金太阳数学试卷初一下册(金太阳教育试卷答案数学初一)

本篇文章给同学们谈谈金太阳数学试卷初一下册,以及金太阳教育试卷答案数学初一对应的知识点,希望对各位同学有所帮助,不要忘记分享给你的朋友哦!

本文目录一览:

七年级下册数学试卷及答案

知识有重量,但成就有光泽。有人感觉到知识的力量,但更多的人只看到成就的光泽。下面给大家分享一些关于七年级下册数学试卷及答案,希望对大家有所帮助。

一、选择题(本题共10小题,每小题3分,共30分)

1.(3分)下列各数: 、 、0.101001…(中间0依次递增)、﹣π、 是无理数的有()

A. 1个 B. 2个 C. 3个 D. 4个

考点: 无理数.

分析: 根据无理数的定义(无理数是指无限不循环小数)判断即可.

解答: 解:无理数有 ,0.101001…(中间0依次递增),﹣π,共3个,

故选C.

点评: 考查了无理数的应用,注意:无理数是指无限不循环小数,无理数包括三方面的数:①含π的,②开方开不尽的根式,③一些有规律的数.

2.(3分)(2001?北京)已知:如图AB∥CD,CE平分∠ACD,∠A=110°,则∠ECD等于()

A. 110° B. 70° C. 55° D. 35°

考点: 平行线的性质;角平分线的定义.

专题: 计算题.

分析: 本题主要利用两直线平行,同旁内角互补,再根据角平分线的概念进行做题.

解答: 解:∵AB∥CD,

根据两直线平行,同旁内角互补.得:

∴∠ACD=180°﹣∠A=70°.

再根据角平分线的定义,得:∠ECD= ∠ACD=35°.

故选D.

点评: 考查了平行线的性质以及角平分线的概念.

3.(3分)下列调查中,适宜采用全面调查方式的是()

A. 了解我市的空气污染情况

B. 了解电视节目《焦点访谈》的收视率

C. 了解七(6)班每个同学每天做家庭作业的时间

D. 考查某工厂生产的一批手表的防水性能

考点: 全面调查与抽样调查.

分析: 由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.

解答: 解:A、不能全面调查,只能抽查;

B、电视台对正在播出的某电视节目收视率的调查因为普查工作量大,适合抽样调查;

C、人数不多,容易调查,适合全面调查;

D、数量较大,适合抽查.

故选C.

点评: 本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.

4.(3分)一元一次不等式组 的解集在数轴上表示为()

A. B. C. D.

考点: 在数轴上表示不等式的解集;解一元一次不等式组.

分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.

解答: 解: ,由①得,x2,由②得,x≥0,

故此不等式组的解集为:0≤x2,

在数轴上表示为:

故选B.

点评: 本题考查的是在数轴上表示不等式组的解集,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.

5.(3分)二元一次方程2x+y=8的正整数解有()

A. 2个 B. 3个 C. 4个 D. 5个

考点: 解二元一次方程.

专题: 计算题.

分析: 将x=1,2,3,…,代入方程求出y的值为正整数即可.

解答: 解:当x=1时,得2+y=8,即y=6;当x=2时,得4+y=8,即y=4;当x=3时,得6+y=8,即y=2;

则方程的正整数解有3个.

故选B

点评: 此题考查了解二元一次方程,注意x与y都为正整数.

6.(3分)若点P(x,y)满足xy0,x0,则P点在()

A. 第二象限 B. 第三象限 C. 第四象限 D. 第二、四象限

考点: 点的坐标.

分析: 根据实数的性质得到y0,然后根据第二象限内点的坐标特征进行判断.

解答: 解:∵xy0,x0,

∴y0,

∴点P在第二象限.

故选A.

点评: 本题考查了点的坐标平面内的点与有序实数对是一一对应的关系.坐标:直角坐标系把平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.

7.(3分)如图,AB∥CD,∠A=125°,∠C=145°,则∠E的度数是()

A. 10° B. 20° C. 35° D. 55°

考点: 平行线的性质.

