)
4、一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为
A.10米 B.15米 C.25米 D.30米
5、一组对边平行,并且对角线互相垂直且相等的四边形是( )
A、菱形或矩形 B、正方形或等腰梯形 C、矩形或等腰梯形 D、菱形或直角梯形
6、把分式方程 的两边同时乘以(x-2), 约去分母,得( )
A.1-(1-x)=1 B.1+(1-x)=1 C.1-(1-x)=x-2 D.1+(1-x)=x-2
7、如图,正方形网格中的△ABC,若小方格边长为1,则△ABC是( )
A、直角三角形 B、锐角三角形 C、钝角三角形 D、以上答案都不对
(第7题) (第8题) (第9题)
8、如图,等腰梯形ABCD中,AB∥DC,AD=BC=8,AB=10,CD=6,则梯形ABCD的面积是 ( )
A、 B、 C、 D、
9、如图,一次函数与反比例函数的图像相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是( )
A、x<-1 B、x>2 C、-1<x<0,或x>2 D、x<-1,或0<x<2
10、在一次科技知识竞赛中,两组学生成绩统计如下表,通过计算可知两组的方差为 , 。下列说法:①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数>乙组成绩的众数;④两组成绩的中位数均为80,但成绩≥80的人数甲组比乙组多,从中位数来看,甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多,高分段乙组成绩比甲组好。其中正确的共有( ).
分数 50 60 70 80 90 100
人
数 甲组 2 5 10 13 14 6
乙组 4 4 16 2 12 12
(A)2种 (B)3种 (C)4种 (D)5种
11、小明通常上学时走上坡路,途中平均速度为m千米/时,放学回家时,沿原路返回,通常的速度为n千米/时,则小明上学和放学路上的平均速度为( )千米/时
A、 B、 C、 D、
12、李大伯承包了一个果园,种植了100棵樱桃树,今年已进入收获期。收获时,从中任选并采摘了10棵树的樱桃,分别称得每棵树所产樱桃的质量如下表:
序号 1 2 3 4 5 6 7 8 9 10
质量(千克) 14 21 27 17 18 20 19 23 19 22
据调查,市场上今年樱桃的批发价格为每千克15元。用所学的统计知识估计今年此果园樱桃的总产量与按批发价格销售樱桃所得的总收入分别约为( )
A. 2000千克,3000元 B. 1900千克,28500元
C. 2000千克,30000元 D. 1850千克,27750元
二、填空题(每题2分,共24分)
13、当x 时,分式 无意义;当 时,分式 的值为零
14、各分式 的最简公分母是_________________
15、已知双曲线 经过点(-1,3),如果A( ),B( )两点在该双曲线上,且 < <0,那么 .
16、梯形 中, , , 直线 为梯形 的对称轴, 为 上一点,那么 的最小值 。
(第16题) (第17题) (第19题)
17、已知任意直线l把□ABCD分成两部分,要使这两部分的面积相等,直线l所在位置需满足的条件是 _________
18、如图,把矩形ABCD沿EF折叠,使点C落在点A处,点D落在点G处,若∠CFE=60°,且DE=1,则边BC的长为 .
19、如图,在□ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于G、H,试判断下列结论:①ΔABE≌ΔCDF;②AG=GH=HC;③EG= ④SΔABE=SΔAGE,其中正确的结论是__个
20、点A是反比例函数图象上一点,它到原点的距离为10,到x轴的距离为8,则此函数表达式可能为_________________
21、已知: 是一个恒等式,则A=______,B=________。
22、如图, 、 是等腰直角三角形,点 、 在函数 的图象上,斜边 、 都在 轴上,则点 的坐标是____________.
(第24题)
23、小林在初三第一学期的数学书面测验成绩分别为:平时考试第一单元得84分,第二单元得76分,第三单元得92分;期中考试得82分;期末考试得90分.如果按照平时、期中、期末的权重分别为10%、30%、60%计算,那么小林该学期数学书面测验的总评成绩应为_____________分。
24、在直线l上依次摆放着七个正方形(如图所示)。已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=_______。
三、解答题(共52分)
25、(5分)已知实数a满足a2+2a-8=0,求 的值.
26、(5分)解分式方程:
27、(6分)作图题:如图,RtΔABC中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形的等腰三角形。(保留作图痕迹,不要求写作法和证明)
28、(6分)如图,已知四边形ABCD是平行四边形,∠BCD的平分线CF交边AB于F,∠ADC的平分线DG交边AB于G。
(1)求证:AF=GB;(2)请你在已知条件的基础上再添加一个条件,使得△EFG为等腰直角三角形,并说明理由.
29、(6分)张老师为了从平时在班级里数学比较优秀的王军、张成两位同学中选拔一人参加“全国初中数学联赛”,对两位同学进行了辅导,并在辅导期间进行了10次测验,两位同学测验成绩记录如下表:
第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 第9次 第10次
王军 68 80 78 79 81 77 78 84 83 92
张成 86 80 75 83 85 77 79 80 80 75
利用表中提供的数据,解答下列问题:
平均成绩 中位数 众数
王军 80 79.5
张成 80 80
(1)填写完成下表:
(2)张老师从测验成绩记录表中,求得王军10次测验成绩的方差 =33.2,请你帮助张老师计算张成10次测验成绩的方差 ;(3)请根据上面的信息,运用所学的统计知识,帮助张老师做出选择,并简要说明理由。
30、(8分)制作一种产品,需先将材料加热达到60℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,设该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图).已知该材料在操作加工前的温度为15℃,加热5分钟后温度达到60℃. (1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;
(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?
31、(6分)甲、乙两个工程队合做一项工程,需要16天完成,现在两队合做9天,甲队因有其他任务调走,乙队再做21天完成任务。甲、乙两队独做各需几天才能完成任务?
32、(10分)E是正方形ABCD的对角线BD上一点,EF⊥BC,EG⊥CD,垂足分别是F、G.求证: .
