本篇文章给同学们谈谈2021届10月调研考试f卷数学,以及2021年调研试卷对应的知识点,希望对各位同学有所帮助,不要忘记分享给你的朋友哦!
本文目录一览:
初三数学上期末调研测试卷及答案
对于初三数学期末考试的复习,制定计划做数学试题更有利于数学的学习和备考。
初三数学上期末调研测试卷
一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)
1.sin60°的值是
A. B. C.1 D.
2.图1是一个球体的一部分,下列四个选项中是它的俯视图的是
3.用配方法解方程 ,下列配方正确的是
A. B.
C. D.
4.图2是我们学过的反比例函数图象,它的函数解析式可能是
A. B. C. D.
5.如图3,已知∠BAD=∠CAD,则下列条件中不一定能使
△ABD≌△ACD的是
A.∠B=∠C B.∠BDA=∠CDA
C.AB=AC D.BD=CD
6.过某十 字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为
A. B. C. D.
7.矩形具有而菱形不具有的性质是
A.对角线互相平分 B.对角线互相垂直
C.对角线相等 D.是中心对称图形
8.关于二次函数 ,下列说法中正确的是
A.它的开口方向是向上 B.当x –1时,y随x的增大而增大
C.它的顶点坐标是(–2,3) D.当x = 0时,y有最小值是3
9.如图4,已知A是反比例函数 (x 0)图象上的一个
动点,B是x轴上的一动点,且AO=AB.那么当点A在图
象上自左向右运动时,△AOB的面积
A.增大 B.减小 C.不变 D.无法确定
10.如图5,已知AD是△ABC的高,EF是△ABC的中位线,
则下列结论中错误的是
A.EF⊥AD B.EF= BC
C.DF= AC D.DF= AB
11.某公司今年产值200万元,现计划扩大生产,使今后两年的产值都比前一年增长一个相同的百分数,这样三年(包括今年)的总产值就达到了1400万元.设这个百分数为x,则可列方程为
A.
B.
C.
D.
12.如图6,已知抛物线 与x轴分别交于A、B两点,顶点为M.将抛物线l1沿x轴翻折后再向左平移得到抛物线l2.若抛物线l2过点B,与x轴的另一个交点为C,顶点为N,则四边形AMCN的面积为
A.32 B.16 C.50 D.40
第二部分(非选择题,共64分)
二、填空题(每小题3分,共12分。)请把答案填在答题卷相应的表格里。
13.2011年深圳大运会期间,在一个有3000人的小区里,小明随机调查了其中的500人,发现有450人看深圳电视台的大运会晚间新闻.那么在该小区里随便问一人,他看深圳电视台的大运会晚间新闻的概率大约是答案请填在答题表内.
14.若方程 的一个根为1,则b的值为答案 请填在答题表内.
15.如图7,甲、乙两盏路灯相距20米,一天晚上,当小刚
从灯甲底部向灯乙底部直行16米时,发现自己的身影顶
部正好接触到路灯乙的底部,已知小刚的身高为1.6米,
那么路灯甲的高为答案请填在答题表内米.
16.如图8,四边形ABCD是边长为2的正方形,E是AD边上一点,将△CDE绕点C沿逆时针方向旋转至△CBF,连接EF交BC于点G.若EC=EG,则DE = 答案请填在答题表内.
三、解答题(本题共7小题,共52分)
17.(本题 5分)计算:
18.(本题5分)解方程:
19.(本题8分)如图9,等腰梯形ABCD中,AB//CD,AD = BC = CD,对角线BD⊥AD,DE⊥AB于E,CF⊥BD于F.
(1)求证:△ADE≌△CDF;(4分)
(2)若AD = 4,AE=2,求EF的长.(4分)
(1)转动该转盘一次,则指针指在红色区域内的概率为_______;
(2分)
(2)转动该转盘两次,如果指针两次指在的颜色能配成紫色(红
色和蓝色一起可配成紫色),那么游戏者便能获胜.请用列
表法或画树状图的方法求出游戏者能获胜的概率.(6分)
21.(本题8分)如图11,A、B、C是三座城市,A市在B市的正西方向.C市在A市北偏东60º的方向,在B市北偏东30º的方向.这三座城市之间有高速公路l1、l2、l3相互贯通.小亮驾车从A市出发,以平均每小时80公里的速度沿高速公路l2向C市驶去,3小时后小亮到达了C市.
(1)求C市到高速公路l1的最短距离;(4分)
(2)如果小亮以相同的速度从C市沿C→B→A的路线从高速公路返回A市.那么经过多长时间后,他能回到A市?(结果精确到0.1小时)( )(4分)
22.(本题9分)阅读材料:
(1)对于任意实数a和b,都有 ,∴ ,于是得到 ,当且仅当a = b时,等号成立.
