今天给各位同学分享高一必修一数学周测卷答案的知识,其中也会对高一数学周报答案必修1进行解释,如果能碰巧解决你现在面临的问题,别忘了分享本站,现在开始吧!
本文目录一览:
- 1、高一数学期末考试试卷,包括必修1和必修4的三角函数,
- 2、高一数学下册期末试卷及答案
- 3、高一数学必修一函式求值域方法,请给出例题
- 4、请帮助将人教版高一数学试卷复制在下边(急用)
- 5、高一数学两道 急求!!!!!
- 6、求高一数学题200道
高一数学期末考试试卷,包括必修1和必修4的三角函数,
数学测验
一、选择题(本大题共12个小题,每小题5分,共50分,)
1.sin2的值()
A.小于0 B.大于0 C.等于0 D.不存在
2.已知 是角 终边上一点,且 ,则 = ( )
A 、 —10 B、 C、 D、
3.已知集合 , ,则 ( )
A、 B、 C、 D、
4. ( )
A. B. C. D.
5.为了得到函数y=cos2x+π3的图象,只需将函数y=sin2x的图象()
A.向左平移5π12个长度单位 B.向右平移5π12个长度单位
C.向左平移5π6个长度单位 D.向右平移5π6个长度单位
6.已知 ,则 的值为( )
A.6 B.7 C.8 D.9
7.三个数 , , 的大小关系是()
A. B.
C. D.
8.如果U是全集,M,P,S是U的三个子集,则
阴影部分所表示的集合为 ( )
A、(M∩P)∩S; B、(M∩P)∪S;
C、(M∩P)∩(CUS) D、(M∩P)∪(CUS)
9.方程sinπx=14x的解的个数是()
A.5 B.6 C.7 D.8
10.如图函数f(x)=Asinωx(A0,ω0)一个周期的图象 ,
则f(1)+f(2)+f(3)+f(4)+f(5)+f(6)的值等于()
A.2 B.22 C.2+2 D.22
二、填空题(本大题共4个小题,每小题5分,共25分,把正确答案填在题中横线上)
11.已知扇形的圆心角为72°,半径为20cm,则扇形的面积为________.
12.函数 的图象恒过定点 ,则 点坐标是 .
13.已知sinθ=1-a1+a,cosθ=3a-11+a,若θ为第二象限角,实数a的值为 ________.
14.若1+sin2θ=3sinθcosθ则tanθ=________.
15.定义在 上的函数 满足 且 时, ,则 _______________.
三、解答题(本大题共6个小题,共75分,解答应写出文字说明,证明过程或演算步骤)
16.(本题满分10分) 求函数y=16-x2+sinx的定义域
17.(本题满分10分) 已知
(1)化简 (2)若 是第三象限角,且 求 的值.
18、(本题满分13分)设函数 ,且 , .
(1)求 的值;(2)当 时,求 的最大值.
19.(本题满分14分)某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床每天的租金)不超过10元时,床位可以全部租出,当床位高于10元时,每提高1元,将有3张床位空闲.为了获得较好的效益,该宾馆要给床位订一个合适的价格,条件是:①床价应为1元的整数倍;②该宾馆每日的费用支出为575元,床位出租的收入必须高于支出,而且高出得越多越好.若用 表示床价,用 表示该宾馆一天出租床位的净收入(即除去每日的费用支出后的收入)
(1)把 表示成 的函数,并求出其定义域;
(2)试确定该宾馆床位定为多少时既符合上面的两个条件,又能使净收入最多?
20.(本题满分14分)右图是函数f(x)=sin(ωx+φ)在某个周期上的图像,其中 ,试依图推出:(1)f(x)的最小正周期;(2)f(x)的单调递增区间;
(3)使f(x)取最小值的x的取值集合.(4)求f(x)的解析式
21.(本题满分14分) 函数f(x)=1-2a-2acosx-2sin2x的最小值为g(a)(a∈R).
(1)求g(a); (2)若g(a)=12,求a及此时f(x)的最大值.
