本篇文章给同学们谈谈SS冲刺调研押题卷六数学理科,以及sa冲刺调研押题卷一文综2021对应的知识点,希望对各位同学有所帮助,不要忘记分享给你的朋友哦!
本文目录一览:
- 1、《2021李林考研数学考前冲刺6套卷》pdf下载在线阅读全文,求百度网盘云资源
- 2、什么是高考数学押题卷,为什么那么多人在出押题卷
- 3、文理科高考数学卷一样吗
- 4、推荐一些考研数学复习资料,应该如何去推进复习呢?
- 5、高考数学考点 上海 理科卷
《2021李林考研数学考前冲刺6套卷》pdf下载在线阅读全文,求百度网盘云资源
《2021李林考研数学考前冲刺6套卷》百度网盘pdf最新全集下载:
链接:
?pwd=3f4w 提取码: 3f4w
简介:在线也可以轻松做题,内里已附上了答案了解析,不靠押题靠实力,考研数学就选李林
什么是高考数学押题卷,为什么那么多人在出押题卷
(二)理科的预测难度要比文科的大
那么,高考预测到底该针对什么?针对的是高考题目的命题意图。
以数学科目为例,《高考大纲》明确要求题目要考查学生6种能力,分别是:空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识,对所学知识的探究、实践和解决实际问题能力的考查更加明显。
(三)数学科目预测的依据是什么?
数学科目的预测难度比较大,但不是不可能。在专业能力过硬的教师或者团队眼里,依然有章可循,有据可查。
具体依据,我们之前的文章已经提过,主要有4个方面:高考政策的平稳性、数学知识的内在逻辑性、教研团队的专业性、品牌支撑的可靠性。
(四)预测卷在命制过程中需要考虑什么因素?
一份高水平的试卷绝对不是按照高考的样子,随便出题就行的。需要综合考虑多种因素,才能很好地指导学生复习。
1.试卷类型不同,出题思路不同
全国数学试卷目前分成全国Ⅰ卷、Ⅱ卷、Ⅲ卷,并且都分成文理科,所以一共有6个版本的试卷。这6个版本因为针对的地区不同,每个地区的教育水平有差异,所以体现出了不一样的出题风格。有的试卷计算量大、有的试卷思维量大、有的试卷出题保守、有的试卷出题灵活……这些因素在平时做练习的时候可以不用考虑,但是在严谨专业的团队面前就不能不考虑。
正因为这个重要的原因,所以数学全国卷一定要用6个版本分别预测才能行之有效。组合教育也是看准了这个特点,所以连续4年推出《高考数学黄金预测卷》,针对不同
试卷类型分别预测,比单一试卷的预测精度高了30%左右,取得了非常好的效果。
2.历年试卷考点、热点的分布是一条重要的轨迹
其实很多人注意到了这条轨迹,但是限于对专业的了解尚浅,不能深刻地把握数学知识内在逻辑对于考题走势的支配作用,也不能体会6种能力立意在试卷中的比例分配。所以不少老师或者学生都只是能说某某知识板块要出题,但是会出什么样子的题目,考察什么知识点,会用到什么数学工具,就答不上来了。
在这一点上,组合教育作为目前国内专业的数学研究团队,独创四层结构评估体系,对高考脉络有着丰富和强大的研究,不仅可以准确预知考什么知识,更可以细致到什么题型、什么方向乃至于题目的模型和核心点。
2019版《黄金预测卷》不仅含有试题和答案,更是细化到了命题报告、分析、评注、命题意图、重难点题目的举一反三,所以直击高考数学试题的要害,有效的指导学生复习。
总之,高考题可以预测,但是绝对不能偏执的认为预测卷就一定要预测出一模一样的题目。预测题预测的是高考的命题意图,也就是给处于高考真题在立意、题型、角度上高度一致的题目,进而让学生提前对这类型题目加以重视,有效避免考试失误。
目前《黄金预测卷》正在全国范围内接受预定,身边有亲戚、朋友的孩子要参加高考,不妨买一份送给他,这将是非常有价值的礼物。
[img]文理科高考数学卷一样吗
高中数学合集百度网盘下载
链接:
?pwd=1234
提取码:1234
简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。
推荐一些考研数学复习资料,应该如何去推进复习呢?