(2)任意一个非负实数都可写成一个数的平方的形式。即:如果 ,则 .如:2= , 等.
例:已知a 0,求证: .
证明:∵a 0,∴
∴ ,当且仅当 时,等号成立。
请解答下列问题:
某园艺公司准备围建一个矩形花圃,其中一边靠墙(墙足够长),另外三边用篱笆围成(如图12所示).设垂直于墙的一边长为x米.
(1)若所用的篱笆长为36米,那么:
①当花圃的面积为144平方米时,垂直于墙的一边的长为多少米?(3分)
②设花圃的面积为S米2,求当垂直于墙的一边的长为多少米时,这个花圃的面积最大?并求出这个最大面积;(3分)
(2)若要围成面积为200平方米的花圃,需要用的篱笆最少是多少米?(3分)
23(本题9分)如图13-1,已知抛物线 (a≠0)与x轴交于A(–1,0)、B(3,0)两点,与y轴交于点C(0,3).
(1)求抛物线的函数表达式;(3分)
(2)若矩形EFMN的顶点F、M在位于x轴上方的抛物线上,一边EN在x轴上(如图13-2).设点E的坐标为(x,0),矩形EFMN的周长为L,求L的最大值及此时点E的坐标;(3分)
(3)在(2)的前提下(即当L取得最大值时),在抛物线对称轴上是否存在一点P,使△PMN沿直线PN折叠后,点M刚好落在y轴上?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由.(3分)
初三数学上期末调研测试卷答案
一、选择题(每小题3分,共36分)
BCBAD ACBCD DA
二、填空题(每小题3分,共12分)
13.0.9; 14. 4 ; 15. 8 ; 16.
三、解答题
17.解:原式 = 2分(每写对一个函数值得1分)
= 3–1 4分(每算对一个运算得1分)
= 2 5 分
18.解法一:移项得 1分
配方得
2分
即 或 3分
∴ , 5分
解法二:∵ , ,
∴ 1分
∴ 3分
∴ , 5分
解法三:原方程可化为 1分
∴x–1 = 0或x–3 = 0 3分
∴ , 5分
19.(1)证明:∵DE⊥AB,AB//CD
∴DE⊥CD
∴∠1+∠3=90º 1分
∵BD⊥AD
∴∠2+∠3=90º
∴∠1=∠2 2分
∵CF⊥BD,DE⊥AB
∴∠CFD=∠AED=90º 3分
∵AD=CD
∴△ADE≌△CDF 4分
(2)解:∵DE⊥AB,AE=2,AD=4
∴∠2=30º,DE= 5分
∴∠3=90º–∠2=60º
∵△ADE≌△CDF
∴DE=DF 6分
∴△DEF是等边三角形
∴EF=DF= 7分
(注:用其它方法解答的,请根据此标准酌情给分)
20.(1) 2分
红 黄 蓝
红 (红,红) (黄,红) (蓝,红)
黄 (红,黄) (黄,黄) (蓝,黄)
蓝 (红,蓝) (黄,蓝) (蓝,蓝)
(2)解:列表得
结果共有9种可能,其中能成紫色的有2种
∴P(获胜)=
(说明:第(2)小题中,列表可画树状图得4分,求出概率得2分,共6分)
21.(1)解:过点C作CD⊥l1于点D,则已知得 1分
AC=3×80=240(km),∠CAD=30º 2分
∴CD= AC= ×240=120(km)3分
∴C市到高速公路l1的最短距离是120km。4分
(2)解:由已知得∠CBD=60º
在Rt△CBD中,
∵sin∠CBD=
∴BC= 5分
∵∠ACB=∠CBD–∠CAB=60º–30º=30º
∴∠ACB=∠CAB=30º
∴AB=BC= 6分
∴t = 7分
答:经过约3.5小时后,他能回到A市。8分
(注:用其它方法解答的,请根据此标准酌情给分)
22.(1)解:由题意得 1分
化简后得
解得: , 2分
答:垂直于墙的一边长为6米或12米。 3分
(2)解:由题意得
S = 4分
= 5分
∵a =–20,∴当x = 9时,S取得最大值是162
∴当垂直于墙的一边长为9米时,S取得最大值,最大面积是162m2。6分
(3)解:设所需的篱笆长为L米,由题意得
7分
即: 8分
∴若要围成面积为200平方米的花圃,需要用的篱笆最少是40米,9分
23.(1)解:由题意可设抛物线为 1分
抛物线过点(0,3)
解得:a =–1 2分
抛物线的解析式为:
即: 3分
(2)解:由(1)得抛物线的对称轴为直线x = 1
∵E(x,0),
∴F(x, ),EN = 4分
∴
化简得 5分
∵–20,
∴当x = 0时,L取得最大值是10,
此时点E的坐标是(0,0) 6分
(3)解:由(2)得:E(0,0),F(0,3),M(2,3),N(2,0)