分析: 过E作EF∥AB,根据平行线的性质可求得∠AEF和∠CEF的度数,根据∠E=∠AEF﹣∠CEF即可求得∠E的度数.

解答: 解:过E作EF∥AB,

∵∠A=125°,∠C=145°,

∴∠AEF=180°﹣∠A=180°﹣125°=55°,

∠CEF=180°﹣∠C=180°﹣145°=35°,

∴∠E=∠AEF﹣∠CEF=55°﹣35°=20°.

故选B.

点评: 本题考查了平行线的性质,解答本题的关键是作出辅助线,要求同学们熟练掌握平行线的性质:两直线平行,同旁内角互补.

8.(3分)已知 是方程组 的解,则 是下列哪个方程的解()

A. 2x﹣y=1 B. 5x+2y=﹣4 C. 3x+2y=5 D. 以上都不是

考点: 二元一次方程组的解;二元一次方程的解.

专题: 计算题.

分析: 将x=2,y=1代入方程组中,求出a与b的值,即可做出判断.

解答: 解:将 方程组 得:a=2,b=3,

将x=2,y=3代入2x﹣y=1的左边得:4﹣3=1,右边为1,故左边=右边,

∴ 是方程2x﹣y=1的解,

故选A.

点评: 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.

9.(3分)下列各式不一定成立的是()

A. B. C. D.

考点: 立方根;算术平方根.

分析: 根据立方根,平方根的定义判断即可.

解答: 解:A、a为任何数时,等式都成立,正确,故本选项错误;

B、a为任何数时,等式都成立,正确,故本选项错误;

C、原式中隐含条件a≥0,等式成立,正确,故本选项错误;

D、当a0时,等式不成立,错误,故本选项正确;

故选D.

点评: 本题考查了立方根和平方根的应用,注意:当a≥0时, =a,任何数都有立方根

10.(3分)若不等式组 的整数解共有三个,则a的取值范围是()

A. 5a6 p="" 5≤a≤6="" d.="" 5≤a6="" c.="" 5

考点: 一元一次不等式组的整数解.

分析: 首先确定不等式组的解集,利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.

解答: 解:解不等式组得:2x≤a, p=""

∵不等式组的整数解共有3个,

∴这3个是3,4,5,因而5≤a6.

故选C.

点评: 本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.

二、填空题(本题共8小题,每小题3分,共24分)

11.(3分)(2009?恩施州)9的算术平方根是 3 .

考点: 算术平方根.

分析: 如果一个非负数x的平方等于a,那么x是a的算术平方根,根据此定义即可求出结果.

解答: 解:∵32=9,

∴9算术平方根为3.

故答案为:3.

点评: 此题主要考查了算术平方根的等于,其中算术平方根的概念易与平方根的概念混淆而导致错误.

12.(3分)把命题“在同一平面内,垂直于同一条直线的两条直线互相平行”写出“如果…,那么…”的形式是:在同一平面内,如果 两条直线都垂直于同一条直线 ,那么 这两条直线互相平行 .

考点: 命题与定理.

分析: 根据命题题设为:在同一平面内,两条直线都垂直于同一条直线;结论为这两条直线互相平行得出即可.

解答: 解:“在同一平面内,垂直于同一条直线的两条直线互相平行”改写成“如果﹣﹣﹣,那么﹣﹣﹣”的形式为:“在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行”.

故答案为:两条直线都垂直于同一条直线,这两条直线互相平行.

点评: 本题考查了命题与定理:判断事物的语句叫命题,命题由题设和结论两部分组成;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.

13.(3分)将方程2x+y=25写成用含x的代数式表示y的形式,则y= 25﹣2x .

考点: 解二元一次方程.

分析: 把方程2x+y=25写成用含x的式子表示y的形式,需要把含有y的项移到方程的左边, 其它 的项移到另一边即可.

解答: 解:移项,得y=25﹣2x.

点评: 本题考查的是方程的基本运算技能,表示谁就该把谁放到方程的左边,其它的项移到另一边.