已上岸!
考研数学的重要性不亚于任何一门学科,数学的复习决定了你考研能不能上岸,得数学者得天下,这句话一点都不假!
数学的复习可以分为三个阶段,分别是基础阶段,强化阶段以及冲刺阶段,接下来我分别介绍这三个阶段的复习资料以及重点。
无论是数学复习哪个阶段,都离不开这几个具体的资料系列:李永乐复习全书,汤家凤复习全书,张宇考研数学系列,李林考研数学系列,李正元考研数学系列。
1)基础阶段:
基础阶段的复习目标主要是打好基础,包括高等数学,线性代数,概率论等的基础知识,概念公式定理,以及对于考研题型的初级认识,基础阶段注重的是大家的数学基本功,也是为了让各位认识到考研题目的难度和设置状态,刚开始复习考研数学的同学看到考研真题,直观上和课本教材上的题目是有一些不同的,但是教材是打基础的基本!一定要重视数学教材!这里我不推荐大家上来就看网课,应该结合数学教材一起复习最佳!
因为大家大一的数学教材学到的都是考研的基础,应用教材复习能做到回顾知新,把教材课后题好好做一遍,再结合网课学习会让你感觉基本功更加扎实。高等数学的教材基本上使用同济第七版,线性代数的教材一般是用的高等教育出版社的第六版,概率论的书复习教材基本是浙大第四版,也有自主命题学校使用的其他版本的资料,建议大家买正版教材,
除了以上说到的教材之外,还需要配备相应的复习资料书,就是上面说到的考研数学复习资料系列,基础阶段这些辅导书主要作用就是刷题,在结合教材使用后,通过刷题来巩固知识点,训练思路的同时提高计算能力,:
①李永乐复习全书:李永乐复习全书的资料适合基础比较薄弱的同学使用,跨考生或者数学基础不太好的同学可以使用这本教材,配合视频讲解和具体的教材一起复习时比较好,这套资料题型都是贴合考研真题,适合新手入门。
②张宇考研数学系列:张宇的高数18讲,线代9讲和概率论9讲是我觉得比较好的资料书,因为基本上通过每一讲把知识点和考试题目都涵盖全面,高数18讲很多同学都人手一本,里面的题目设置和讲解配合视频资料一起学习比较扎实,难度也适中,贴合考研。在基础阶段适合各位使用,题目难度和新意也比较适合计算机专业考研的学生。
③李正元考研数学系列:题量相比较之前三个比较大,题目难度和题型编排比较全面,适合于数学基础较好的同学,想要冲击高分的同学适合看李正元系列的书,题目量大对于新手不太友好,但是数学就是要做题,而且要勤做题,多做题,提高计算思路和计算能力。
说完了教材和辅导书系列,接下来基础阶段就是视频课了,绝大多数同学都会看视频课来进行基础阶段的学习,经常会看到图书馆或者自习室的同学人手电脑,平板或者手机观看视频课,因为视频课是最直观且有效的方式,同样视频课的辅导书配套的也是上面的提到的辅导讲义系列,视频课也按照上面的老师划分为:
①李永乐数学考研网课:
②张宇考研数学网课:
③汤家凤考研数学网课:
对于网课的选择,我感觉这几位老师各有特点,李永乐老师比较严肃,上课也很有初中高中时候的数学老师的感觉,但长时间听讲可能会困,哈哈~张宇老师比较幽默风趣,上课节奏张弛有度,但不喜欢上数学课开玩笑的同学可能不适合,汤家凤老师的课也比较严肃,但带有一些口音的话,不影响上课的效果,有时候也会冒出来一些金句,这三位老师各有特色,大家可以前期都听一下再选择。网课建议团购比较好,这样方便划算,适合一起学习。
总之,基础阶段就是打好基础,巩固知识点,然后开始做题,保持每天数学题目的练习,加以坚持和学习就能保证后面强化以及冲刺阶段数学的学习!