设存在满足条件的点P(1,y),
并设折叠后点M的对应点为M1
∴ NPM=NPM1=90,PM=PM1
PG = 3–y,GM=1,PH = | y |,HN = 1
∵∠NPM=90º
∴
∴
解得: ,
∴点P的坐标为(1, )或(1, )7分
当点P的坐标为(1, )时,连接PC
∵PG是CM的垂直平分线,∴PC=PM
∵PM=PM1,∴PC=PM=PM1
∴∠M1CM = 90º
∴点M1在y轴上8分
同理可得当点P的坐标为(1, )时,点M1也在y轴上9分
故存在满足条件的点P,点P的坐标为(1, )或(1, )
(说明:能正确求出一个点的坐标并能说明点M刚好落在y轴上,得2分)
2021年高考数学试题权威评析来了
2021年高考数学试题权威评析来了
2021年高考数学试题权威评析来了,数学科落实高考内容改革总体要求,贯彻德智体美劳全面发展的教育方针,聚焦核心素养,突出关键能力考查,体现了高考数学的科学选拔功能和育人导向作用。
2021年高考数学试题权威评析来了1
2021年教育部考试中心命制了全国甲、乙卷的文、理科数学试卷,新高考Ⅰ卷、Ⅱ卷的数学试卷(不分文理),共6套数学试卷。
数学科落实高考内容改革总体要求,贯彻德智体美劳全面发展的教育方针,聚焦核心素养,突出关键能力考查,体现了高考数学的科学选拔功能和育人导向作用。试题突出数学本质,重视理性思维,坚持素养导向、能力为重的命题原则;倡导理论联系实际、学以致用,关注我国社会主义建设和科学技术发展的重要成果,设计真实问题情境,体现数学的应用价值。试卷稳步推进改革,科学把握必备知识与关键能力的关系,科学把握数学题型的开放性与数学思维的开放性,稳中求新,全面体现了基础性、综合性、应用性和创新性的考查要求。
一、发挥学科特色,彰显教育功能
高考数学命题始终坚持思想性与科学性的高度统一,发挥数学应用广泛、联系实际的学科特点,命制具有教育意义的试题以增强学生社会责任感,引导学生形成正确的人生观、价值观、世界观。试题运用我国社会主义建设和科技发展的重大成就作为试题情境,深入挖掘我国社会经济建设和科技发展等方面的学科素材,引导学生关注我国社会现实与经济、科技进步与发展,增强民族自豪感与自信心,增强国家认同,增强理想信念与爱国情怀。
1.关注科技发展与进步。新高考Ⅱ卷第4题以我国航天事业的重要成果北斗三号全球卫星导航系统为试题情境设计立体几何问题,考查考生的空间想象能力和阅读理解、数学建模的素养。
2.关注社会与经济发展。乙卷理科第6题以北京冬奥会志愿者的培训为试题背景,考查逻辑推理能力和运算求解能力。新高考Ⅰ卷第18题以“一带一路”知识竞赛为背景,考查了考生对概率统计基本知识的理解与应用。甲卷文、理科第2题以我国在脱贫攻坚工作取得全面胜利和农村振兴为背景,通过图表给出了某地农户家庭收入情况的抽样调查结果,以此设计问题,考查考生分析问题和数据处理的能力。
3.关注优秀传统文化。乙卷理科第9题以魏晋时期我国数学家刘徽的著作《海岛算经》中的测量方法为背景,考查考生综合运用知识解决问题的能力,让考生充分感悟到我国古代数学家的聪明才智。新高考Ⅰ卷第16题以我国传统文化剪纸艺术为背景,让考生体验从特殊到一般的探索数学问题的过程,重点考查考生灵活运用数学知识分析问题的能力。
二、坚持开放创新,考查关键能力
2020年10月,中共中央国务院《深化新时代教育评价改革总体方案》提出:稳步推进中高考改革,构建引导学生德智体美劳全面发展的考试内容体系,改变相对固化的试题形式,增强试题开放性,减少死记硬背和“机械刷题”现象。数学科高考积极贯彻《总体方案》要求,加大开放题的创新力度,利用开放题考查数学学科核心素养和关键能力,发挥数学科高考的选拔功能。
1.“举例问题”灵活开放。如新高考Ⅱ卷第14题的答案是开放的,给不同水平的考生提供了充分发挥自己数学能力的空间,在考查思维的灵活性方面起到了很好的作用。高考乙卷文、理科第16题有多组正确答案,有多种解题方案可供选择,考查了考生的空间想象能力,具有较好的选拔性。
2. “结构不良问题”适度开放。如甲卷理科第18题,试题给出部分已知条件,要求考生根据试题要求构建一个命题,给考生充分的选择空间,充分考查学生对数学本质的理解,引导中学数学在数学概念与数学方法的教学中,重视培养数学核心素养,克服“机械刷题”现象。新高考Ⅱ卷第22题第(2)问体现了“结构不良问题”适度开放命题的科学性与素养导向、能力为重的命题原则,对逻辑推理能力、数学抽象能力、直观想象能力等作了很深入地考查,既有利于选拔,也有利于考生发挥好自己的数学能力水平。