可以留个其它联系方式,我直接传给你几份
[img]高一数学下册期末试卷及答案
心无旁骛,全力以赴,争分夺秒,顽强拼搏脚踏实地,不骄不躁,长风破浪,直济沧海,我们,注定成功!下面给大家带来一些关于 高一数学 下册期末试卷及答案,希望对大家有所帮助。
试题
一选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知是第二象限角,,则()
A.B.C.D.
2.集合,,则有()
A.B.C.D.
3.下列各组的两个向量共线的是()
A.B.
C.D.
4.已知向量a=(1,2),b=(x+1,-x),且a⊥b,则x=()
A.2B.23C.1D.0
5.在区间上随机取一个数,使的值介于到1之间的概率为
A.B.C.D.
6.为了得到函数的图象,只需把函数的图象
A.向左平移个单位B.向左平移个单位
C.向右平移个单位D.向右平移个单位
7.函数是()
A.最小正周期为的奇函数B.最小正周期为的偶函数
C.最小正周期为的奇函数D.最小正周期为的偶函数
8.设,,,则()
A.B.C.D.
9.若f(x)=sin(2x+φ)为偶函数,则φ值可能是()
A.π4B.π2C.π3D.π
10.已知函数的值为4,最小值为0,最小正周期为,直线是其图象的一条对称轴,则下列各式中符合条件的解析式是
A.B.
C.D.
11.已知函数的定义域为,值域为,则的值不可能是()
A.B.C.D.
12.函数的图象与曲线的所有交点的横坐标之和等于
A.2B.3C.4D.6
第Ⅱ卷(非选择题,共60分)
二、填空题(每题5分,共20分)
13.已知向量设与的夹角为,则=.
14.已知的值为
15.已知,则的值
16.函数f(x)=sin(2x-π3)的图像为C,如下结论中正确的是________(写出所有正确结论的编号).
①图像C关于直线x=1112π对称;②图像C关于点(23π,0)对称;③函数f(x)在区间[-π12,512π]内是增函数;④将y=sin2x的图像向右平移π3个单位可得到图像C.、
三、解答题:(共6个题,满分70分,要求写出必要的推理、求解过程)
17.(本小题满分10分)已知.
(Ⅰ)求的值;
(Ⅱ)求的值.
18.(本小题满分12分)如图,点A,B是单位圆上的两点,A,B两点分别在第一、二象限,点C是圆与x轴正半轴的交点,△AOB是正三角形,若点A的坐标为(35,45),记∠COA=α.
(Ⅰ)求1+sin2α1+cos2α的值;
(Ⅱ)求cos∠COB的值.
19.(本小题满分12分)设向量a=(4cosα,sinα),b=(sinβ,4cosβ),c=(cosβ,-4sinβ),
(1)若a与b-2c垂直,求tan(α+β)的值;
(2)求|b+c|的值.
20.(本小题满分12分)函数f(x)=3sin2x+π6的部分图像如图1-4所示.
(1)写出f(x)的最小正周期及图中x0,y0的值;
(2)求f(x)在区间-π2,-π12上的值和最小值.
21.(本小题满分12分)已知向量的夹角为.
(1)求;(2)若,求的值.
22.(本小题满分12分)已知向量).
函数
(1)求的对称轴。
(2)当时,求的值及对应的值。
参考答案
1-12BCDCDABDBDDC
填空
13141516
17解:(Ⅰ)
由,有,解得………………5分
(Ⅱ)
………………………………………10分
18解:(Ⅰ)∵A的坐标为(35,45),根据三角函数的定义可知,sinα=45,cosα=35
∴1+sin2α1+cos2α=1+2sinαcosα2cos2α=4918.…………………………………6分
(Ⅱ)∵△AOB为正三角形,∴∠AOB=60°.
∴cos∠COB=cos(α+60°)=cosαcos60°-sinαsin60°.=35×12-45×32=3-4310
…………………………………12分
19解(1)b-2c=(sinβ-2cosβ,4cosβ+8sinβ),
又a与b-2c垂直,
∴4cosα(sinβ-2cosβ)+sinα(4cosβ+8sinβ)=0,
即4cosαsinβ-8cosαcosβ+4sinαcosβ+8sinαsinβ=0,
∴4sin(α+β)-8cos(α+β)=0,
得tan(α+β)=2.