参考答案:
一、选择题
1、C 2、B 3、A 4、B 5、B 6、D 7、A 8、A 9、D 10、D 11、C 12、C
二、填空题
13、 ,3 14、 15、 16、 17、经过对角线的交点 18、3 19、3
20、 或 21、A=2,B=-2 22、( ,0) 23、88分 24、4
三、解答题
25、解: =
= =
∵a2+2a-8=0,∴a2+2a=8
∴原式= =
26、解:
经检验: 不是方程的解
∴原方程无解
27、1°可以作BC边的垂直平分线,交AB于点D,则线段CD将△ABC分成两个等腰三角形
2°可以先找到AB边的中点D,则线段CD将△ABC分成两个等腰三角形
3°可以以B为圆心,BC长为半径,交BA于点BA与点D,则△BCD就是等腰三角形。
28、(1)证明:∵四边形ABCD为平行四边形
∴AB∥CD,AD∥BC,AD=BC
∴∠AGD=∠CDG,∠DCF=∠BFC
∵DG、CF分别平分∠ADC和∠BCD
∴∠CDG=∠ADG,∠DCF=∠BCF
∴∠ADG=∠AGD,∠BFC=∠BCF
∴AD=AG,BF=BC
∴AF=BG
(2)∵AD∥BC ∴∠ADC+∠BCD=180°
∵DG、CF分别平分∠ADC和∠BCD
∴∠EDC+∠ECD=90° ∴∠DFC=90°∴∠FEG=90°
因此我们只要保证添加的条件使得EF=EG就可以了。
我们可以添加∠GFE=∠FGD,四边形ABCD为矩形,DG=CF等等。
29、1)78,80(2)13(3)选择张成,因为他的成绩较稳定,中位数和众数都较高
30、(1) (2)20分钟
31、解:设甲、乙两队独做分别需要x天和y天完成任务,根据题意得:
解得: ,
经检验: , 是方程组的解。
答:甲、乙两队独做分别需要24天和28天完成任务。
32、证明:连接CE
∵四边形ABCD为正方形
∴AB=BC,∠ABD=∠CBD=45°,∠C=90°
∵EF⊥BC,EG⊥CD
∴四边形GEFC为矩形
∴GF=EC
在△ABE和△CBE中
∴△ABE≌△CBE
∴AE=CE
∴AE=CF
人教版八年级下册数学期末测试题4
一、选择题
1、第五次全国人口普查结果显示,我国的总人口已达到1 300 000 000人,用科学记数法表示这个数,结果正确的是 ( )
A.1.3×108 B.1.3×109 C.0.13×1010 D.13×109
2、不改变分式的值,将分式 中各项系数均化为整数,结果为 ( )
A、 B、 C、 D、
3、如果一定值电阻 两端所加电压5 时,通过它的电流为1 ,那么通过这一电阻的电流 随它两端电压 变化的大致图像是 (提示: ) ( )
八年级下册数学试卷及答案
八年级下册数学知识期末试题
一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.
1.如果 =x成立,则x一定是()
A.正数 B.0 C.负数 D.非负数
2.以下列各组数为三角形的三边,能构成直角三角形的是()
A.4,5,6 B.1,1, C.6,8,11 D.5,12,23
3.矩形具有而菱形不具有的性质是()
A.对角线互相平分 B.对角线相等
C.对角线垂直 D.每一条对角线平分一组对角
4.已知|a+1|+ =0,则直线y=ax﹣b不经过()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5.下列四个等式:① ;②(﹣ )2=16;③( )2=4;④ .正确的是()
A.①② B.③④ C.②④ D.①③
6.顺次连接矩形ABCD各边中点,所得四边形必定是()
A.邻边不等的平行四边形 B.矩形
C.正方形 D.菱形
7.若函数y=kx+2的图象经过点(1,3),则当y=0时,x=()
A.﹣2 B.2 C.0 D.2
8.等边三角形的边长为2,则该三角形的面积为()
A. B. C. D.3
9.某同学五天内每天完成家庭作业的时间(时)分别为2,3,2,1,2,则对这组数据的下列说法中错误的是
()
A.平均数是2 B.众数是2 C.中位数是2 D.方差是2
10.下列函数中,自变量的取值范围选取错误的是()
A.y=x+2中,x取任意实数 B.y= 中,x取x﹣1的实数
C.y= 中,x取x﹣2的实数 D.y= 中,x取任意实数
11.如图,直线y=kx+b经过点A(2,1),则下列结论中正确的是()
A.当y2时,x1 B.当y1时,x2 C.当y2时,x1 D.当y1时,x2
12.平行四边形ABCD的周长32,5AB=3BC,则对角线AC的取值范围为()
A.6
二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.
13.计算( + )( ﹣ )的结果为.
14.如图,菱形ABCD的周长为32,对角线AC、BD相交于点O,E为BC的中点,则OE=.
15.若三角形的两边长为6和8,要使其成为直角三角形,则第三边的长为.
16.把直线y=﹣x﹣1沿x轴向右平移2个单位,所得直线的函数解析式为.
17.为了解某小区居民每月用水情况,随机抽查了该小区10户家庭的用水量,结果如表:
月用水量/吨 10 13 14 17 18
户数 2 2 3 2 1
则这10户家庭的月平均用水量是吨.
18.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后端点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为.
三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.
19.计算:
(1)
(2) .
20.如图,已知AC=4,BC=3,BD=12,AD=13,ACB=90,试求阴影部分的面积.
21.为了从甲、乙两名运动员中选拔一人参加市射击比赛,在选拔赛上每人打10发,其中甲的射击环数分别是10,8,7,9,8,10,10,9,10,9.
(1)计算甲射击成绩的方差;
(2)经过统计,乙射击的平均成绩是9,方差是1.4.你认为选谁去参加比赛更合适?为什么?
22.已知一次函数的图象过点(3,5)与点(﹣4,﹣9),求这个一次函数的解析式.
23.如图,已知ABCD的对角线AC与 BD相交于点O,过点O作EFAC,与边AD、BC 分别交于点 E、F.求证:四边形AFCE是菱形.
24.如图1,正方形ABCD中,点E、F分别为边AD、CD上的点,且DE=CF,AF、BE相交于点G.
(1)问:线段AF和BE有怎样的位置关系和数量关系?(直接写出结论,不必证明)
答:.
(2)若点E、F分别运动到边AD的延长线和边DC的延长线上,其他条件均保持不变(如图2),此时连接BF和EF,M、N、P、Q分别为AE、EF、BF、AB的中点,请判断四边形MNPQ是矩形、菱形、正方形中的哪一种?并写出证明过程.
八年级下册数学期末试卷参考答案
一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.
1.如果 =x成立,则x一定是()
A.正数 B.0 C.负数 D.非负数
【考点】二次根式的性质与化简.
【分析】根据二次根式的性质进行解答即可.
【解答】解:∵ =x,x0,故选:D.
2.以下列各组数为三角形的三边,能构成直角三角形的是()
A.4,5,6 B.1,1, C.6,8,11 D.5,12,23
【考点】勾股定理的逆定理.
【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
【解答】解:A、42+5262,故不是直角三角形,故此选项错误;
B、12+12=( )2,故是直角三角形,故此选项正确;
C、62+82112,故不是直角三角形,故此选项错误;
D、52+122232,故不是直角三角形,故此选项错误.