3.“存在问题”有序开放。如新高考Ⅱ卷第18题设计具有开放性,基于课程标准,重点考查考生的逻辑推理能力和运算求解题能力,在体现开放性的同时也体现了思维的准确性与有序性。新高考Ⅰ卷第21题第(2)问有序开放问题探索的内容,要求考生运用解析几何的基本思想方法分析问题和解决问题,考查考生在开放的情境中发现主要矛盾的能力。
三、倡导理论联系实际,学以致用
2021年数学科高考在应用性进行重点探索,取得突破。试题注重理论联系实际,体现数学的应用价值,并让学生感悟到数学的应用之美。理论联系实际的试题,体现现代科技发展和现代社会生产等方面的特点,有机渗透数学建模、数据分析、逻辑推理等数学核心素养与数学思想方法的应用,对选拔与育人具有积极的意义。
1.取材真实情境,解决实践问题
如新高考Ⅱ卷第21题取材于生命科学中真实的问题,体现了概率在生命科学中的应用。试题考查了数学抽象、直观想象、逻辑推理等数学核心素养,重点考查了考生综合应用概率、数列、方程、函数等知识和方法解决实际问题的能力,体现了 “基础性,综合性,应用性,创新性”的考查要求。甲卷理科第8题以测量珠穆朗玛峰高程的方法之一——三角高程测量法为背景设计,情境真实,突出理论联系实际,要求考生能正确应用线线关系、线面关系、点面关系等相关几何知识,构建计算模型,同时考查了考生运用正弦定理等解三角形的知识和方法解决实际问题的能力。
2.关注青少年身心健康
身心健康是素质教育的核心内容,在高考评价体系的核心价值指标体系中,包含有健康情感的指标,要求学生具有健康意识,注重增强体质,健全人格,锻炼意志。数学试题对相关内容也有所体现。如高考甲卷理科第4题(文科第6题),以社会普遍关注的青少年视力问题为背景设计,重点考查了考生的数学理解能力和运算求解能力。
3. 关注现实生产生活
如高考乙卷文、理科第17题,以芯片生产中的刻蚀速率为原型,设计了概率统计的应用问题,考查了考生对于平均数、方差等知识的理解和应用,引导考生树立正确的人生观、价值观。新高考Ⅱ卷第6题,以某物理量的测量为背景,考查了正态分布基本知识的理解与应用,引导学生重视数学实验,重视数学的应用。
2021年数学试题很好地落实了“立德树人,服务选才,引导教学”的`核心功能,坚持高考的核心价值,突出学科特色,重视数学本质,发挥了数学科高考的选拔功能,对深化中学数学教学改革发挥了积极的导向作用。
2021年高考数学试题权威评析来了2
高考第一天结束后,哪些事情应该避免讨论?
1、不要讨论高考试卷,不要讨论题目的答案。
在这里,笔者用两个“不要”来做出解答。高考第一天一般考语文和数学,当第一天考试结束之后,学生会陆续离开考场,和自己的同学或者父母见面。这时候,大量的同学依照次序走出校门,然后大部分同学们会聚在一起,讨论高考的试卷以及高考的题目以及答案。
尤其是一些学习成绩中等的考生,他们对于自己的答案不确定,因此会参考学习成绩好的同学,看看自己的答案是否与他们相同,这种情况和现象是高考第一天结束之后的大忌。第一天高考结束之后,同学们不要讨论高考试卷,也不要讨论题目的答案,因为每个人的答案都是不一样的,当得知自己做错之后,心理会非常着急,后悔自己为什么答错了,这样的消极情绪会一直保持到第二天考试,因此考生要注意,第一天高考结束,不要讨论高考试卷,不要讨论题目的答案。
2、不要给自己估分。
很多同学有一个习惯,那是在平时学校考试的时候养成的,那就是每当考试结束之后都会自己估分,看一下自己的估分跟真实分数是否一致或者相差多少。而一个习惯一旦养成就很难改掉了。高考第一天结束之后,也有不少同学会在心底里为自己估分,好大致判断第一天的高考成绩。
如果平时估分的话还可以理解,但是在高考的时候,估分会对自己的心理造成很大的负担,如果考试顺利还好,做题比较顺畅,正确率比较高,这是一个正向的促进作用。一旦考试出现了失误,那个估分的时候就比较低,考生心理会承受一个很大的压力,这是不利于第二天参加高考的。
因此每一位考生都应该明白以上这两点,考试第一天结束后不要讨论高考试卷,不要讨论题目的答案,也不要随意给自己估分,这是对第二天的考试不利的。就算同学们想要讨论,那么等到高考全部结束之后再讨论,这是可以的。毕竟高考都结束了,讨论一下题目也不会影响你的发挥,也不会对你的成绩造成影响。希望大家可以将文章传递给你的好友,让我们祝愿2020年高三考生心想事成,前程似锦!