此题直接移项即可.

14.(3分)不等式x+40的最小整数解是 ﹣3 .

考点: 一元一次不等式的整数解.

分析: 首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.

解答: 解:x+40,

x﹣4,

则不等式的解集是x﹣4,

故不等式x+40的最小整数解是﹣3.

故答案为﹣3.

点评: 本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.

15.(3分)某校在“数学小论文”评比活动中,共征集到论文60篇,并对其进行了评比、整理,分成组画出频数分布直方图(如图),已知从左到右5个小长方形的高的比为1:3:7:6:3,那么在这次评比中被评为优秀的论文有(分数大于或等于80分为优秀且分数为整数) 27 篇.

考点: 频数(率)分布直方图.

分析: 根据从左到右5个小长方形的高的比为1:3:7:6:3和总篇数,分别求出各个方格的篇数,再根据分数大于或等于80分为优秀且分数为整数,即可得出答案.

解答: 解:∵从左到右5个小长方形的高的比为1:3:7:6:3,共征集到论文60篇,

∴第一个方格的篇数是: ×60=3(篇);

第二个方格的篇数是: ×60=9(篇);

第三个方格的篇数是: ×60=21(篇);

第四个方格的篇数是: ×60=18(篇);

第五个方格的篇数是: ×60=9(篇);

∴这次评比中被评为优秀的论文有:9+18=27(篇);

故答案为:27.

点评: 本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.

16.(3分)我市A、B两煤矿去年计划产煤600万吨,结果A煤矿完成去年计划的115%,B煤矿完成去年计划的120%,两煤矿共产煤710万吨,求去年A、B两煤矿原计划分别产煤多少万吨?设A、B两煤矿原计划分别产煤x万吨,y万吨;请列出方程组   .

考点: 由实际问题抽象出二元一次方程组.

分析: 利用“A、B两煤矿去年计划产煤600万吨,结果A煤矿完成去年计划的115%,B煤矿完成去年计划的120%,两煤矿共产煤710万吨”列出二元一次方程组求解即可.

解答: 解:设A矿原计划产煤x万吨,B矿原计划产煤y万吨,根据题意得:

故答案为:: ,

点评: 本题考查了由实际问题抽象出二元一次方程组的知识,解题的关键是从题目中找到两个等量关系,这是列方程组的依据.

17.(3分)在平面直角坐标系中,已知线段AB∥x轴,端点A的坐标是(﹣1,4)且AB=4,则端点B的坐标是 (﹣5,4)或(3,4) .

考点: 坐标与图形性质.

分析: 根据线段AB∥x轴,则A,B两点纵坐标相等,再利用点B可能在A点右侧或左侧即可得出答案.

解答: 解:∵线段AB∥x轴,端点A的坐标是(﹣1,4)且AB=4,

∴点B可能在A点右侧或左侧,

则端点B的坐标是:(﹣5,4)或(3,4).

故答案为:(﹣5,4)或(3,4).

点评: 此题主要考查了坐标与图形的性质,利用分类讨论得出是解题关键.

18.(3分)若点P(x,y)的坐标满足x+y=xy,则称点P为“和谐点”,如:和谐点(2,2)满足2+2=2×2.请另写出一个“和谐点”的坐标 (3, ) .

考点: 点的坐标.

专题: 新定义.

分析: 令x=3,利用x+y=xy可计算出对应的y的值,即可得到一个“和谐点”的坐标.

解答: 解:根据题意得点(3, )满足3+ =3× .

故答案为(3, ).

点评: 本题考查了点的坐标平面内的点与有序实数对是一一对应的关系.坐标:直角坐标系把平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.

三、解答题(本大题共46分)

19.(6分)解方程组 .

考点: 解二元一次方程组.

分析: 先根据加减消元法求出y的值,再根据代入消元法求出x的值即可.

解答: 解: ,

①×5+②得,2y=6,解得y=3,

把y=3代入①得,x=6,

故此方程组的解为 .

