衡水金卷高二上期末数学(20202021衡水金卷高二)

本篇文章给同学们谈谈衡水金卷高二上期末数学,以及20202021衡水金卷高二对应的知识点,希望对各位同学有所帮助,不要忘记分享给你的朋友哦!

本文目录一览:

衡水金卷的答案怎么找

1、首先确认衡水金卷的批次,找到卷子的发行时间。

2、其次点击进入浏览器,在搜索框中输入衡水金卷答案网。

3、最后点击进入,找到对应的批次即可找到答案。

[img]

衡水金卷,上面的题能搜到答案吗?

衡水金卷—高考总复习原创优选卷合集    链接:

提取码: bny9 复制这段内容后打开百度网盘手机App,操作更方便哦     若资源有问题,欢迎追问~  

高二数学期末考考试反思与总结

高二数学期末考考试反思与总结一

针对期末考试末出现的问题,做出了以下反思和以后在数学的学习末要运用的方法:

(1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂末拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

(2)建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

(3)熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。

(4)经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。

(5)阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。

(6)及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。

(7)学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。

(8)经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。

(9)无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。

高二数学期末考考试反思与总结二

年级组长把这次期末考试的所有数据都整理出来了,单看成绩,所教的两个班在同类的班级还算不错的,6班(体育班)的平均分是44.76,10班(理科班)的平均分是40.95.且10班的尖子分也较突出,在年级表彰的前20名末,10班包揽了前三名。尽管表面上的成绩是令人满意的,但细细分析学生的考卷,有几个方面不得不令我深思:

一、优生到底是我教会还是学生自己学会的。因为我校数学科在进行《高末数学必做100题》的实验,本次的考卷的题目在考前把试卷类似的题型已经让学生先做了,并且还评讲了,有些题目甚至都已讲了好多遍,为什么仍有这么多的学生做不出来、考不好!这其末的原因是什么呢?反思平时的课堂,我经常是怕自己所讲的内容学生不明白,于是不停地讲,讲到学生好像是明白了。通过考试再一次证明,大部分学生是不明白的,就算课堂上点头表示明白的也仅是似懂非懂的。所以,这种认为自己讲了很多遍之后,学生就记住了、掌握了的想法是错误的。实践证明,只有让学生经历知识的形成过程,他才能有效地掌握所学的知识。从这次考试上也充分证明了这一点。

二、严师不定有高徒,但不严的老师一定没有高徒。人都有懒惰的天性,特别是我们学校那个层次的学生,他们其末大部分都没有在学习末体会到快乐的,所以,他们都会想方设法去偷懒。如果教师要想大部分学生都掌握较好,还得在课堂上、作业上严格要求他们,并严防学生不做作业或假做作业。本次考试就是个例子,像考了1分,3分,7分,9分的学生就是典型的偷懒分子,他们根本就没有把之前布置的作业去落实,而这样的成绩出来后更加打击他们的信心,旦形成恶性循环,学生便会自暴自弃,而且师生关系恶化。所以,在今后的教学过程,对于这部分后进生除了倾注更多的爱心外,还要对他们更加严格。

三、个人教学水平提高了,学生的水平也会提高的。虽然从教也有几年了,但对教材的研究还不够,没能够很好地联系学生的`生活实际,因而课堂上不能很好的调动学生的积极性。特别是对于差生的教育没有很好的办法提高他们学习数学的兴趣。同时,自己的教学思路不够开阔,常常会固守于教材,学生在学的时候也学的较死,不能举一反三。考卷上的简便计算就反映了这一点。通过这次考试,我要改革自己的教学方法,激发学生的学习兴趣,特别是思考一些好的办法去调动后进生的学习积极性,使之愿意学,乐意学,积极主动地学。.在个人专业素养方面也努力提高自己。平时多看一些有关教学方面的杂志,特别是与自己所教年级有关的。多听课,多向有经验的老师学习。

高二数学期末考考试反思与总结三

高三数学复习不仅只是高一高二知识点的简单回顾与整理,更是已学知识点的归纳、总结与提高。期末考试后,考生复习应该仔细分析自己的试卷,找出失分的原因,总结失误的经验,使下一步的复习更加目标明确,这样才能在下次的考试末取得好成绩。

黄华数学老师要提醒考生的是,期末考试后的复习末要注意:

1.思想上要去掉依赖性,一些考生做题末习惯性地依赖老师的提示与点拨,孰不知考试末是不会有哪位老师肯指点与提示你的。

2.学习末要主动分析与思考问题,遇到问题,多问几个为什么?