(2)由b+c=(sinβ+cosβ,4cosβ-4sinβ),
∴|b+c|=?sinβ+cosβ?2+16?cosβ-sinβ?2
=17-15sin2β,
当sin2β=-1时,|b+c|max=32=42.
20.解:(1)f(x)的最小正周期为π.
x0=7π6,y0=3.
(2)因为x∈-π2,-π12,所以2x+π6∈-5π6,0.
于是,当2x+π6=0,
即x=-π12时,f(x)取得值0;
当2x+π6=-π2,
即x=-π3时,f(x)取得最小值-3.
21.【答案】(1)-12;(2)
【解析】
试题分析:(1)由题意得,
∴
(2)∵,∴,
∴,∴,
22.(12分)(1)………….1
………………………………….2
……………………………………….4
……………………7
(2)
………………………9
时的值为2…………………………………12
高一数学下册期末试卷及答案相关 文章 :
★ 2017高一数学期中考试试卷答案
★ 四年级数学下册期末试卷附答案
★ 高一期末数学考试题
★ 人教版小学数学四年级下册期末测试附答案
★ 八年级下册期末数学试题附答案
★ 小学一年级下数学测试卷与答案
★ 高中数学集合与函数试卷及答案
★ 2017年四年级数学下册期末试卷及答案
★ 北师大数学高一期末试卷
★ 八年级下册数学试卷及答案
高一数学必修一函式求值域方法,请给出例题
高一数学必修一函式求值域方法,请给出例题
例如:y=x∧2的值域
解析:因为该函式的影象是在y的正半轴,开口向上,所以该值域是y>=0。
具体问题具体分析,可以数形结合来做,希望对你有帮助。
高一数学必修一函式 经典例题
例3设f(x)是定义在[-1,1]上的的偶函式,f(x)与g(x)影象关于x=1对称,且当x [2,3]时g(x)=a(x-2)-2(x-2)3(a为常数)
(1) 求f(x)的解析式
分析:条件中有(1)偶函式(2)对称轴为x=1(3)含有定义域的函式g(x)(4)引数a
先分析以x=1为对称轴
解:∵x=1为对称轴
∴f(x)=f(2-x)
∵x [-1,1]
∴-x [-1,1]
∴2-x [1,3]
已知的g(x)的定义域为[2,3],故需对2-x进行分类讨论
①2-x [2,3]时
x [-1,0]
f(x)=g(2-x)=-ax+2x3
2-x [1,2]时
x [0,1] -x [-1,0]
f(x)=f(-x)=ax-2x3
高一数学必修4三角函式定义域与值域怎么求?(要例题)
定义域主要有几个方面:
表示式:1、整式形式,取一切实数。
2、分式形式的,分母不为零。
3、偶次根式,大多是二次根式,被开方式非负。
4、指数函式,一切实数。
5、对数形式,真数大于零。
6、实际问题要有实际意义。
等等……
值域根据表示式就可以求了,有时候数形结合是个很好的方法!
高一函式求值域的方法及例题
函式值域的求法:
①配方法:转化为二次函式,利用二次函式的特征来求值;常转化为型如: 的形式;
②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ;
④换元法:通过变数代换转化为能求值域的函式,化归思想;
⑤三角有界法:转化为只含正弦、余弦的函式,运用三角函式有界性来求值域;
⑥基本不等式法:转化成型如: ,利用平均值不等式公式来求值域;
⑦单调性法:函式为单调函式,可根据函式的单调性求值域。
⑧数形结合:根据函式的几何图形,利用数型结合的方法来求值域。
1.导数法
利用导数求出其单调性和极值点的极值,最常规,最不易高错,但往往计算很烦杂
2.分离常数
如 x^2/(x^2+1)将其分离成 1-1/(x^2+1)再判断值域
3.分子分母同除以某个变数
如x/(x^2+1)同时除以x得 1/(x+1/X)分母的值域很好求,再带进整个函式即可
4.换元法
可以说是3的拓展
如(x+1)/(x^2+1)一类分子分母同时除以x仍无法判断的。
令t=x+1,再把x^2表示成(t-1)^2,再分子分母同时除以t就成了3中的情形
5.基本换元法
型如1/(x+1)+1/(x+1)^2等,直接令t=1/(x+1),求出t的定义域,可以很快将函式换成型如 t^2+t的形式,从而可求值域。当然,要注意t的定义域
6.倒数法
和2基本相同。如x/(x^2+1)先求其倒数x+1/x,再倒回去,2,6基本类似。
以上是几条比较基本和常用的方法,当然要注意他们的综合应用。
解析:
y=√(x²+1)
定义域:(-∞,+∞)
高一数学必修一求值域定义域拔高训练题
由于内容比较多我给你发百度文库的吧
必修一值域定义域练习题:wenku.baidu./view/2d523466fab069dc502201dd.