2)强化阶段:
强化阶段的复习主要就是刷题,做题,改错然后总结,依次不断循环的过程,强化阶段的习题更多注重于层级,例如简单题,中等题,难题。这也是循序渐进的刷题过程,由简到难,刷题的资料主要有张宇的1000题,汤家凤的接力题典1800,李林的880题,李永乐的660题,杨超的139题等等,建议各位买一本习题册就行,不用买太多,买上一本做透做精,好好总结,事半功倍!数学做题主要就是复习总结然后继续刷题,对于这些习题册,一本足够了。
3)冲刺阶段:
冲刺阶段的主要目的就是做真题,历年考研数学真题,这个阶段配合最后的押题卷以及考研真题解析好好巩固冲刺,是这个阶段的主要任务也是决定考研数学成败的最后一步!
当然,考研真题在之前开始接触也完全可以,有的人认为真题就是得复习完强化后开始看,我觉得不必要,只要在复习阶段能用到真题的地方,我觉得都可以看,没有时限这一说。
总之,考研数学最重要的是做题,做题,做题!一定不要眼高手低,只看不写,只有笔头下的真功夫才能做到真正的学到位!
高考数学考点 上海 理科卷
今年全国数学卷应该与去年平稳衔接,命题的风格和形式基本相同,知识点的覆盖不会面面俱到,具体体现在两套冲刺卷中。
1.题量为22道题,其中选择题为12道,填空题为4道,解答题为6道,分值分别为60分、16分和74分。
2.难度系数文科为0.55~0.6左右,理科为0.55左右。
3.解答题的考点和形式:
①第17题为三角变换、图像、解析式、向量或三角应用题,主要考查三角、向量基本知识的综合应用能力、数形结合;
②第18题为底面为四边形的柱体或锥体或折叠中的距离、二面角、线面垂直、平行,主要考查处理空间线、面关系的能力,运动的观点、探究;
③第19题为概率、分布列、期望,主要考查从摸球、掷骰子、扑克牌、体育活动、射击及生产生活中抽象出的数学模型的能力,分类讨论的思想;
④第20题为函数、导数、单调性、极值、切线、不等式,主要考查交汇知识综合处理能力、分类讨论思想、函数与方程思想;
⑤第21题为双曲线、抛物线、椭圆相结合,主要考查圆锥曲线的统一定义,点、弦、面积、取值范围;
⑥第22题为数列、导数、不等式、数学归纳法,主要考查综合、灵活运用数学知识分析、解决问题的能力。
2006年全国普通高等学校招生统一考试
上海 数学试卷(理工农医类)
考生注意:
1.答卷前,考生务必将姓名、高考准考证号、校验码等填写清楚.
2.本试卷共有22道试题,满分150分,考试时间120分钟.请考生用钢笔或圆珠笔将答案直接写在试卷上.
一.填空题(本大题满分48分)本大题共有12题,只要求直接填写结果,每个空格填对得4分,否则一律得零分.
1.已知集合A= -1,3,2 -1 ,集合B= 3, .若B A,则实数 = .
2.已知圆 -4 -4+ =0的圆心是点P,则点P到直线 - -1=0的距离是 .
3.若函数 = ( >0,且 ≠1)的反函数的图像过点(2,-1),则 = .
4.计算: = .
5.若复数 同时满足 - =2 , = ( 为虚数单位),则 = .
6.如果 = ,且 是第四象限的角,那么 = .
7.已知椭圆中心在原点,一个焦点为F(-2 ,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 .
8.在极坐标系中,O是极点,设点A(4, ),B(5,- ),则△OAB的面积是 .
9.两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率是 (结果用分数表示).
10.如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是 .
11.若曲线 =| |+1与直线 = + 没有公共点,则 、 分别应满足的条件是 .