故选B.
3.矩形具有而菱形不具有的性质是()
A.对角线互相平分 B.对角线相等
C.对角线垂直 D.每一条对角线平分一组对角
【考点】矩形的性质;菱形的性质.
【分析】分别根据矩形和菱形的'性质可得出其对角线性质的不同,可得到答案.
【解答】解:矩形的对角线相等且平分,菱形的对角线垂直且平分,
所以矩形具有而菱形不具有的为对角线相等,
故选B.
4.已知|a+1|+ =0,则直线y=ax﹣b不经过()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【考点】一次函数图象与系数的关系;非负数的性质:绝对值;非负数的性质:算术平方根.
【分析】根据绝对值和算术平方根的非负性即可得出a、b的值,将其代入直线解析式中,再利用一次函数图象与系数的关系即可得出该直线经过的象限,此题得解.
【解答】解:∵|a+1|+ =0,
,即 ,
直线y=ax﹣b=﹣x﹣2,
∵﹣10,﹣20,
直线y=ax﹣b经过第二、三、四象限.
故选A.
5.下列四个等式:① ;②(﹣ )2=16;③( )2=4;④ .正确的是()
A.①② B.③④ C.②④ D.①③
【考点】二次根式的性质与化简;二次根式有意义的条件.
【分析】本题考查的是二次根式的意义:① =a(a0),② =a(a0),逐一判断.
【解答】解:① = =4,正确;
② =(﹣1)2 =14=416,不正确;
③ =4符合二次根式的意义,正确;
④ = =4﹣4,不正确.
①③正确.
故选:D.
6.顺次连接矩形ABCD各边中点,所得四边形必定是()
A.邻边不等的平行四边形 B.矩形
C.正方形 D.菱形
【考点】中点四边形.
【分析】作出图形,根据三角形的中位线定理可得EF=GH= AC,FG=EH= BD,再根据矩形的对角线相等可得AC=BD,从而得到四边形EFGH的四条边都相等,然后根据四条边都相等的四边形是菱形解答.
【解答】解:如图,连接AC、BD,
∵E、F、G、H分别是矩形ABCD的AB、BC、CD、AD边上的中点,
EF=GH= AC,FG=EH= BD(三角形的中位线等于第三边的一半),
∵矩形ABCD的对角线AC=BD,
EF=GH=FG=EH,
四边形EFGH是菱形.
故选:D.
7.若函数y=kx+2的图象经过点(1,3),则当y=0时,x=()
A.﹣2 B.2 C.0 D.2
【考点】一次函数图象上点的坐标特征.
【分析】直接把点(1,3)代入一次函数y=kx+2求出k的值,再代入解答即可.
【解答】解:∵一次函数y=kx+2的图象经过点(1,3),
3=k+2,解得k=1.
把y=0代入y=x+2中,解得:x=﹣2,
故选A
8.等边三角形的边长为2,则该三角形的面积为()
A. B. C. D.3
【考点】等边三角形的性质.
【分析】如图,作CDAB,则CD是等边△ABC底边AB上的高,根据等腰三角形的三线合一,可得AD=1,所以,在直角△ADC中,利用勾股定理,可求出CD的长,代入面积计算公式,解答出即可;
【解答】解:作CDAB,
∵△ABC是等边三角形,AB=BC=AC=2,
AD=1,
在直角△ADC中,
CD= = = ,
S△ABC= 2 = ;
故选C.
9.某同学五天内每天完成家庭作业的时间(时)分别为2,3,2,1,2,则对这组数据的下列说法中错误的是
()
A.平均数是2 B.众数是2 C.中位数是2 D.方差是2
【考点】方差;算术平均数;中位数;众数.
【分析】根据众数、中位数、平均数和方差的计算公式分别进行解答,即可得出答案.
【解答】解:平均数是:(2+3+2+1+2)5=2;
数据2出现了3次,次数最多,则众数是2;
数据按从小到大排列:1,2,2,2,3,则中位数是2;
方差是: [(2﹣2)2+(3﹣2)2+(2﹣2)2+(1﹣2)2+(2﹣2)2]= ,
则说法中错误的是D;
故选D.
10.下列函数中,自变量的取值范围选取错误的是()
A.y=x+2中,x取任意实数 B.y= 中,x取x﹣1的实数
C.y= 中,x取x﹣2的实数 D.y= 中,x取任意实数
【考点】函数自变量的取值范围.
【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.
【解答】解:A、y=x+2中,x取任意实数,正确,故本选项错误;
B、由x+10得,x﹣1,故本选项正确;
C、由x+20得,x﹣2,故本选项错误;
D、∵x20,
x2+11,
y= 中,x取任意实数,正确,故本选项错误.
故选B.
11.如图,直线y=kx+b经过点A(2,1),则下列结论中正确的是()
A.当y2时,x1 B.当y1时,x2 C.当y2时,x1 D.当y1时,x2
【考点】一次函数的性质.
【分析】根据函数图象可直接得到答案.
【解答】解:∵直线y=kx+b经过点A(2,1),
当y1时,x2,
故选:B.
12.平行四边形ABCD的周长32,5AB=3BC,则对角线AC的取值范围为()
A.6
【考点】平行四边形的性质;三角形三边关系.
【分析】根据平行四边形周长公式求得AB、BC的长度,然后由三角形的三边关系来求对角线AC的取值范围.
【解答】解:∵平行四边形ABCD的周长32,5AB=3BC,
2(AB+BC)=2( BC+BC)=32,
BC=10,
AB=6,
BC﹣AB
故选D.
二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.
13.计算( + )( ﹣ )的结果为 ﹣1 .
【考点】二次根式的混合运算.
【分析】根据平方差公式:(a+b)(a﹣b)=a2﹣b2,求出算式( + )( ﹣ )的结果为多少即可.
【解答】解:( + )( ﹣ )
=
=2﹣3
=﹣1
( + )( ﹣ )的结果为﹣1.
故答案为:﹣1.
14.如图,菱形ABCD的周长为32,对角线AC、BD相交于点O,E为BC的中点,则OE= 4 .
【考点】菱形的性质.
【分析】先根据菱形的性质得到BC=8,ACBD,然后根据直角三角形斜边上的中线性质求解.
【解答】解:∵四边形ABCD为菱形,
BC=8,ACBD,
∵E为BC的中点,
OE= BC=4.
故答案为4.
15.若三角形的两边长为6和8,要使其成为直角三角形,则第三边的长为 10或2 .
【考点】勾股定理的逆定理.