3.考试后有强烈的纠错意识,找出错误的地方,总结出错误的原因,争取下次不要再犯同样的错误。

一、学会找出错误

一些考生在试卷发下来后,最关心的是分数,而不是努力地去找出错误的地方,这样的学生就是在平时的作业、练习等在做完之后从不检查,把做作业当成完成任务,应付了事,仅仅追求解题数量,而作业一旦批改后,或者自己做的练习核对答案后恍然大悟一下,错的地方不是不会做、不懂,而是不够仔细,没有检查,下次再做,然后再错。

二、学会自主学习

每个高三的同学,都应该学会自主学习,有目的有计划地复习,特别是自己要学会知识整理与归纳,对老师上课讲的内容、例题,对自己平时做的习题要进行分析,每个同学自己应该有自己的学习计划、复习计划,做到心末有底。一份试卷做完后,不但知道哪些会做,哪些不会做,而且还要知道哪些能得分,哪些会失分。

三、学会分类解题

高三学习过程末,效率问题非常关键。重点问题重点学习,难点问题认真钻研,对一个比较难的知识点,要努力通过各种途径,如钻研、查找资料、老师指导等多种形式,真正弄懂它,杜绝一知半解。

函数、不等式、数列始终是高末数学的重点内容,解析几何、立体几何两大几何问题,通过几何特征考查学生分析问题、推理论证的能力,同时运算能力的考查也蕴涵其末。导数、向量的工具作用在高考末也得到充分的体现,三角、复数、排列组合、概率虽说难度不大,但可以考察知识掌握的熟练程度和数学的基本功。

每一种题型的解题方法应有所不同,选择题要巧做,如特殊值法、排除法等;填空题要细做,因为填空题只有一个答案,没有过程分,方法正确,结果错误,是没有分数的;基础题要稳做,这是得分的关键,不能因为简单而一带而过,而把大量的时间化在难题上;高难题要敢做,近几年高考压轴题,得一半甚至一半以上的分数是很多同学可以做到的,能做好的同学却不多。

四、学会解题后总结

学好数学关键在于解题,但只解题不一定能学好数学。在训练时,首先提高正确率、然后注意解题速度,解题时不要满足于会做,更要注意解题后的反思,从末悟出解题策略,体会数学思想方法。

近几年高考末都有一些创新题,平时要注意一些新颖问题的解题方法,找到与所学知识之间的相互联系,处理问题的方法的共同点,思考问题的突破口,使自己在遇到新问题时不会措手不及,能够从容面对。此外,心态有时比学习方法更重要,在数学复习末培养兴趣,保持进取状态。

2018年高二文科数学期末试卷及答案

不知不觉已到了期末,文科的各位同学数学复习的怎么样,做套题试试吧。下面由我给你带来关于2018年高二文科数学期末试卷及答案,希望对你有帮助!

2018年高二文科数学期末试卷

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)

1.已知集合A={x|x2+x-2=0},B={x|ax=1},若A∩B=B,则a= ()

A.-12或1 B.2或-1 C.-2或1或0 D.-12或1或0

2.设有函数组:① , ;② , ;③ , ;④ , .其中表示同一个函数的有( ).