12.三个同学对问题“关于 的不等式 +25+| -5 |≥ 在[1,12]上恒成立,求实数 的取值范围”提出各自的解题思路.
甲说:“只须不等式左边的最小值不小于右边的最大值”.
乙说:“把不等式变形为左边含变量 的函数,右边仅含常数,求函数的最值”.
丙说:“把不等式两边看成关于 的函数,作出函数图像”.
参考上述解题思路,你认为他们所讨论的问题的正确结论,即 的取值范围是 .
二.选择题(本大题满分16分)本大题共有4题,每题都给出代号为A、B、C、D的四个结论,其中有且只有一个结论是正确的,必本大题满分16分)须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分.
13.如图,在平行四边形ABCD中,下列结论中错误的是 [答]( )
(A) = ;(B) + = ;
(C) - = ;(D) + = .
14.若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”的 [答]( )
(A)充分非必要条件;(B)必要非充分条件;(C)充要条件;(D)非充分非必要条件.
15.若关于 的不等式 ≤ +4的解集是M,则对任意实常数 ,总有[答]( )
(A)2∈M,0∈M; (B)2 M,0 M; (C)2∈M,0 M; (D)2 M,0∈M.
16.如图,平面中两条直线 和 相交于点O,对于平面上任意一点M,若 、 分别是M到直线 和 的距离,则称有序非负实数对( , )是点M的“距离坐标”.已知常数 ≥0, ≥0,给出下列命题:
①若 = =0,则“距离坐标”为(0,0)的点
有且仅有1个;
②若 =0,且 + ≠0,则“距离坐标”为
( , )的点有且仅有2个;
③若 ≠0,则“距离坐标”为( , )的点有且仅有4个.
上述命题中,正确命题的个数是 [答]( )
(A)0; (B)1; (C)2; (D)3.
三.解答题(本大题满分86分)本大题共有6题,解答下列各题必须写出必要的步骤.
17.(本题满分12分)
求函数 =2 + 的值域和最小正周期.
[解]
18.(本题满分12分)
如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30 ,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援(角度精确到1 )?
[解]
19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分)
在四棱锥P-ABCD中,底面是边长为2的菱形,∠DAB=60 ,对角线AC与BD相交于点O,PO⊥平面ABCD,PB与平面ABCD所成的角为60 .
(1)求四棱锥P-ABCD的体积;
(2)若E是PB的中点,求异面直线
DE与PA所成角的大小(结果用反
三角函数值表示).
[解](1)
(2)
20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分)
在平面直角坐标系 O 中,直线 与抛物线 =2 相交于A、B两点.
(1)求证:“如果直线 过点T(3,0),那么 =3”是真命题;
(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.
[解](1)
(2)
21.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分)
已知有穷数列 共有2 项(整数 ≥2),首项 =2.设该数列的前 项和为 ,且 = +2( =1,2,┅,2 -1),其中常数 >1.
(1)求证:数列 是等比数列;
(2)若 =2 ,数列 满足 = ( =1,2,┅,2 ),求数列 的通项公式;
(3)若(2)中的数列 满足不等式| - |+| - |+┅+| - |+| - |≤4,求 的值.
[解](1)
(2)
(3)
22.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分)
已知函数 = + 有如下性质:如果常数 >0,那么该函数在 0, 上是减函数,在 ,+∞ 上是增函数.
(1)如果函数 = + ( >0)的值域为 6,+∞ ,求 的值;
(2)研究函数 = + (常数 >0)在定义域内的单调性,并说明理由;
(3)对函数 = + 和 = + (常数 >0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数 = + ( 是正整数)在区间[ ,2]上的最大值和最小值(可利用你的研究结论).
[解](1)
(2)
(3)
上海数学(理工农医类)参考答案
2006年全国普通高等学校招生统一考试
上海 数学试卷(理工农医类)
考生注意:
1.答卷前,考生务必将姓名、高考准考证号、校验码等填写清楚.
2.本试卷共有22道试题,满分150分,考试时间120分钟.请考生用钢笔或圆珠笔将答案直接写在试卷上.