【分析】分情况考虑:当较大的数8是直角边时,根据勾股定理求得第三边长是10;当较大的数8是斜边时,根据勾股定理求得第三边的长是 =2 .
【解答】解:①当6和8为直角边时,
第三边长为 =10;
②当8为斜边,6为直角边时,
第三边长为 =2 .
故答案为:10或2 .
16.把直线y=﹣x﹣1沿x轴向右平移2个单位,所得直线的函数解析式为 y=﹣x+1 .
【考点】一次函数图象与几何变换.
【分析】直接根据左加右减的平移规律求解即可.
【解答】解:把直线y=﹣x﹣1沿x轴向右平移2个单位,所得直线的函数解析式为y=﹣(x﹣2)﹣1,即y=﹣x+1.
故答案为y=﹣x+1.
17.为了解某小区居民每月用水情况,随机抽查了该小区10户家庭的用水量,结果如表:
月用水量/吨 10 13 14 17 18
户数 2 2 3 2 1
则这10户家庭的月平均用水量是 14 吨.
【考点】加权平均数.
【分析】计算出10户家庭的月平均用水量的加权平均数即可得到问题答案.
【解答】解:根据题意得:
=14(吨),
答:这10户家庭的月平均用水量是14吨,
故答案为:14.
18.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后端点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为 (10,3) .
【考点】翻折变换(折叠问题);坐标与图形性质.
【分析】根据折叠的性质得到AF=AD,所以在直角△AOF中,利用勾股定理来求OF=6,然后设EC=x,则EF=DE=8﹣x,CF=10﹣6=4,根据勾股定理列方程求出EC可得点E的坐标.
【解答】解:∵四边形A0CD为矩形,D的坐标为(10,8),
AD=BC=10,DC=AB=8,
∵矩形沿AE折叠,使D落在BC上的点F处,
AD=AF=10,DE=EF,
在Rt△AOF中,OF= =6,
FC=10﹣6=4,
设EC=x,则DE=EF=8﹣x,
在Rt△CEF中,EF2=EC2+FC2,即(8﹣x)2=x2+42,解得x=3,
即EC的长为3.
点E的坐标为(10,3),
故答案为:(10,3).
三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.
19.计算:
(1)
(2) .
【考点】二次根式的混合运算.
【分析】(1)先化简二次根式、计算乘方,再计算乘除法、运用平方差公式去括号,最后计算加减法即可;
(2)用乘法分配律去括号后合并同类二次根式即可
【解答】解:(1)原式=32 2 +(7+4 )(4 ﹣7)
= +48﹣49
= .
(2)原式=3+ ﹣ ﹣1=2.
20.如图,已知AC=4,BC=3,BD=12,AD=13,ACB=90,试求阴影部分的面积.
【考点】勾股定理;勾股定理的逆定理.
【分析】先利用勾股定理求出AB,然后利用勾股定理的逆定理判断出△ABD是直角三角形,然后分别求出两个三角形的面积,相减即可求出阴影部分的面积.
【解答】解:连接AB,
∵ACB=90,
AB= =5,
∵AD=13,BD=12,
AB2+BD2=AD2,
△ABD为直角三角形,
阴影部分的面积= ABBD﹣ ACBC=30﹣6=24.
答:阴影部分的面积是24.
21.为了从甲、乙两名运动员中选拔一人参加市射击比赛,在选拔赛上每人打10发,其中甲的射击环数分别是10,8,7,9,8,10,10,9,10,9.
(1)计算甲射击成绩的方差;
(2)经过统计,乙射击的平均成绩是9,方差是1.4.你认为选谁去参加比赛更合适?为什么?
【考点】方差.
【分析】(1)先求出甲射击成绩的平均数,再由方差公式求出甲射击成绩的方差即可;
(2)根据平均数和方差的意义,即可得出结果.
【解答】解:(1)∵ = (10+8+7+9+8+10+10+9+10+9)=9,
= [(10﹣9)2+(10﹣8)2++(9﹣9)2]=1,;
(2)选甲运动员去参加比赛更合适;理由如下:
因为甲、乙射击的平均成绩一样,而且甲成绩的方差小,说明甲与乙射击水平相当,但是甲比赛状态更稳定,所以选甲运动员去参加比赛更合适.
22.已知一次函数的图象过点(3,5)与点(﹣4,﹣9),求这个一次函数的解析式.
【考点】待定系数法求一次函数解析式.
【分析】把两点代入函数解析式得到一二元一次方程组,求解即可得到k、b的值,函数解析式亦可得到.
【解答】解:设一次函数为y=kx+b(k0),
因为它的图象经过(3,5),(﹣4,﹣9),
所以
解得: ,
所以这个一次函数为y=2x﹣1.
23.如图,已知ABCD的对角线AC与 BD相交于点O,过点O作EFAC,与边AD、BC 分别交于点 E、F.求证:四边形AFCE是菱形.
【考点】菱形的判定;平行四边形的性质.
【分析】由ABCD的对角线AC与 BD相交于点O,EFAC,易得EF垂直平分AC,即可证得△AOE≌△COF,继而可得AE=CF,则可证得结论.
【解答】证明:∵四边形ABCD是平行四边形
AO=CO,AD∥BC
又∵EFAC,
EF垂直平分AC,
AE=EC
∵AD∥BC,
DAC=ACB,AE∥CF,
在△AOE和△COF中,
,
△AOE≌△COF(ASA),
AE=CF,
又∵AE∥CF,
四边形AFCE是菱形.
24.如图1,正方形ABCD中,点E、F分别为边AD、CD上的点,且DE=CF,AF、BE相交于点G.
(1)问:线段AF和BE有怎样的位置关系和数量关系?(直接写出结论,不必证明)
答: 线段AF和BE的位置关系是互相垂直,数量关系是相等 .
(2)若点E、F分别运动到边AD的延长线和边DC的延长线上,其他条件均保持不变(如图2),此时连接BF和EF,M、N、P、Q分别为AE、EF、BF、AB的中点,请判断四边形MNPQ是矩形、菱形、正方形中的哪一种?并写出证明过程.
【考点】四边形综合题.
【分析】(1)结论:AFBE,AF=BE.只要证明△ABE≌△DAF即可解决问题.
(2)结论:四边形MNPQ是正方形,先证明△ABE≌△DAF,推出AF=BE,AFBE,再证明四边形MNPQ是正方形即可.
【解答】解:(1)如图1中,∵四边形ABCD是正方形,
AB=AD=CD,BAC=ADC=90,
∵DE=CF,
AE=DF,
在△ABE和△DAF中,
,
△ABE≌△DAF,
AF=BE,AEB=AFD,
∵AFD+FAD=90,
AEB+FAD=90,
EGA=90,
BEAF.