点评: 本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.

20.(6分)解不等式: ,并判断 是否为此不等式的解.

考点: 解一元一次不等式;估算无理数的大小.

分析: 首先去分母、去括号、移项合并同类项,然后系数化成1即可求得不等式的解集,然后进行判断即可.

解答: 解:去分母,得:4(2x+1)12﹣3(x﹣1)

去括号,得:8x+412﹣3x+3,

移项,得,8x+3x12+3﹣4,

合并同类项,得:11x11,

系数化成1,得:x1,

∵ 1,

∴ 是不等式的解.

点评: 本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.

解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.

21.(6分)学着说点理,填空:

如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC.

理由如下:

∵AD⊥BC于D,EG⊥BC于G,(已知)

∴∠ADC=∠EGC=90°,( 垂直定义 )

∴AD∥EG,( 同位角相等,两直线平行 )

∴∠1=∠2,( 两直线平行,内错角相等 )

∠E=∠3,(两直线平行,同位角相等)

又∵∠E=∠1(已知)

∴ ∠2 = ∠3 (等量代换)

∴AD平分∠BAC( 角平分线定义 )

考点: 平行线的判定与性质.

专题: 推理填空题.

分析: 根据垂直的定义及平行线的性质与判定定理即可证明本题.

解答: 解:∵AD⊥BC于D,EG⊥BC于G,(已知)

∴∠ADC=∠EGC=90°,(垂直定义)

∴AD∥EG,(同位角相等,两直线平行)

∴∠1=∠2,(两直线平行,内错角相等)

∠E=∠3,(两直线平行,同位角相等)

又∵∠E=∠1(已知)

∴∠2=∠3(等量代换)

∴AD平分∠BAC(角平分线定义 ).

点评: 本题考查了平行线的判定与性质,属于基础题,关键是注意平行线的性质和判定定理的综合运用.

22.(8分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的坐标分别为(﹣4,5),(﹣1,3).

(1)请在如图所示的网格平面内作出平面直角坐标系;

(2)请把△ABC先向右移动5个单位,再向下移动3个单位得到△A′B′C′,在图中画出△A′B′C′;

(3)求△ABC的面积.

考点: 作图-平移变换.

分析: (1)根据A点坐标,将坐标轴在A点平移到原点即可;

(2)利用点的坐标平移性质得出A,′B′,C′坐标即可得出答案;

(3)利用矩形面积减去周围三角形面积得出即可.

解答: 解:(1)∵点A的坐标为(﹣4,5),

∴在A点y轴向右平移4个单位,x轴向下平移5个单位得到即可;(2)如图所示:△A′B′C′即为所求;(3)△ABC的面积为:3×4﹣ ×3×2﹣ ×1×2﹣ ×2×4=4.

点评: 此题主要考查了平移变换以及三角形面积求法和坐标轴确定 方法 ,正确平移顶点是解题关键.

23.(10分)我市中考体育测试中,1分钟跳绳为自选项目.某中学九年级共有若干名女同学选考1分钟跳绳,根据测试评分标准,将她们的成绩进行统计后分为A、B、C、D四等,并绘制成下面的频数分布表(注:5~10的意义为大于等于5分且小于10分,其余类似)和扇形统计图(如图).

等级 分值 跳绳(次/1分钟) 频数

A 12.5~15 135~160 m

B 10~12.5 110~135 30

C 5~10 60~110 n

D 0~5 0~60 1

(1)m的值是 14 ,n的值是 30 ;

(2)C等级人数的百分比是 10% ;

(3)在抽取的这个样本中,请说明哪个分数段的学生最多?

(4)请你帮助老师计算这次1分钟跳绳测试的及格率(10分以上含10分为及格).

考点: 扇形统计图;频数(率)分布表.

分析: (1)首先根据B等级的人数除以其所占的百分比即可求得总人数,然后乘以28%即可求得m的值,总人数减去其他三个小组的频数即可求得n的值;

(2)用n值除以总人数即可求得其所占的百分比;

(3)从统计表的数据就可以直接求出结论;

(4)先计算10分以上的人数,再除以50乘以100%就可以求出结论.