2021年常州高三数学进行了几次模拟考试
2021年,常州高三数学进行了两次全市模拟考试,分别是2021年3月22日,5月4日。
[img]七年级上册数学期末考试试题两套
人生无时无刻不处于考试,在学习的考试成绩由分数来证明自己,下面给大家带来一些关于七年级上册数学期末考试试题两套,希望对大家有所帮助。
七年级上册数学期末考试试题两套1
、选择题(共10小题,每小题3分,共30分)
1.-(-3)的绝对值是()
A.-3 B.13 C.-13 D.3
2.2017年5月12日,利用微软Windows漏洞爆发的wannaCry勒索病毒,目前已席卷全球150多个国家,至少30万台电脑中招,预计造成的经济损失将达到80亿美元,世人再次领教了黑客的厉害.将数据80亿用科学记数法表示为()
A.8×108 B.8×109 C.0.8×109 D.0.8×1010
3.下列计算正确的个数是()
①a2+a2=a4;②3xy2-2xy2=1;③3ab-2ab=ab;④(-2)3-(-3)2=-17.
A.1个 B.2个 C.3个 D.0个
4.一个几何体的表面展开图如图所示,则这个几何体是()
A.四棱锥 B.四棱柱 C.三棱锥 D.三棱柱
5.已知代数式2a2-b=7,则-4a2+2b+10的值是()
A.7 B.4 C.-4 D.-7
6.若方程(m2-1)x2-mx-x+2=0是关于x的一元一次方程,则代数式|m-1|的值为()
A.0 B.2 C.0或2 D.-2
7.某商店换季促销,将一件标价为240元的T恤8折售出,获利20%,则这件T恤的成本为()
A.144元 B.160元 C.192元 D.200元
8.如图,数轴上A、B、C三点所表示的数分别是a、6、c.已知AB=8,a+c=0,且c是关于x的方程(m-4)x+16=0的一个解,则m的值为()
A.-4 B.2 C.4 D.6
9.12点15分,钟表的时针与分针所夹的小于平角的角的度数为()
A.60° B.67.5° C.82.5° D.90°
10.如图是某月的月历表,在此月历表上可以用一个长方形圈出3×3个位置的9个数(如3,4,5,10,11,12,17,18,19).若用这样的矩形圈出这张月历表上的9个数,则圈出的9个数的和不可能为下列数中的()
A.81 B.90 C.108 D.216
二、填空题(共6小题,每小题3分,共18分)
11.如图,已知∠AOB=90°.若∠1=35°,则∠2的度数是W.
第11题图 第12题图
12.如图,数轴上A表示的数为1,B表示的数为-3,则线段AB中点表示的数为.
13.已知关于x的多项式(m-1)x4-xn+2x-5是三次三项式,则(m+1)n的值为.
14.若方程x+5=7-2(x-2)的解也是方程6x+3k=14的解,则常数k=.
15.机械加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个.已知2个大齿轮与3个小齿轮配成一套,则安排名工人加工大齿轮,才能使每天加工的大、小齿轮刚好配套.
16.有一列数:a1,a2,a3,a4 ,…,an-1,an,其中a1=5×2+1,a2=5×3+2,a3=5×4+3,a4=5×5+4,a5=5×6+5,….当an=2021时,n的值为.
三、解答题(共8小题,共72分)
17.(8分)计算:
(1)(-1)2×5+(-2)3÷4; (2)58-23×24+14÷-123+|-22|.
18.(8分)解方程:
(1)x-12(3x-2)=2(5-x); (2)x+24-1=2x-36.
19.(8分)已知关于x的多项式mx2-mx-2与3x2+mx+m的和是单项式,求代数式m2-2m+1的值.
20.(8分)如图所示是一个长方体纸盒的平面展开图,已知纸盒中相对两个面上的数互为相反数.