故答案为线段AF和BE的位置关系是互相垂直,数量关系是相等.
(2)结论:四边形MNPQ是正方形.
理由:如图2中,∵四边形ABCD是正方形,
AD=AB=DC,
∵DE=CF,
AE=DF,
在△ABE和△DAF中,
,
△ABE≌△DAF,
AF=BE,AEB=AFD,
∵AFD+FAD=90,
AEB+FAD=90,
EGA=90,
BEAF.
∵M、N、P、Q分别为AE、EF、BF、AB的中点,
MN∥AF∥QP,MQ∥EB∥NP,
MN=PQ= AF,MQ=NP= BE,
MN=NP=PQ=MQ,
四边形MNPQ是菱形,
∵AFEB,EB∥NP,
NPAF,
∵MN∥AF,
MNNP,
MNP=90,
四边形MNPQ是正方形.
八年级数学期末冲刺练习卷怎么样
好。
1、从编写上看,《期末冲刺优选卷》是针对广大学生期末复习冲刺的检测卷,本试卷以初中的新课程标准为指导,以教材为依据,严格按照教学总复习课程知识点,重难点编写。本书中的试卷为期末冲刺卷,是专门针对本年段各章节的重难点而精心设计的。
2、从价格上看,《期末冲刺优选卷》为35元一整卷,比其它类型的试卷要优惠便宜。
[img]八年级下册数学测试卷及答案解析
很多学生到了 八年级 数学成绩开始下降,其实很大一部分原因是没有掌握好课本的基础知识。下面是我整理的八年级下册数学测试卷及答案解析,欢迎阅读分享,希望对大家有所帮助。
八年级下册数学测试卷及答案
一、选择题:
1.下列各式从左到右,是因式分解的是()
A.(y﹣1)(y+1)=y2﹣1B.x2y+xy2﹣1=xy(x+y)﹣1
C.(x﹣2)(x﹣3)=(3﹣x)(2﹣x)D.x2﹣4x+4=(x﹣2)2
【考点】因式分解的意义.
【分析】根据因式分解就是把一个多项式变形成几个整式的积的形式的定义,利用排除法求解.
【解答】解:A、是多项式乘法,不是因式分解,故本选项错误;
B、结果不是积的形式,故本选项错误;
C、不是对多项式变形,故本选项错误;
D、运用完全平方公式分解x2﹣4x+4=(x﹣2)2,正确.
故选D.
【点评】这类问题的关键在于能否正确应用分解因式的定义来判断.
2.下列四个图形中,既是轴对称图形又是中心对称图形的是()
A.B.C.D.
【考点】中心对称图形;轴对称图形.
【分析】根据轴对称图形与中心对称图形的概念求解.
【解答】解:A、不是轴对称图形,是中心对称图形;
B、是轴对称图形,也是中心对称图形;
C、是轴对称图形,不是中心对称图形;
D、是轴对称图形,不是中心对称图形.
故选B.
【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.
3.下列多项式中不能用平方差公式分解的是()
A.a2﹣b2B.﹣x2﹣y2C.49x2﹣y2z2D.16m4n2﹣25p2
【考点】因式分解﹣运用公式法.
【分析】能用平方差公式分解的式子的特点是:两项都是平方项,符号相反.
【解答】解:A、符合平方差公式的特点;
B、两平方项的符号相同,不符和平方差公式结构特点;
C、符合平方差公式的特点;
D、符合平方差公式的特点.
故选B.
【点评】本题考查能用平方差公式分解的式子的特点,两平方项的符号相反是运用平方差公式的前提.
4.函数y=kx+b(k、b为常数,k≠0)的图象如图,则关于x的不等式kx+b0的解集为()
A.x0B.x0C.x2D.x2
【考点】一次函数与一元一次不等式.
【分析】从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式kx+b0的解集.
【解答】解:函数y=kx+b的图象经过点(2,0),并且函数值y随x的增大而减小,
所以当x2时,函数值小于0,即关于x的不等式kx+b0的解集是x2.
故选C.
【点评】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用,注意几个关键点(交点、原点等),做到数形结合.
5.使分式有意义的x的值为()
A.x≠1B.x≠2C.x≠1且x≠2D.x≠1或x≠2
【考点】分式有意义的条件.
【分析】根据分式有意义,分母不等于0列不等式求解即可.
【解答】解:由题意得,(x﹣1)(x﹣2)≠0,
解得x≠1且x≠2.
故选C.
【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义?分母为零;(2)分式有意义?分母不为零;(3)分式值为零?分子为零且分母不为零.
6.下列是最简分式的是()
A.B.C.D.
【考点】最简分式.
【分析】先将选项中能化简的式子进行化简,不能化简的即为最简分式,本题得以解决.
【解答】解:,无法化简,,,
故选B.
【点评】本题考查最简分式,解题的关键是明确最简分式的定义.
7.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()
A.6B.7C.8D.9
【考点】等腰三角形的判定.
【专题】分类讨论.
【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.
【解答】解:如上图:分情况讨论.
①AB为等腰△ABC底边时,符合条件的C点有4个;
②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.
故选:C.
【点评】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.
8.若不等式组的解集是x2,则a的取值范围是()
A.a2B.a≤2C.a≥2D.无法确定
【考点】解一元一次不等式组.
【专题】计算题.
【分析】解出不等式组的解集,与已知解集x2比较,可以求出a的取值范围.
【解答】解:由(1)得:x2
由(2)得:xa p=""
因为不等式组的解集是x2
∴a≥2
故选:C.
【点评】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.
9.下列式子:(1);(2);(3);(4),其中正确的有()
A.1个B.2个C.3个D.4个
【考点】分式的基本性质.
【分析】根据分式的基本性质作答.
【解答】解:(1),错误;
(2),正确;
(3)∵b与a的大小关系不确定,∴的值不确定,错误;
(4),正确.
故选B.
【点评】在分式中,无论进行何种运算,如果要不改变分式的值,则所做变化必须遵循分式基本性质的要求.
10.某煤矿原计划x天生存120t煤,由于采用新的技术,每天增加生存3t,因此提前2天完成,列出的方程为()
A.==﹣3B.﹣3
C.﹣3D.=﹣3
【考点】由实际问题抽象出分式方程.
【分析】设原计划x天生存120t煤,则实际(x﹣2)天生存120t煤,等量关系为:原计划工作效率=实际工作效率﹣3,依此可列出方程.