高一数学必修一二次分式求值域
y=(x²-x+3/2-1/2)/(2x²-2x+3)
=(x²-x+3/2)/(2x²-2x+3)-(1/2)/(2x²-2x+3)
=1/2-1/(4x²-4x+6)
4x²-4x+6=4(x-1/2)²+5=5
所以01/(4x²-4x+6)=1/5
-1/5=-1/(4x²-4x+6)0
3/10=1/2-1/(4x²-4x+6)1/2
所以值域[3/10,1/2)
高一数学必修一的函式值域,定域怎么做
已知函式的解析式求其定义域的具体要求是:若解析式为分式函式要求分母不等于零;若解析式为无理偶次根式要求被开方式大于或等于零;若解析式为对数函式要求真数式大于零底数大于零且不等于一;若解析式中含有零次幂因式要求零次幂的底数不等于零
请追问!
高一数学必修4三角函式例题
一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.函式f(x)=3sin(x2-π4),x∈R的最小正周期为()
A.π2 B.π
C.2π D.4π
【解析】 T=2πω=2π12=4π.
【答案】 D
2.化简sin(9π-α)+cos(-9π2-α)=()
A.2sin α B.2cos α
C.sin α+cos α D.0
【解析】 sin(9π-α)+cos(-9π2-α)=sin(π-α)+cos(π2+α)=sin α-sin α=0.
【答案】 D
3.函式f(x)=tan ωx(ω>0)影象的相邻的两支截直线y=π4所得线段长为π4,则f(π4)的值是()
A.0 B.1
C.-1 D.π4
【解析】 由题意知截得线段长为一周期,∴T=π4,
∴ω=ππ4=4,
∴f(π4)=tan (4×π4)=0.
【答案】 A
4.已知角α的终边上一点的座标为(sin 2π3,cos 2π3),则角α的最小正值为
()
A.5π6 B.2π3
C.5π3 D.11π6
【解析】 ∵sin 2π30,cos 2π30,
∴点(sin 2π3,cos 2π3)在第四象限.
又∵tan α=cos 2π3sin 2π3=-33,
∴α的最小正值为2π-16π=116π.
【答案】 D
5.要得到函式y=sin(4x-π3)的影象,只需把函式y=sin 4x的影象()
A.向左平移π3个单位长度
B.向右平移π3个单位长度
C.向左平移π12个单位长度
D.向右平移π12个单位长度
【解析】 由于y=sin(4x-π3)=sin[4(x-π12)],所以只需把y=sin 4x的影象向右平移π12个单位长度,故选D.
【答案】 D
6.设函式f(x)=sin(2x+π3),则下列结论正确的是()
A.f(x)的影象关于直线x=π3对称
B.f(x)的影象关于点(π4,0)对称
C.把f(x)的影象向左平移π12个单位长度,得到一个偶函式的影象
D.f(x)的最小正周期为π,且在[0,π6]上为增函式
【解析】 f(π3)=sin(2×π3+π3)=sin π=0,故A错;
f(π4)=sin(2×π4+π3)=sin(π2+π3)=cos π3=12≠0,故B错;把f(x)的影象向左平移π12个单位长度,得到y=cos 2x的影象,故C正确.