(1)填空:a=,b=,c=;
(2)先化简,再求值:5a2b-[2a2b-3(2abc-a2b)]+4abc.
21.(8分)如图,BD平分∠ABC,BE把∠ABC分成2∶5的两部分,∠DBE=21°,求∠ABC的度数.
22.(10分)台湾是中国领土不可分割的一部分,两岸在政治、经济、 文化 等领域交流越来越深,在北京故宫博物院成立90周年院庆时,两岸故宫同根同源,合作举办了多项纪念活动.据统计,北京故宫博物院与台北故宫博物院现共有藏品约245万件,其中台北故宫博物院藏品数量比北京故宫博物院藏品数量的12还少25万件,求北京故宫博物院约有多少万件藏品?
23.(10分)某班准备买一些 乒乓球 和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店买一副球拍赠一盒乒乓球;乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒),现只到一家商店购买,问:
(1)当购买乒乓球多少盒时,两种优惠办法付款一样?
(2)当分别购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店买,为什么?
24.(12分)如图,已知点O表示原点,点A在数轴上表示的数为a,点B表示的数为b,且a、b满足|a+3|+(b-2)2=0.
(1)求点A、B所表示的数;
(2)点C在数轴上表示的数为x,且x是方程2x+1=12x-8的解.
①求线段BC的长;
②在数轴上是否存在点P,使PA+PB=BC?若存在,求出点P对应的数;若不存在,说明理由.
参考答案与解析
1.D 2.B 3.B 4.A 5.C 6.A 7.B 8.A 9.C 10.D
11.55° 12.-1 13.8 14.23 15.25 16.336
17.解:(1)原式=3.(4分)(2)原式=19.(8分)
18.解:(1)x=6.(4分)(2)x=0.(8分)
19.解:mx2-mx-2+3x2+mx+m=(m+3)x2+m-2.(2分)因为其和为单项式,所以m+3=0或m-2=0,即m=-3或m=2.(4分)当m=-3时,原式=(-3)2-2×(-3)+1=16;(6分)当m=2时,原式=22-2×2+1=1.(8分)
20.解:(1)1 -2 -3(3分)
(2)5a2b-[2a2b-3(2abc-a2b)]+4abc=5a2b-(2a2b-6abc+3a2b)+4abc=5a2b-2a2b+6abc-3a2b+4abc=10abc.(6分)当a=1,b=-2,c=-3时,原式=10×1×(-2)×(-3)=10×6=60.(8分)
21.解:设∠ABE=2x°,则∠CBE=5x°,∠ABC=7x°.(2分)又BD为∠ABC的平分线,所以∠ABD=12∠ABC=72x°,(4分)∠DBE=∠ABD-∠ABE=72x°-2x°=32x°=21°.(6分)所以x=14,所以∠ABC=7x°=98°.(8分)
22.解:设北京故宫博物院约有x万件藏品,则台北故宫博物院约有12x-25万件藏品.(2分)根据题意列方程得x+12x-25=245,(5分)解得x=180.(8分)
答:北京故宫博物院约有180万件藏品.(10分)
23.解:(1)设购买x盒乒乓球时,两种优惠办法付款一样.根据题意有30×5+(x-5)×5=(30×5+5x)×0.9,解得x=20.
答:购买20盒乒乓球时,两种优惠办法付款一样.(4分)
(2)当购买15盒时,甲店需付款30×5+(15-5)×5=200(元),乙店需付款 (30×5+15×5)×0.9=202.5(元).因为200202.5,所以去甲店合算.(7分)当购买30盒时,甲店需付款30×5+(30-5)×5=275(元),乙店需付款(30×5+30×5)×0.9=270(元).因为275270,所以去乙店合算.(10分)
24.解:(1)因为|a+3|+(b-2)2=0,所以a+3=0,b-2=0,解得a=-3,b=2,即点A表示的数是-3,点B表示的数是2.(4分)
(2)①解2x+1=12x-8得,x=-6,所以BC=2-(-6)=8,即线段BC的长为8.(8分)
②存在点P,使PA+PB=BC.设点P表示的数为m,则|m-(-3)|+|m-2|=8,所以|m+3|+|m-2|=8.(10分)当m2时,解得m=3.5;当-3m2时,无解;当x-3时,解得m=-4.5.综上所述,点p对应的数是3.5或-4.5.(12分) p=""
七年级上册数学期末考试试题两套2
一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)
1.如果水库水位上升2m记作+2m,那么水库水位下降2m记作()
A.-2 B.-4 C.-2m D.-4m
2.下列式子计算正确的个数有()
①a2+a2=a4;②3xy2-2xy2=1;③3ab-2ab=ab;④(-2)3-(-3)2=-17.