【解答】解:设原计划x天生存120t煤,则实际(x﹣2)天生存120t煤,
根据题意得,=﹣3.
故选D.
【点评】本题考查由实际问题抽象出分式方程,关键设出天数,以工作效率作为等量关系列方程.
二、填空题:
11.分解因式x2(x﹣y)+(y﹣x)=(x﹣y)(x+1)(x﹣1).
【考点】提公因式法与公式法的综合运用.
【分析】把(x﹣y)看作一个整体并提取,然后再利用平方差公式继续分解因式即可.
【解答】解:x2(x﹣y)+(y﹣x)
=x2(x﹣y)﹣(x﹣y)
=(x﹣y)(x2﹣1)
=(x﹣y)(x+1)(x﹣1).
故答案为:(x﹣y)(x+1)(x﹣1).
【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他 方法 进行因式分解,同时因式分解要彻底,直到不能分解为止.
12.当x=﹣2时,分式无意义.若分式的值为0,则a=﹣2.
【考点】分式的值为零的条件;分式有意义的条件.
【分析】根据分母为零,分式无意义;分母不为零,分式有意义,分子为零分母不为零分式的值为零,可得答案.
【解答】解:∵分式无意义,
∴x+2=0,
解得x=﹣2.
∵分式的值为0,
∴,
解得a=﹣2.
故答案为:=﹣2,﹣2.
【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义?分母为零;分式有意义?分母不为零;分式值为零?分子为零且分母不为零.
13.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为6.
【考点】线段垂直平分线的性质.
【专题】计算题;压轴题.
【分析】运用线段垂直平分线定理可得BE=CE,再根据已知条件“△EDC的周长为24,△ABC与四边形AEDC的周长之差为12”表示出线段之间的数量关系,联立关系式后求解.
【解答】解:∵DE是BC边上的垂直平分线,
∴BE=CE.
∵△EDC的周长为24,
∴ED+DC+EC=24,①
∵△ABC与四边形AEDC的周长之差为12,
∴(AB+AC+BC)﹣(AE+ED+DC+AC)=(AB+AC+BC)﹣(AE+DC+AC)﹣DE=12,
∴BE+BD﹣DE=12,②
∵BE=CE,BD=DC,
∴①﹣②得,DE=6.
故答案为:6.
【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.
14.若4a4﹣ka2b+25b2是一个完全平方式,则k=±20.
【考点】完全平方式.
【分析】根据4a4﹣ka2b+25b2是一个完全平方式,利用此式首末两项是2a2和5b这两个数的平方,那么中间一项为加上或减去2a2和5b积的2倍,进而求出k的值即可.
【解答】解:∵4a4﹣ka2b+25b2是一个完全平方式,
∴4a4﹣ka2b+25b2=(2a2±5b)2,
=4a4±20a2b+25b2.
∴k=±20,
故答案为:±20.
【点评】此题主要考查的是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.
15.如图,在△ABC中,∠C=90°,AC=BC,斜边AB=2,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为﹣.
【考点】扇形面积的计算.
【分析】连接OC,作OM⊥BC,ON⊥AC,证明△OMG≌△ONH,则S四边形OGCH=S四边形OMCN,求得扇形FOE的面积,则阴影部分的面积即可求得.
【解答】解:连接OC,作OM⊥BC,ON⊥AC.
∵CA=CB,∠ACB=90°,点O为AB的中点,
∴OC=AB=1,四边形OMCN是正方形,OM=.
则扇形FOE的面积是:=.
∵OA=OB,∠AOB=90°,点D为AB的中点,
∴OC平分∠BCA,
又∵OM⊥BC,ON⊥AC,
∴OM=ON,
∵∠GOH=∠MON=90°,
∴∠GOM=∠HON,
则在△OMG和△ONH中,
,
∴△OMG≌△ONH(AAS),
∴S四边形OGCH=S四边形OMCN=()2=.
则阴影部分的面积是:﹣.
故答案为:﹣.
【点评】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△OMG≌△ONH,得到S四边形OGCH=S四边形OMCN是解题的关键.
三、解答题
16.(21分)(2016春?成都校级期中)(1)因式分解:2x2y﹣4xy2+2y3;
(2)解方程:=+;
(3)先化简,再求值(﹣x+1)÷,其中;
(4)解不等式组,把解集在数轴上表示出来,且求出其整数解.
【考点】分式的化简求值;提公因式法与公式法的综合运用;解分式方程;在数轴上表示不等式的解集;解一元一次不等式组;一元一次不等式组的整数解.
【分析】(1)先提公因式,然后根据完全平方公式解答;
(2)去分母后将原方程转化为整式方程解答.
(3)将括号内统分,然后进行因式分解,化简即可;
(4)分别求出不等式的解集,找到公共部分,在数轴上表示即可.
【解答】解:(1)原式=2y(x2﹣2xy+y2)
=2y(x﹣y)2;
(2)去分母,得(x﹣2)2=(x+2)2+16
去括号,得x2﹣4x+4=x2+4x+4+16
移项合并同类项,得﹣8x=16
系数化为1,得x=﹣2,
当x=﹣2时,x+2=0,则x=﹣2是方程的增根.
故方程无解;
(3)原式=[﹣]?
=?
=?
=﹣,
当时,原式=﹣=﹣=﹣;
(4)
由①得x2,
由②得x≥﹣1,
不等式组的解集为﹣1≤x2,
在数轴上表示为
.
【点评】本题考查的是分式的化简求值、因式分解、解一元一次不等式组、在数轴上表示不等式组的解集,考查内容较多,要细心解答.
17.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).
(1)将△ABC沿y轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标;
(2)画出△A1B1C1以点O为旋转中心、顺时针方向旋转90度的△A2B2C2,并求出点C1经过的路径的长度.
【考点】作图﹣旋转变换;作图﹣平移变换.
【分析】(1)分别作出点A、B、C沿y轴正方向平移3个单位得到对应点,顺次连接即可得;
(2)分别作出点A、B、C以点O为旋转中心、顺时针方向旋转90度得到对应点,顺次连接即可得,再根据弧长公式计算即可.
【解答】解:(1)如图,△A1B1C1即为所求作三角形,点B1坐标为(﹣2,﹣1);
(2)如图,△A2B2C2即为所求作三角形,
∵OC==,
∴==π.
【点评】本题考查了平移作图、旋转作图,解答本题的关键是熟练平移的性质和旋转的性质及弧长公式.
18.小明和同学一起去书店买书,他们先用15元买了一种科普书,又用15元买了一种文学书,科普书的价格比文学书的价格高出一半,因此他们买的文学书比科普书多一本,这种科普和文学书的价格各是多少?