【答案】 C
7.(2012•福建高考)函式f(x)=sin(x-π4)的影象的一条对称轴是()
A.x=π4 B.x=π2
C.x=-π4 D.x=-π2
【解析】 法一 ∵正弦函式影象的对称轴过影象的最高点或最低点,
故令x-π4=kπ+π2,k∈Z,∴x=kπ+3π4,k∈Z.
取k=-1,则x=-π4.
法二 x=π4时,y=sin(π4-π4)=0,不合题意,排除A;x=π2时,y=sin(π2-π4)=22,不合题意,排除B;x=-π4时,y=sin(-π4-π4)=-1,符合题意,C项正确;而x=-π2时,y=sin(-π2-π4)=-22,不合题意,故D项也不正确.
【答案】 C
8.(2013•西安高一检测)下列函式中,以π为周期且在区间(0,π2)上为增函式的函式是()
A.y=sinx2 B.y=sin x
C.y=-tan x D.y=-cos 2x
【解析】 C、D中周期为π,A、B不满足T=π.
又y=-tan x在(0,π2)为减函式,C错.
y=-cos 2x在(0,π2)为增函式.
∴y=-cos 2x满足条件.
【答案】 D
9.已知函式y=sin πx3在区间[0,t]上至少取得2次最大值,则正整数t的最小值为()
A.6 B.7
C.8 D.9
【解析】 T=6,则5T4≤t,如图:
∴t≥152,∴tmin=8.
故选C.
【答案】 C
10.(2012•天津高考)将函式f(x)=sin ωx(其中ω0)的影象向右平移π4个单位长度,所得影象经过点(3π4,0),则ω的最小值是()
A.13 B.1
C.53 D.2
【解析】 根据题意平移后函式的解析式为y=sin ω(x-π4),将(3π4,0)代入得sin ωπ2=0,则ω=2k,k∈Z,且ω0,故ω的最小值为2.
【答案】 D
二、填空题(本大题共5小题,每小题5分,共25分,将答案填在题中的横线上)
11.已知圆的半径是6 cm,则15°的圆心角与圆弧围成的扇形的面积是________cm2.
【解析】 15°=π12,∴扇形的面积为S=12r2•α=12×62×π12=3π2.
【答案】 3π2
12.sin(-120°)cos 1 290°+cos(-1 020°)sin(-1 050°)=________.
【解析】 原式=-sin(180°-60°)•cos(3•360°+210°)+cos(-1 080°+60°)•sin(-3×360°+30°)
=-sin 60°cos(180°+30°)+cos 60°•sin 30°
=-32×(-32)+12×12=1.
【答案】 1
13.(2013•江苏高考)函式y=3sin(2x+π4)的最小正周期为________.
【解析】 函式y=3sin(2x+π4)的最小正周期T=2π2=π.
【答案】 π
图1
14.已知函式f(x)=sin(ωx+φ)(ω0)的影象如图所示,则ω=________.
【解析】 由影象可知,
T=4×(2π3-π3)=4π3,
∴ω=2πT=32.
【答案】 32
15.关于x的函式f(x)=sin(x+φ)有以下命题:
①对于任意的φ,f(x)都是非奇非偶函式;②不存在φ,使f(x)既是奇函式又是偶函式;③存在φ,使f(x)是奇函式;④对任意的φ,f(x)都不是偶函式.
其中假命题的序号是________.
【解析】 当φ=2kπ,k∈Z时,f(x)=sin x是奇函式;
当φ=(2k+1)π,k∈Z时,f(x)=-sin x仍是奇函式;
当φ=2kπ+π2,k∈Z时,f(x)=cos x或φ=2kπ-π2,k∈Z时,f(x)=-cos x都是偶函式.
所以①和④是错误的,③是正确的.
又因为φ无论取何值都不能使f(x)恒为零,故②正确.所以填①④.
【答案】 ①④
三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤)
16.(本小题满分12分)已知角x的终边过点P(1,3).
(1)求:sin(π-x)-sin(π2+x)的值;
(2)写出角x的集合S.
【解】 ∵x的终边过点P(1,3),
∴r=|OP|=12+32=2.
∴sin x=32,cos x=12.
(1)原式=sin x-cos x=3-12.
(2)由sin x=32,cos x=12.