一.填空题(本大题满分48分)本大题共有12题,只要求直接填写结果,每个空格填对得4
分,否则一律得零分.)
1.已知集合A= -1,3,2 -1 ,集合B= 3, .若B A,则实数 = ;
解:由 ,经检验, 为所求;
2.已知圆 -4 -4+ =0的圆心是点P,则点P到直线 - -1=0的距离是 ;
解:由已知得圆心为: ,由点到直线距离公式得: ;
3.若函数 = ( >0,且 ≠1)的反函数的图像过点(2,-1),则 = ;
解:由互为反函数关系知, 过点 ,代入得: ;
4.计算: = ;
解: ;
5.若复数 同时满足 - =2 , = ( 为虚数单位),则 = ;
解:已知 ;
6.如果 = ,且 是第四象限的角,那么 = ;
解:已知 ;
7.已知椭圆中心在原点,一个焦点为F(-2 ,0),且长轴长是短轴长的2倍,则该椭圆的
标准方程是 ;
解:已知 为所求;
8.在极坐标系中,O是极点,设点A(4, ),B(5,- ),则△OAB的面积是 ;
解:如图△OAB中,
(平方单位);
9.两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成
一排,左边4本恰好都属于同一部小说的概率是 (结果用分数表示);
解:分为二步完成: 1) 两套中任取一套,再作全排列,有 种方法;
2) 剩下的一套全排列,有 种方法;
所以,所求概率为: ;
10.如果一条直线与一个平面垂直,则称此直线与平面构成一个“正交线面对”.在一个正方体
中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是 ;
解:正方体中,一个面有四条棱与之垂直,六个面,共构成24个“正交线面对”;而正方
体的六个对角截面中,每个对角面又有两条面对角线与之垂直,共构成12个“正交线
面对”,所以共有36个“正交线面对”;
11.若曲线 =| |+1与直线 = + 没有公共点,则 、 分别应满足的条件是 .
解:作出函数 的图象,
如右图所示:
所以, ;
12.三个同学对问题“关于 的不等式 +25+| -5 |≥ 在[1,12]上恒成立,求实数
的取值范围”提出各自的解题思路.
甲说:“只须不等式左边的最小值不小于右边的最大值”.
乙说:“把不等式变形为左边含变量 的函数,右边仅含常数,求函数的最值”.
丙说:“把不等式两边看成关于 的函数,作出函数图像”.
参考上述解题思路,你认为他们所讨论的问题的正确结论,即 的取值范围是 ;
解:由 +25+| -5 |≥ ,
而 ,等号当且仅当 时成立;
且 ,等号当且仅当 时成立;
所以, ,等号当且仅当 时成立;故 ;
二.选择题(本大题满分16分)本大题共有4题,每题都给出代号为A、B、C、D的四个结
论,其中有且只有一个结论是正确的,必本大题满分16分)须把正确结论的代号写在题
后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括
号内),一律得零分.
13.如图,在平行四边形ABCD中,下列结论中错误的是 [答]( )
(A) ; (B) ;
(C) ; (D) ;
解:由向量定义易得, (C)选项错误; ;
14.若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”
的 [答]( )
(A)充分非必要条件;(B)必要非充分条件;(C)充要条件;(D)非充分非必要条件;
解: 充分性成立: “这四个点中有三点在同一直线上”有两种情况:
1)第四点在共线三点所在的直线上,可推出“这四个点在同一平面上”;
2)第四点不在共线三点所在的直线上,可推出“这四点在唯一的一个平面内”;
必要性不成立:“四个点在同一平面上”可能推出“两点分别在两条相交或平行直线上”;
故选(A)
15.若关于 的不等式 ≤ +4的解集是M,则对任意实常数 ,总有[答]( )
(A)2∈M,0∈M; (B)2 M,0 M; (C)2∈M,0 M; (D)2 M,0∈M;
解:选(A)
方法1:代入判断法,将 分别代入不等式中,判断关于 的不等式解集是
否为 ;
方法2:求出不等式的解集:
≤ +4 ;
16.如图,平面中两条直线 和 相交于点O,对于平面上任意一点M,若 、 分别是M到
直线 和 的距离,则称有序非负实数对( , )是点M的“距离坐标”.