【考点】分式方程的应用.
【专题】应用题.
【分析】根据题意,设科普和文学书的价格分别为x和y元,则根据“科普书的价格比文学书的价格高出一半,买的文学书比科普书多一本“列方程组即可求解.
【解答】解:设科普和文学书的价格分别为x和y元,
则有:,
解得:x=7.5,y=5,
即这种科普和文学书的价格各是7.5元和5元.
【点评】本题考查分式方程的应用,同时考查学生理解题意的能力,关键是根据“科普书的价格比文学书的价格高出一半,买的文学书比科普书多一本“列出方程组.
19.已知关于x的方程=3的解是正数,求m的取值范围.
【考点】解分式方程;解一元一次不等式.
【专题】计算题.
【分析】先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围.
【解答】解:原方程整理得:2x+m=3x﹣6,
解得:x=m+6.
因为x0,所以m+60,即m﹣6.①
又因为原式是分式方程,所以x≠2,即m+6≠2,所以m≠﹣4.②
由①②可得,m的取值范围为m﹣6且m≠﹣4.
【点评】本题主要考查了分式方程的解法及其增根产生的原因.解答本题时,易漏掉m≠4,这是因为忽略了x﹣2≠0这个隐含的条件而造成的,这应引起同学们的足够重视.
20.(12分)(2016?河南模拟)问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.
【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.
【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足∠BAD=2∠EAF关系时,仍有EF=BE+FD.
【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:=1.41,=1.73)
【考点】四边形综合题.
【分析】【发现证明】根据旋转的性质可以得到△ADG≌△ABE,则GF=BE+DF,只要再证明△AFG≌△AFE即可.
【类比引申】延长CB至M,使BM=DF,连接AM,证△ADF≌△ABM,证△FAE≌△MAE,即可得出答案;
【探究应用】利用等边三角形的判定与性质得到△ABE是等边三角形,则BE=AB=80米.把△ABE绕点A逆时针旋转150°至△ADG,只要再证明∠BAD=2∠EAF即可得出EF=BE+FD.
【解答】【发现证明】证明:如图(1),∵△ADG≌△ABE,
∴AG=AE,∠DAG=∠BAE,DG=BE,
又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,
∴∠GAF=∠FAE,
在△GAF和△FAE中,
,
∴△AFG≌△AFE(SAS),
∴GF=EF,
又∵DG=BE,
∴GF=BE+DF,
∴BE+DF=EF;
【类比引申】∠BAD=2∠EAF.
理由如下:如图(2),延长CB至M,使BM=DF,连接AM,
∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,
∴∠D=∠ABM,
在△ABM和△ADF中,
,
∴△ABM≌△ADF(SAS),
∴AF=AM,∠DAF=∠BAM,
∵∠BAD=2∠EAF,
∴∠DAF+∠BAE=∠EAF,
∴∠EAB+∠BAM=∠EAM=∠EAF,
在△FAE和△MAE中,
,
∴△FAE≌△MAE(SAS),
∴EF=EM=BE+BM=BE+DF,
即EF=BE+DF.
故答案是:∠BAD=2∠EAF.
【探究应用】如图3,把△ABE绕点A逆时针旋转150°至△ADG,连接AF,过A作AH⊥GD,垂足为H.
∵∠BAD=150°,∠DAE=90°,
∴∠BAE=60°.
又∵∠B=60°,
∴△ABE是等边三角形,
∴BE=AB=80米.
根据旋转的性质得到:∠ADG=∠B=60°,
又∵∠ADF=120°,
∴∠GDF=180°,即点G在CD的延长线上.
易得,△ADG≌△ABE,
∴AG=AE,∠DAG=∠BAE,DG=BE,
又∵AH=80×=40,HF=HD+DF=40+40(﹣1)=40
故∠HAF=45°,
∴∠DAF=∠HAF﹣∠HAD=45°﹣30°=15°
从而∠EAF=∠EAD﹣∠DAF=90°﹣15°=75°
又∵∠BAD=150°=2×75°=2∠EAF
∴根据上述推论有:EF=BE+DF=80+40(﹣1)≈109(米),即这条道路EF的长约为109米.
【点评】此题主要考查了四边形综合题,关键是正确画出图形,证明∠BAD=2∠EAF.此题是一道综合题,难度较大,题目所给例题的思路,为解决此题做了较好的铺垫.
八年级数学怎么快速提高
一、做好数学 课前预习 工作
很多学生在数学课前预习的习惯,这样会造成课上学的不太懂、课后翻书找不到的这样的情况。要有针对性的 数学 学习方法 。根据自己的情况 总结 不足,有针对性的调整学习方法。总之,只要有了认真的 学习态度 ,有了学习的决心,再加上正确务实的数学学习方法,快速提高数学成绩不是问题。
二、学会记笔记
记笔记可能很多家长觉得不难,而且学生是有记笔记的,那么为什么数学成绩还是不好呢?要注重思考和归纳总结。老师讲过的题目不能仅仅是听懂,还要会;另外对于上课没听懂的数学题一定要记在数学笔记上。
1、课前预习不会的要记在数学笔记上,课上可以与老师交流;
2、上课时,记下老师讲的重点,也可把模糊的数学知识点记住。
3、课后笔记则是对课上不理解的知识点进行整理,并且先根据自己的笔记去尝试是否能解开不懂的地方,若不能则需要及时的询问老师,养成不懂就问的好习惯。
三、能找出错误的数学点
学生们在提高数学成绩时,会找出学生作业或考试中的错误点,让自己能清楚知道自己哪里做错了,并且能够改正自己的错误。
初二数学学习技巧
技巧1:要熟记数学题型
初二数学大大小小有几十个知识点,每个知识点都有对应的题目。相关的题目无非就是这个知识点的灵活运用,掌握了题型就可以做到举一反三。与其做十道题,还不如熟练掌握一道题,如果你对数学不那么感兴趣,背题可以使你免受练习之苦,还能更有效率的增强考试成绩。只要记下足够的题型,就可以使你的分数上一个层次。
技巧2:注重课本知识要点
要吃透课本,课本上重要的定义,以及想数学公式的由来和演变、知识点的应用。这是较起码的要求,为下一步做题“回归课本”打好基础。基础差先记数学的知识点。手边常备一本小手册,用零碎时间看一看,只有大脑记住那个知识点,遇到有关这个知识点的题才能解决。所以基础差的同学还是要下点功夫。只要坚持,有耐心,努力的话,两个月时间之内数学成绩会有大幅度增强的。
技巧3:对错题进行纠错整理
如果你的数学成绩不是太差,也就是说考试能及格的可以把注意力放在背题上,但遇到想不出来的知识点,还是要巩固一下。对于经常出错的题目,可以整理成一个纠错本,对错误的点,错误原因标注清楚。同时提醒自己以后遇到这种类型的题目应该注意什么细节,进步其实就是减小自己犯错的概率,把该拿的分数要拿下来。
初二数学注意事项
1、按部就班。初二数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。
2、强调理解。概念、定理、公式要在理解的基础上记忆。我的 经验 是,每新学一个定理,便尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。
3、基本训练。学习初二数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉常考的题型,训练要做到有的放矢。
八年级下册数学测试卷及答案解析相关 文章 :
★ 八年级下册数学期末试卷及答案华师版
★ 八年级下册数学期末卷子及答案
★ 初二数学试卷及答案解析
★ 人教版八年级下册数学期末试卷及答案
★ 八年级下册数学期末考试卷及答案
★ 人教版初二数学下册期末试题及答案
★ 八年级数学下册期末试卷
★ 下学期八年级数学期末试卷
★ 八年级数学下学期期末试卷
★ 八年级下册数学期末考试试卷
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
八年级数学(下)第七周周测试卷
你的题给的条件不充足。怎么让人回答啊。
请把条件补充完整好吗?