若x∈[0,2π],则x=π3,
由终边相同角定义,∴S={x|x=2kπ+π3,k∈Z}.
17.(本小题满分12分)已知函式f(x)=Asin(ωx+φ)+2(A>0,ω>0)影象上的一个最高点的座标为(π8,22),则此点到相邻最低点间的曲线与直线y=2交于点(38π,2),若φ∈(-π2,π2).
(1)试求这条曲线的函式表示式;
(2)求函式的对称中心.
【解】 (1)由题意得A=22-2=2.
由T4=3π8-π8=π4,
∴周期为T=π.
∴ω=2πT=2ππ=2,
此时解析式为y=2sin(2x+φ)+2.
以点(π8,22)为“五点法”作图的第二关键点,则有
2×π8+φ=π2,
∴φ=π4,
∴y=2sin(2x+π4)+2.
(2)由2x+π4=kπ(k∈Z)得x=kπ2-π8(k∈Z).
∴函式的对称中心为(kπ2-π8,2)(k∈Z).
18.(本小题满分12分)(2012•陕西高考)函式f(x)=Asin(ωx-π6)+1(A0,ω0)的最大值为3,其影象相邻两条对称轴之间的距离为π2.
(1)求函式f(x)的解析式;
(2)设α∈(0,π2),f(α2)=2,求α的值.
【解】 (1)∵函式f(x)的最大值为3,∴A+1=3,即A=2.
∵函式影象的相邻两条对称轴之间的距离为π2,
∴最小正周期T=π,∴ω=2,
∴函式f(x)的解析式为y=2sin(2x-π6)+1.
(2)∵f(α2)=2sin(α-π6)+1=2,
∴sin(α-π6)=12.
∵0απ2,∴-π6α-π6π3,
∴α-π6=π6,∴α=π3.
19.(本小题满分13分)已知y=a-bcos 3x(b0)的最大值为32,最小值为-12.
(1)求函式y=-4asin(3bx)的周期、最值,并求取得最值时的x的值;
(2)判断(1)问中函式的奇偶性.
【解】 (1)∵y=a-bcos 3x,b0,
∴ymax=a+b=32,ymin=a-b=-12,解得a=12,b=1.
∴函式y=-4asin(3bx)=-2sin 3x,
∴此函式的周期T=2π3.
当x=2kπ3+π6(k∈Z)时,函式取得最小值-2;
当x=2kπ3-π6(k∈Z)时,函式取得最大值2.
(2)∵函式解析式为y=-2sin 3x,x∈R,
∴-2sin(-3x)=2sin 3x,即f(-x)=-f(x),
∴f(x)为奇函式.
20.(本小题满分13分)函式f1(x)=Asin(ωx+φ)(A0,ω0,|φ|π2)的一段影象过点(0,1),如图所示.
图2
(1)求函式f1(x)的表示式;
(2)将函式y=f1(x)的影象向右平移π4个单位,得函式y=f2(x)的影象,求y=f2(x)的最大值,并求出此时自变数x的集合,并写出该函式的增区间.
【解】 (1)由题意知T=π=2πω,∴ω=2.
将y=Asin 2x的影象向左平移π12,得y=Asin(2x+φ)的影象,于是φ=2×π12=π6.
将(0,1)代入y=Asin(2x+π6),得A=2.
故f1(x)=2sin(2x+π6).
(2)依题意,f2(x)=2sin[2(x-π4)+π6]
=-2cos(2x+π6),xKb 1. Com
∴y=f2(x)的最大值为2.
当2x+π6=2kπ+π(k∈Z),
即x=kπ+5π12(k∈Z)时,ymax=2,
x的集合为{x|x=kπ+5π12,k∈Z}.
∵y=cos x的减区间为x∈[2kπ,2kπ+π],k∈Z,
∴f2(x)=-2cos (2x+π6)的增区间为{x|2kπ≤2x+π6≤2kπ+π,k∈Z},解得{x|kπ-π12≤x≤kπ+5π12,k∈Z},
∴f2(x)=-2cos(2x+π6)的增区间为x∈[kπ-π12,kπ+5π12],k∈Z.