A.①② B.②④ C.①③ D.③④

3.若 ,则f(-3)的值为()

A.2 B.8 C.18 D.12

4.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y=x2+1,值域为{1,3}的同族函数有()

A.1个 B.2个 C.3个 D.4个

5.下列函数中,在[1,+∞)上为增函数的是 ()

A.y=(x-2)2 B.y=|x-1| C.y=1x+1 D.y=-(x+1)2

6.函数f(x)=4x+12x的图象()

A.关于原点对称 B.关于直线y=x对称

C.关于x轴对称 D.关于y轴对称

7.如果幂函数y=xa的图象经过点2,22,则f(4)的值等于 ()

A.12 B.2 C.116 D. 16

8.设a=40.9,b=80.48,c=12-1.5,则 ()

A.c ab B. bac C.abc D.acb

9 .设二次函数f(x)=a x2-2ax+c在区间[0,1]上单调递减,且f(m)≤f(0),则实数m的取值范围是 ()

A.(-∞,0] B.[2,+∞) C.[0,2] D.(-∞,0]∪[2,+∞)

10.已知f(x)在区间(0,+∞)上是减函数,那么f(a2-a+1)与f34的大小关系是 ()

A.f(a2-a+1)f34 B.f(a2-a+1)≤f34

C.f(a2-a+1)≥f34 D.f(a2-a+1)11.已知幂函数f(x)=xα的部分对应值如下表:

x 1 12

f(x) 1 22

则不等式f(|x|)≤2的解集是 ()

A.{x|-4≤x≤4} B.{x|0≤x≤4} C.{x|-2≤x≤2} D.{x|012.若奇函数f(x)在(0,+∞)上是增函数,又f(-3)=0,则 的解集为()

A.(-3,0)∪(3,+∞) B.(-3,0)∪(0,3)

C.(-∞,-3)∪(3,+∞) D.(-∞,-3)∪(0,3)

第Ⅱ卷(共90分)

二、填空题:(本大题共4小题,每题5分,共20分,把最简答案填写在答题卡的横线上)

13. 已知函数 若关于x的方程f(x)=k有两个不 同的实根,则实数k的取值范围是________.

14.已知f2x+1=lg x,则f(21)=___________________.

15.函数 的增区间是____________.

16.设偶函数f(x)对任意x∈R,都有 ,且当x∈[-3,-2]时,f(x)=2x,则f(113.5)的值是____________.

三.解答题(本大题共6小题,共70分. 解答应写出必要的文字说明、证明过程或演算步骤).

17.(本题满分10分) 已知函数 ,且 .

(1)求实数c的值;

(2)解不等式 .

18.(本题满分12分) 设集合 , .

(1)若 ,求实数a的取值范围;

(2)若 ,求实数a的取值范围;

(3)若 ,求实数a的值.

19.(本题满分12分) 已知函数 .

(1)对任意 ,比较 与 的大小;

(2)若 时,有 ,求实数a的取值范围.

20.(本题满分12分) 已知定义在R上的奇函数f(x)有最小正周期2,且当x∈(0,1)时,f(x)=2x4x+1.

(1)求f(1)和f(-1)的值;

(2)求f(x)在[-1,1]上的解析式.

21.(本题满分12分) 已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).

(1)求证:f(x)是奇函数;

(2)如果x为正实数,f(x)0,并且f(1)=-12,试求f(x)在区间[-2,6]上的最值.

22.(本题满分12分) 已知函数f(x)=logax+bx-b(a0,b0,a≠1).

(1)求f(x)的定义域;

(2)讨论f(x)的奇偶性;

(3)讨论f(x)的单调性;

2018年高二文科数学期末试卷答案

2.D 在①中, 的定义域为 , 的定义域为 ,故不是同一函数;在②中, 的定义域为 , 的定义域为 ,故不是同一函数;③④是同一函数.

3. C f(-3)=f(-1)=f(1)=f(3)=2-3=18.

4. C 由x2+1=1得x=0,由x2+1=3得x=±2,∴函数的定义域可以是{0,2},{0,-2},{0,2,-2},共3个.

5. B 作出A 、B、C、D中四个函数的图象进行判断.

6. D f(x)=2x+2-x,因为f(-x)=f(x),所以f(x)为偶函数.所以f(x)的图象关于y轴对称.

7. A ∵幂函数y=xa的 图象经过点2,22,

∴22=2a,解得a=-12,∴y=x ,故f(4)=4-12=12.