已知常数 ≥0, ≥0,给出下列命题:
① 若 = =0,则“距离坐标”为(0,0)的
点有且仅有1个;
② 若 =0,且 + ≠0,则“距离坐标”为
( , )的点有且仅有2个;
③ 若 ≠0,则“距离坐标”为( , )的点有且仅有4个.
上述命题中,正确命题的个数是 [答]( )
(A)0; (B)1; (C)2; (D)3.
解:选(D)
① 正确,此点为点 ; ② 正确,注意到 为常数,由 中必有一个为零,另
一个非零,从而可知有且仅有2个点,这两点在其中一条直线上,且到另一直线的距
离为 (或 ); ③ 正确,四个交点为与直线 相距为 的两条平行线和与直线
相距为 的两条平行线的交点;
三.解答题(本大题满分86分)本大题共有6题,解答下列各题必须写出必要的步骤.
17.(本题满分12分)
求函数 的值域和最小正周期.
[解]
∴ 函数 的值域是 ,最小正周期是 ;
18.(本题满分12分)
如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待
营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30 ,相距10海里C处的乙
船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援(角度精确到 )?
[解] 连接BC,由余弦定理得
BC2=202+102-2×20×10COS120°=700.
于是,BC=10 .
∵ , ∴sin∠ACB= ,
∵∠ACB90° ∴∠ACB=41°
∴乙船应朝北偏东71°方向沿直线前往B处救援.
19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分)
在四棱锥P-ABCD中,底面是边长为2的菱形,∠DAB=60 ,对角线AC与BD相交
于点O,PO⊥平面ABCD,PB与平面ABCD所成的角为60 .
(1)求四棱锥P-ABCD的体积;
(2)若E是PB的中点,求异面直线
DE与PA所成角的大小(结果用
反三角函数值表示).
[解](1)在四棱锥P-ABCD中,由PO⊥平面ABCD,得
∠PBO是PB与平面ABCD所成的角, ∠PBO=60°.
在Rt△AOB中BO=ABsin30°=1, 由PO⊥BO,
于是,PO=BOtg60°= ,而底面菱形的面积为2 .
∴四棱锥P-ABCD的体积V= ×2 × =2.
(2)解法一:以O为坐标原点,射线OB、OC、
OP分别为x轴、y轴、z轴的正半轴建立
空间直角坐标系.
在Rt△AOB中OA= ,于是,点A、B、
D、P的坐标分别是A(0,- ,0),
B (1,0,0), D (-1,0,0), P (0,0, ).
E是PB的中点,则E( ,0, ) 于是 =( ,0, ), =(0, , ).
设 的夹角为θ,有cosθ= ,θ=arccos ,
∴异面直线DE与PA所成角的大小是arccos ;
解法二:取AB的中点F,连接EF、DF.
由E是PB的中点,得EF‖PA,
∴∠FED是异面直线DE与PA所成
角(或它的补角),
在Rt△AOB中AO=ABcos30°= =OP,
于是, 在等腰Rt△POA中,
PA= ,则EF= .
在正△ABD和正△PBD中,DE=DF= ,
cos∠FED= =
∴异面直线DE与PA所成角的大小是arccos .
20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分)
在平面直角坐标系 O 中,直线 与抛物线 =2 相交于A、B两点.
(1)求证:“如果直线 过点T(3,0),那么 =3”是真命题;
(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.
[解](1)设过点T(3,0)的直线 交抛物线y2=2x于点A(x1,y1)、B(x2,y2).