A.1个 B.2个 C.3个 D.0个
3.一个几何体的表面展开图如图所示,则这个几何体是()
A.四棱锥 B.四棱柱 C.三棱锥 D.三棱柱
4.已知2016xn+7y与-2017x2m+3y是同类项,则(2m-n)2的值是()
A.16 B.4048
C.-4048 D.5
5.某商店换季促销,将一件标价为240元的T恤8折售出,仍获利20%,则这件T恤的成本为()
A.144元 B.160元
C.192元 D.200元
6.如图,用同样规格的黑白两种正方形瓷砖铺设地面,观察图形并猜想,当黑色瓷砖为28块时,白色瓷砖的块数为()
A.27块 B.28块
C.33块 D.35块
二、填空题(本大题共6小题,每小题3分,共18分)
7.-12的倒数是________.
8.如图,已知∠AOB=90°,∠1=35°,则∠2的度数是________.
9.若多项式2(x2-xy-3y2)-(3x2-axy+y2)中不含xy项,则a=________,化简结果为____________.
10.若方程6x+3=0与关于y的方程3y+m=15的解互为相反数,则m=________.
11.机械加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个.已知2个大齿轮与3个小齿轮配成一套,则安排________名工人加工大齿轮,才能使每天加工的大、小齿轮刚好配套.
12.若线段AB=6cm,M是线段AB的三等分点,N是线段AM的中点,则线段MN的长为________.
三、(本大题共5小题,每小题6分,共30分)
13.(1)计算:13.1+1.6-(-1.9)+(-6.6);
(2)化简:5xy-x2-xy+3x2-2x2.
14.计算:
(1)(-1)2×5+(-2)3÷4;
(2)58-23×24+14÷-123+|-22|.
15.化简求值:5a+3b-2(3a2-3a2b)+3(a2-2a2b-2),其中a=-1,b=2.
16.解方程:
(1)x-12(3x-2)=2(5-x);
(2)x+24-1=2x-36.
17.如图,BD平分∠ABC,BE把∠ABC分成2∶5的两部分,∠DBE=21°,求∠ABC的度数.
四、(本大题共3小题,每小题8分,共24分)
18.用“⊕”和“⊙”定义两种新运算,对于任意的有理数a,b都有a⊕b=a+2b,a⊙b=a×b-2.
(1)求(1⊕2)⊙3的值;
(2)当x为有理数时,化简(x⊕2)-(x⊙3).
19.列方程解应用题:2018年元月初,我国中东部地区普降 大雪 ,某武警部队战士在两个地方进行救援工作,甲处有130名武警部队战士,乙处有70名武警部队战士.现在又调来200名武警部队战士支援,要使甲处的人数比乙处人数的2倍多10人,应往甲、乙两处各调去多少名武警部队战士?
20.已知数轴上的点A和点B之间的距离为32个单位长度,点A在原点的左边,距离原点5个单位长度,点B在原点的右边.
(1)点A所对应的数是________,点B所对应的数是________;
(2)若已知在数轴上的点E从点A处出发向左运动,速度为2个单位长度/秒,同时点F从点B处出发向左运动,速度为4个单位长度/秒,在点C处点F追上了点E,求点C所对应的数.
五、(本大题共2小题,每小题9分,共18分)
21.已知m,n满足(m-6)2+|n-2|=0.
(1)求m,n的值;
(2)已知线段AB=m,在直线AB上取一点P,使AP=nPB,Q为PB的中点,求线段AQ的长.
22.某大型超市“ 重阳节 ”期间感恩大回馈:购物不超过300元没有优惠;超过300元,而不超过600元优惠20%;超过600元的,其中600元按8折优惠,超过部分按7折优惠.小颖的妈妈两次购物分别用了210元和550元,问:
(1)小颖的妈妈两次购买的物品原价各是多少钱?
(2)在这次活动中她节省了多少钱?
(3)小颖的妈妈一次性购买这些物品,与分开购买相比是节省还是亏损?
六、(本大题共12分)
23.已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.
(1)如图①,若∠AOC=30°,求∠DOE的度数;
(2)在图①中,若∠AOC=α,直接写出∠DOE的度数(用含α的代数式表示);
(3)将图①中的∠COD绕顶点O顺时针旋转至图②的位置.
①探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;
②在∠AOC的内部有一条射线OF,且∠AOC-4∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE的度数之间的关系,说明理由.
参考答案与解析
1.C 2.B 3.A
4.A 解析:由题意得2m+3=n+7,移项得2m-n=4,所以(2m-n)2=16.故选A.