图3
21.(本小题满分13分)已知定义在区间[-π,2π3]上的函式y=f(x)的影象关于直线x=-π6对称,当x∈[-π6,2π3]时,函式f(x)=Asin(ωx+φ)(A0,ω0,-π2φπ2),其影象如图所示.
(1)求函式y=f(x)在[-π,2π3]上的表示式;
(2)求方程f(x)=22的解.
【解】 (1)由影象可知,A=1,T4=2π3-π6=π2,
∴T=2π.
∴ω=2πT=2π2π=1.
∵f(x)=sin(x+φ)过点(2π3,0),
∴2π3+φ=π.
∴φ=π3.
∴f(x)=sin(x+π3),x∈[-π6,2π3].
∵当-π≤x-π6时,-π6≤-x-π3≤2π3,
又∵函式y=f(x)在区间[-π,2π3]上的影象关于直线x=-π6对称,
∴f(x)=f(-x-π3)=sin[(-x-π3)+π3]=sin(-x)=-sin x,x∈[-π,-π6].
∴f(x)=sinx+π3,x∈[-π6,2π3],-sin x,x∈[-π,-π6.
(2)当-π6≤x≤2π3时,π6≤x+π3≤π.
由f(x)=sin(x+π3)=22,得x+π3=π4或x+π3=3π4,
∴x=-π12或x=5π12.
当-π≤x-π6时,由f(x)=-sin x=22,即sin x=-22得x=-π4或x=-3π4.
∴方程f(x)=22的解为x=-π12或5π12或-π4或-3π4.
请帮助将人教版高一数学试卷复制在下边(急用)
高一数学期末同步测试题
ycy
说明:本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,答题时间120分钟.
第Ⅰ卷(选择题,共60分)
一、选择题:(每小题5分,共60分,请将所选答案填在括号内)
1.函数 的一条对称轴方程是 ( )
A. B. C. D.
2.角θ满足条件sin2θ0,cosθ-sinθ0,则θ在 ( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.己知sinθ+cosθ= ,θ∈(0,π),则cotθ等于 ( )
A. B.- C. ± D.-
4.已知O是△ABC所在平面内一点,若 + + = ,且| |=| |=| |,则△ABC
是 ( )
A.任意三角形 B.直角三角形 C.等腰三角形 D.等边三角形
5.己知非零向量a与b不共线,则 (a+b)⊥(a-b)是|a|=|b|的 ( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
6.化简 的结果是 ( )
A. B. C. D.
7.已知向量 ,向量 则 的最大值,最小值分别是( )
A. B. C.16,0 D.4,0
8.把函数y=sinx的图象上所有点的横坐标都缩小到原来的一半,纵坐标保持不 变,再把 图象向左平移 个单位,这时对应于这个图象的解析式 ( )
A.y=cos2x B.y=-sin2x
C.y=sin(2x- ) D.y=sin(2x+ )
9. ,则y的最小值为 ( )
A.– 2 B.– 1 C.1 D.
10.在下列区间中,是函数 的一个递增区间的是 ( )
A. B. C. D.
11.把函数y=x2+4x+5的图象按向量 a经一次平移后得到y=x2的图象,则a等于 ( )
A.(2,-1) B.(-2,1) C.(-2,-1) D.(2,1)
12. 的最小正周期是 ( )
A. B. C. D.
第Ⅱ卷(非选择题,共90分)
二、填空题:(每小题4分,共16分,请将答案填在横线上)
13.已知O(0,0)和A(6,3),若点P分有向线段 的比为 ,又P是线段OB的中点,则点B的坐标为________________.
14. ,则 的夹角为_ ___.
15.y=(1+sinx)(1+cosx)的最大值为___ ___.
16.在 中, , ,那么 的大小为___________.
三、解答题:(本大题共74分,17—21题每题12分,22题14分)
17.已知
(I)求 ;
(II)当k为何实数时,k 与 平行, 平行时它们是同向还是反向?
18.已知函数f(x)=2cos2x+ sin2x+a,若x∈[0, ],且| f(x) |<2,求a的取值范围.
19.已知函数 .
(Ⅰ)求函数f (x)的定义域和值域;
(Ⅱ)判断它的奇偶性.