这样我就能帮你回答了。
初二下册数学试卷含答案
初中数学试卷讲评课是数学教学的重要环节,它具有激励、矫正、强化、示范的作用,那么初二下册数学试卷含答案该怎么写呢?下面是我为大家整理的初二下册数学试卷含答案,希望对大家有帮助。
初二下册数学试卷含答案篇一
一、选择题(每小题3分,共30分)
1、能判定四边形ABCD是平行四边形的题设是 ( )
A、AB∥CD,AD=BC B、∠A=∠B,∠C=∠D
C、AB=CD,AD=BC D、AB=AD,BC=CD
2、在一次射击测试中,甲、乙、丙、丁的平均环数相同,而方差分别为8.7, 6.5, 9.1
7.7,则这四人中,射击成绩最稳定的是 ( )
A、甲 B、乙 C、丙 D、丁
3、下列每组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是 ( )
A.3、4、5 B.6、8、10 C. 、2、 D.5、12、13
4、下列命题中正确的是 ( )
A、对角线相等的四边形是矩形 B、对角线互相垂直平分且相等的四边形是正方形
C、对角线互相垂直的四边形是菱形 D、对角线互相垂直且相等的四边形是正方形
5、一次函数与正比例函数的图像图1所示,则下列说法正确的是 ( )
A、它们的函数值y随x的增大而增大 B、它们的函数值y随x的增大而减小
C、它们的自变量x的取值为全体实数。 D、k0
6、如图2,在正方形ABCD的外侧作等边三角形CDE,则∠DAE的度数为 ( )
A、20° B、15° C、12.5° D、10°
7、如3,在周长为20cm的□ABCD中,AB≠AD,AC、BD相较于点O,OE⊥BD,交AD于E,
则ΔABE的周长为 ( )
A、4cm, B、6cm C、8cm D、10cm
8、已知点(-4,y1),(2,y2)都在直线y= +2上,则y1,y2大小关系是 ( )
A. y1=y2 B. y1y2 C、y1
9、下面哪个点不在函数y= +3的图像上 ( )
A、(1,2) B、(0,3) C、(-1,5) D、(2,-1)
10、下列计算正确的是 ( )
A、 B、 C、 D、
初二下册数学试卷含答案篇二
二、填空题(每小题3分,共24分)。
11、一次函数y= x+3与x轴的交点坐标是 。
12、如图,已知函数y=2x+b和y=ax-3的图像交于点P(-2,-5),则根据图像可得不等式2x+bax-3的解集是
13、如果实数a、b满足 ,那么a+b的值为
14、数据-3、-2、1、3.6、x、5的中位数是1,那么这组数据的众数是 。
15、已知三角形两边长为2和6,要使这个三角形为直角三角形,则第三边的长为 。
16、如图所示,将一根长为24cm的筷子,置于底面直径为5cm,高为12cm的圆柱
形水杯中,设筷子露在外面的长为h cm,则h的取值范围是 。
17、如图所示,点P是正方形ABCD的对角线BD上一点,PE⊥BC于E,PF⊥CD于F,
连接EF,给出下列四个结论:①AP=EF;②ΔAPD一定是等腰三角形;③∠PFE=
∠BAP;④PD= EC,其中正确结论的序号是
18、若 有意义,则x的取值范围是____________.
三、解答题
19、(10分)已知 ,求 的值.
20、(8分)某校要从小王和小李两名同学中挑选一人参加全国
数学竞赛,在最近的五次选拔中,他俩成绩分别如下表:
根据右表解答下列问题:
姓名 极差 平均成绩 中位数 众数 方差
小王 40 80 75 75 190
小李
(1)完成上表:
(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上(含80分)的成绩视为优秀,则小王,小李在这五次测试中的优秀率各是多少?
21、(8分)如图所示是一块地的平面图,其中AD=4米,CD=3米,AB=13米,BC=12
米∠ADC=90°, 求这块地的面积。
4、(10分)如图,一次函数y=kx+b的图像经过(2,4)、(0,2)两点,与x轴相交于点C。
求:(1)此一次函数的解析式。(2)ΔAOC的面积。
5、(10分)已知一次函数y=ax+b与正比例函数y=kx(k≠0)的图像交于一点P(2,-1)。
(1)求这两个函数的关系式;
(2)根据图像,写出一次函数的值小于正比例函数值的x的取值范围;
一、CCBCB BDBAC
二、11、(-6,0) 12、x-2 13、-1 14、1 15、 或4
16、11≤h≤12 17、①③④ 18、x=0
三、19、x=3,y=5,原式=19
20、(1)20, 80, 80, 80, 40
(2)成绩比较稳定的同学是小李;
小王的优秀率为:40% 小李的优秀率为:80%
21、连接AC,得S=SΔABC-SΔADC=24(米2)
22、(1)y=x+2
(2)4
23、(1)y=- x y=-x+1
(2)x2
猜你喜欢:
1. 八年级下册数学试卷及答案
2. 八年级数学下册期末试卷及答案
3. 八年级下册数学全优标准卷答案
4. 八年级下册数学期末试卷及答案
5. 八年级下册数学期中测试卷及答案
6. 初二下册数学第18章测试题及答案
7. 八年级下册数学期中试卷及答案
关于八年级下册数学周测冲刺卷和人教版八年级数学下册周测卷的介绍到此就结束了,不知道同学们从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。