当直线 的钭率不存在时,直线 的方程为x=3,此时,直线 与抛物线相交于点A(3, )、B(3,- ). ∴ =3;
当直线 的钭率存在时,设直线 的方程为 ,其中 ,
由 得
又 ∵ ,
∴ ,
综上所述,命题“如果直线 过点T(3,0),那么 =3”是真命题;
(2)逆命题是:设直线 交抛物线y2=2x于A、B两点,如果 =3,那么该直线过点T(3,0).该命题是假命题.
例如:取抛物线上的点A(2,2),B( ,1),此时 =3,
直线AB的方程为: ,而T(3,0)不在直线AB上;
说明:由抛物线y2=2x上的点A (x1,y1)、B (x2,y2) 满足 =3,可得y1y2=-6,
或y1y2=2,如果y1y2=-6,可证得直线AB过点(3,0);如果y1y2=2,可证得直线
AB过点(-1,0),而不过点(3,0).
21.(本题满分16分,本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题
满分6分)
已知有穷数列 共有2 项(整数 ≥2),首项 =2.设该数列的前 项和为 ,且 = +2( =1,2,┅,2 -1),其中常数 >1.
(1)求证:数列 是等比数列;
(2)若 =2 ,数列 满足 = ( =1,2,┅,2 ),
求数列 的通项公式;
(3)若(2)中的数列 满足不等式| - |+| - |+┅+| - |+| - |
≤4,求 的值.
(1) [证明] 当n=1时,a2=2a,则 =a;
2≤n≤2k-1时, an+1=(a-1) Sn+2, an=(a-1) Sn-1+2,
an+1-an=(a-1) an, ∴ =a, ∴数列{an}是等比数列.
(2) 解:由(1) 得an=2a , ∴a1a2…an=2 a =2 a =2 ,
bn= (n=1,2,…,2k).
(3)设bn≤ ,解得n≤k+ ,又n是正整数,于是当n≤k时, bn ;
当n≥k+1时, bn .
原式=( -b1)+( -b2)+…+( -bk)+(bk+1- )+…+(b2k- )
=(bk+1+…+b2k)-(b1+…+bk)
= = .
当 ≤4,得k2-8k+4≤0, 4-2 ≤k≤4+2 ,又k≥2,
∴当k=2,3,4,5,6,7时,原不等式成立.
22.(本题满分18分,本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题
满分9分)
已知函数 = + 有如下性质:如果常数 >0,那么该函数在 0, 上是减函数,在 ,+∞ 上是增函数.
(1)如果函数 = + ( >0)的值域为 6,+∞ ,求 的值;
(2)研究函数 = + (常数 >0)在定义域内的单调性,并说明理由;
(3)对函数 = + 和 = + (常数 >0)作出推广,使它们都是你所推广的
函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数
= + ( 是正整数)在区间[ ,2]上的最大值和最小值(可利
用你的研究结论).
[解](1)函数y=x+ (x0)的最小值是2 ,则2 =6, ∴b=log29.
(2) 设0x1x2,y2-y1= .
当 x1x2时, y2y1, 函数y= 在[ ,+∞)上是增函数;
当0x1x2 时y2y1, 函数y= 在(0, ]上是减函数.
又y= 是偶函数,于是,
该函数在(-∞,- ]上是减函数, 在[- ,0)上是增函数;
(3) 可以把函数推广为y= (常数a0),其中n是正整数.
当n是奇数时,函数y= 在(0, ]上是减函数,在[ ,+∞) 上是增函数,
在(-∞,- ]上是增函数, 在[- ,0)上是减函数;
当n是偶数时,函数y= 在(0, ]上是减函数,在[ ,+∞) 上是增函数,
在(-∞,- ]上是减函数, 在[- ,0)上是增函数;
F(x)= +
=
因此F(x) 在 [ ,1]上是减函数,在[1,2]上是增函数.
所以,当x= 或x=2时,F(x)取得最大值( )n+( )n;
当x=1时F(x)取得最小值2n+1;
好好看看吧 祝你取得好成绩啊
SS冲刺调研押题卷六数学理科的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于sa冲刺调研押题卷一文综2021、SS冲刺调研押题卷六数学理科的信息别忘了在本站进行查找喔。