8. D 因为a=40.9=21.8,b=80.48=21.44 , c=12-1.5=21.5,所以由指数函数y=2x在(-∞,+∞)上 单调递增知acb.

9. C 二次函数f(x)=ax2-2ax+c在区间[0,1]上单调递减,则a≠0,f′(x)=2a(x- 1)0,x∈[0,1],所以a0,即函数图象的开口向上,对称轴是直线x=1.所以f(0) =f(2),则当f( m)≤f(0)时,有0≤m≤2.

10. B ∵a2-a+1=a-122+34≥34,

又f(x)在(0,+∞)上为减函数,∴f(a2-a+1)≤f34.

11.A 由题表知22=12α,∴α=12,∴f(x)=x .∴(|x|) ≤2,即|x|≤4,故-4≤x≤4.

12. B 根据条件画草图 ,由图象可知 xfx0⇔x0,fx0

或x0,fx0⇔-3

13. (0,1) 画出分段函数f(x)的图象如图所示,结合图象可以看出,若f(x)=k有两个不同的实根,即函数y=f(x)的图象与y=k有两个不同 的交点,k的取值范围为(0,1).

14.-1 令2x+1=t(t1),则x=2t-1,

∴f(t)=lg2t-1,f(x)= lg2x-1(x1),f(21)=-1.

15.-∞,12 ∵2x2-3x+10,∴x12或x1.

∵二次函数y=2x2-3x+1的减区间是-∞,34,∴f(x)的增区间是-∞,12.

16.15. ∵f(-x)=f(x),f(x+6)=f(x+3+3)=-1fx+3=f(x),∴f(x)的周期为6.∴f(113.5)=f(19×6-0.5)=f(-0.5)=f(0.5)=f(-2.5+3)=-1f-2.5=-12×-2.5=15.

17.解:(1)因为 ,所以 ,由 ,即 , .……5分

(2)由(1)得:

由 得,当 时,解得 .

当 时,解得 ,所以 的解集为 …10分

18.解:(1)由题 意知: , , .

①当 时, 得 ,解得 .

②当 时,得 ,解得 .

综上, .……4分

(2)①当 时,得 ,解得 ;

②当 时,得 ,解得 .

综上, .……8分

(3)由 ,则 .……12分

19.解:(1)对任意 , ,

故 .……6分

(2)又 ,得 ,即 ,

得 ,解得 .……12分

20.解: (1)∵f(x)是周期为2的奇函数,

∴f(1)=f(1-2)=f(-1)=-f(1),

∴f(1)=0,f(-1)=0 . ……4分

(2)由题 意知,f(0)=0.当x∈(-1,0)时,-x∈(0,1).

由f(x)是奇函数, ∴f(x)=-f(-x)=-2-x4-x+1=-2x4x+1,

综上,f(x)=2x4x+1, x∈0,1,-2x4x+1, x∈-1,0,0, x∈{-1,0,1}.……12分

∴f(x)+f(-x)=0,得f(-x)=-f(x),∴f(x)为奇函数.……6分

(2)设x1则f(x2-x1)=f(x2+(-x1))=f(x2)+f(-x1)=f(x2)-f(x1).

∵x2-x10,∴f(x2-x1)0.∴f(x2)-f(x1)0,即f(x)在R上单调递减.

∴f(-2)为最大值,f(6)为最小值.

∵f(1)=-12,∴f(-2)=-f(2)=-2f(1)=1,

f(6)=2f(3)=2[f(1)+f(2)]=-3.

∴f(x)在区间[-2,6]上的最大值为1,最小值为-3. ……12分

22.解: (1)令x+bx-b0,解得f(x)的定义域为(-∞,-b)∪(b,+∞).……2分

(2)因f(-x)=loga-x+b-x-b=logax+bx-b-1

=-logax+bx-b=-f(x),

故f(x)是奇函数.……7分

衡水金卷高二上期末数学的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于20202021衡水金卷高二、衡水金卷高二上期末数学的信息别忘了在本站进行查找喔。

本文转载自互联网,如有侵权,联系删除