20.设函数 ,其中向量 =(2cosx,1), =(cosx, sin2x),x∈R.
(Ⅰ)若f(x)=1- 且x∈[- , ],求x;
(Ⅱ)若函数y=2sin2x的图象按向量 =(m,n)(|m| )平移后得到函数y=f(x)的图象,
求实数m、n的值.
21.如图,某观测站C在城A的南偏西 方向上,从城A出发有一条公路,走向是南偏东 ,在C处测得距离C处31千米的公路上的B处有一辆正沿着公路向城A驶去,行驶了20千米后到达D处,测得C、D二处间距离为21千米,这时此车距城A多少千米?
22.某港口水深y(米)是时间t ( ,单位:小时)的函数,记作 ,下面是
某日水深的数据
t (小时) 0 3 6 9 12 15 18 21 24
y (米) 10.0 13.0 9.9 7.0 10.0 13.0 10.1 7.0 10.0
经长期观察: 的曲线可近似看成函数 的图象(A 0, )
(I)求出函数 的近似表达式;
(II)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上时认为是安全的.某船吃水深度(船底离水面的距离)为6.5米,如果该船希望在同一天内安全进出港,请问:它至多能在港内停留多长时间?
高一数学测试题—期末试卷参考答案
一、选择题:
1、A2、B3、B4、D 5、C 6、C 7、D 8、A 9、C10、B 11、A12、C
二、填空题:
13、(4,2) 14、 15、 16、
三、解答题:
17.解析:① = (1,0) + 3(2,1) = ( 7,3) , ∴ = = .
②k = k(1,0)-(2,1)=(k-2,-1). 设k =λ( ),即(k-2,-1)= λ(7,3),
∴ . 故k= 时, 它们反向平行.
18.解析:
,
解得 .
19.解析: (1) 由cos2x≠0得 ,解得x≠ ,所以f(x)的定义域为
且x≠ }
(2) ∵f(x)的定义域关于原点对称且f(-x)=f(x)
∴f(x)为偶函数.
(3) 当x≠ 时
因为
所以f(x)的值域为 ≤ ≤2}
20.解析:(Ⅰ)依题设,f(x)=2cos2x+ sin2x=1+2sin(2x+ ).
由1+2sin(2x+ )=1- ,得sin(2x+ )=- .
∵- ≤x≤ ,∴- ≤2x+ ≤ ,∴2x+ =- ,
即x=- .
(Ⅱ)函数y=2sin2x的图象按向量c=(m,n)平移后得到函数y=2sin2(x-m)+n的图象,即函数y=f(x)的图象.
由(Ⅰ)得 f(x)=2sin2(x+ )+1. ∵|m| ,∴m=- ,n=1.
21.解析:在 中, , ,
,由余弦定理得
所以 .
在 中,CD=21,
= .
由正弦定理得
(千米).所以此车距城A有15千米.
22.解析:(1)由已知数据,易知 的周期为T = 12
∴
由已知,振幅
∴
(2)由题意,该船进出港时,水深应不小于5 + 6.5 = 11.5(米)
∴
∴
∴
故该船可在当日凌晨1时进港,17时出港,它在港内至多停留16小时.
高一数学两道 急求!!!!!
1.(1)sinAsinB-cosAcosB=-cos(A+B),因为A、B∈(π/4,π/2),所以A+B在(π/2,π),cos(A+B)0,则-cos(A+B)0,sinAsinB-cosAcosB0.即sinAsinBcosAcosB。
(2)向量a*向量b=1,即 根号3*sinA-cosA=1,cos(A+π/3)=-1/2,又由于0Aπ,所以,A+π/3=(2π)/3,A=π/3。
2.是“使得等式sin(3π-a)=根号2*cos(3π-b),
根号3*cos(-a)=-根号2 *sin(π+B)同时成立?”,是的话,求得的应该不是确定值,你是不是给少条件了?
求高一数学题200道
高中数学合集百度网盘下载
链接:
?pwd=1234
提取码:1234
简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。
关于高一必修一数学周测卷答案和高一数学周报答案必修1的介绍到此就结束了,不知道同学们从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。