5.B 6.D
7.-2 8.55° 9.2 -x2-7y2
10.272 11.25 12.1cm或2cm
13.解:(1)原式=13.1+1.9+1.6-6.6=10.(3分)
(2)原式=5xy-xy=4xy.(6分)
14.解:(1)原式=3.(3分)(2)原式=19.(6分)
15.解:原式=5a+3b-6a2+6a2b+3a2-6a2b-6=5a+3b-3a2-6.(3分)当a=-1,b=2 时,原式=5×(-1)+3×2-3×(-1)2-6=-5+6-3-6=-8.(6分)
16.解:(1)x=6.(3分)(2)x=0.(6分)
17.解:设∠ABE=2x°,则∠CBE=5x°,∠ABC=7x°.(1分)又因为BD为∠ABC的平分线,所以∠ABD=12∠ABC=72x°,(2分)∠DBE=∠ABD-∠ABE=72x°-2x°=32x°=21°.(3分)所以x=14,所以∠ABC=7x°=98°.(6分)
18.解:(1)∵1⊕2=1+2×2=5,(2分)∴(1⊕2)⊙3=5⊙3=5×3-2=13.(4分)
(2)∵x⊕2=x+2×2=x+4,x⊙3=3x-2,(6分)∴(x⊕2)-(x⊙3)=(x+4)-(3x-2)=-2x+6.(8分)
19.解:设应往甲处调去x名武警部队战士,则向乙处调去(200-x)名武警部队战士.根据题意,得130+x=2(70+200-x)+10,(3分)解得x=140,∴200-x=60.(7分)
答:应往甲处调去140名,往乙处调去60名武警部队战士.(8分)
20.解:(1)-5 27(3分)
(2)设经过x秒点F追上点E,根据题意得2x+32=4x,解得x=16.(6分)则点C所对应的数为-5-2×16=-37.(8分)
21.解:(1)由题意得(m-6)2=0,|n-2|=0,所以m=6,n=2.(3分)
(2)当点P在线段AB上时,AP=2PB,所以AP=4,PB=2.而Q为PB的中点,所以PQ=1,故AQ=AP+PQ=5;(5分)当点P在线段AB的延长线上时,AP-PB=AB,即2PB-PB=6,所以PB=6.而Q为PB的中点,所以BQ=3,AQ=AB+BQ=6+3=9.(8分)故线段AQ的长为5或9.(9分)
22.解:(1)∵300×(1-20%)=240(元),600×(1-20%)=480(元)550元,∴小颖妈妈第一次购买的物品原价是210元,第二次购买物品原价大于600元.(2分)设小颖妈妈第二次购买的物品原价是x元.600×80%+70%(x-600)=550,解得x=700,∴小颖妈妈第二次购买的物品原价是700元.(4分)
(2)由题意得700-550=150(元).故在这次活动中她节省了150元钱.(6分)
(3)由题意得210+700=910(元),600×80%+70%×(910-600)=697(元).由210+550=760(元),697760,故与分开购买相比更节省.(9分)
23.解:(1)由题意得∠BOC=180°-∠AOC=150°,又∵∠COD是直角,OE平分∠BOC,∴∠DOE=∠COD-∠COE=∠COD-12 ∠BOC=90°-12×150°=15°.(3分)
(2)∠DOE=12α.(6分) 解析:由(1)知∠DOE=∠COD-12∠BOC=∠COD-12(180°-∠AOC)=90°-12(180°-α)=12α.
(3)①∠AOC=2∠DOE.(7分)理由如下:∵∠COD是直角,OE平分∠BOC,∴∠COE=∠BOE=90°-∠DOE,∴∠AOC=180°-∠BOC=180°-2∠COE=180°-2(90°-∠DOE)=2∠DOE.(9分)
②4∠DOE-5∠AOF=180°.(10分)理由如下:设∠DOE=x,∠AOF=y,由①知∠AOC=2∠DOE,∴∠AOC-4∠AOF=2∠DOE-4∠AOF=2x-4y,2∠BOE+∠AOF=2(∠COD-∠DOE)+∠AOF=2(90°-x)+y=180°-2x+y,∴2x-4y=180°-2x+y,即4x-5y=180°,∴4∠DOE-5∠AOF=180°.(12分)
七年级上册数学期末考试试题两套相关 文章 :
★ 人教版七年级数学上册期末试卷及答案2017年
★ 小升初数学试卷两套试题
★ 人教版七年级数学上册期末考试试卷
★ 七年级数学期末考试试卷分析
★ 七年级数学上学期期末复习训练题
★ 初一年级上册数学的21个热门知识点
★ 人教版七年级数学期末考试试卷
★ 七年级数学期末考试卷
★ 初一数学上册期末考试预测题及答案
★ 初一上册常考的数学习题
关于2021届10月调研考试f卷数学和2021年调研试卷的介绍到此就结束了,不知道同学们从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。