解答: 解:(1)观察统计图和统计表知B等级的有30人,占60%,

∴总人数为:30÷60%=50人,

∴m=50×28%=14人,

n=50﹣14﹣30﹣1=5;(2)C等级所占的百分比为: ×100%=10%;(3)B等级的人数最多;(4)及格率为: ×100%=88%.

点评: 本题考查了频数分布表的运用,扇形统计图的运用,在解答时看懂统计表与统计图得关系式关键.

24.(10分)(2012?益阳)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.

(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?

(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.

考点: 一元一次不等式的应用;一元一次方程的应用.

专题: 压轴题.

分析: (1)假设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,利用购进A、B两种树苗刚好用去1220元,结合单价,得出等式方程求出即可;

(2)结合(1)的解和购买B种树苗的数量少于A种树苗的数量,可找出方案.

解答: 解:(1)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,根据题意得:

80x+60(17﹣x )=1220,

解得:x=10,

∴17﹣x=7,

答:购进A种树苗10棵,B种树苗7棵;(2)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,

根据题意得:

17﹣xx, p=""

解得:x ,

购进A、B两种树苗所需费用为80x+60(17﹣x)=20x+1020,

则费用最省需x取最小整数9,

此时17﹣x=8,

这时所需费用为20×9+1020=1200(元).

答:费用最省方案为:购进A种树苗9棵,B种树苗8棵.这时所需费用为1200元.

点评: 此题主要考查了一元一次不等式组的应用以及一元一次方程应用,根据一次函数的增减性得出费用最省方案是解决问题的关键.

七年级下册数学试卷及答案相关 文章 :

★ 七年级数学下册复习题答案

★ 七年级数学下册期末试卷题

★ 人教版七年级下数学期末试卷

★ 七年级下册苏科版数学期末测试卷

★ 2020七年级下数学复习重点试题

★ 七年级下数学练习册答案

★ 人教版七年级数学下册课本练习题答案

★ 七年级数学单元测试题

★ 七年级数学下册练习册参考答案

★ 2020七年级下册数学复习题

[img]

七年级数学下册期末试卷及答案人教版

人教版 七年级数学 下册的期末考试与七年级学生的学习是息息相关的。我整理了关于人教版七年级数学下册的期末试卷及答案,希望对大家有帮助!

七年级数学下册期末试卷人教版

一、选择题(共10小题,每小题3分,满分30分)

1.下列图形中∠1和∠2是对顶角的是()

A. B. C. D.

2.估计 的值在哪两个整数之间()

A.77和79 B.6和7 C.7和8 D.8和9

3.若m是任意实数,则点M(m2+2,﹣2)在第()象限.

A.一 B.二 C.三 D.四

4.线段AB是由线段PQ平移得到的,点P(﹣1,3)的对应点为A(4,7),则点Q(﹣3,1)的对应点B的坐标是()

A.(2,5) B.(﹣6,﹣1) C.(﹣8,﹣3) D.(﹣2,﹣2)

5.在实数0、π、 、2+ 、3.12312312…、﹣ 、 、1.1010010001…中,无理数的个数有()

A.3个 B.4个 C.5个 D.6个

6.如图,能判定EC∥AB的条件是()

A.∠B=∠ACB B.∠A=∠ACE C.∠B=∠ACE D.∠A=∠ECD

7.若方程组 的解满足x+y=0,则a的取值是()

A.a=﹣1 B.a=1 C.a=0 D.a不能确定

8.下列调查中,适合采用全面调查(普查)方式的是()

A.一个城市某一天的空气质量

B.对某班40名同学体重情况的调查

C.对某类烟花爆竹燃放安全情况的调查

D.对端午期间市场上粽子质量情况的调查

9.关于x的不等式2x+a≤﹣3的解集如图所示,则a的取值是()

A.0 B.﹣1 C.﹣2 D.﹣3

10.平面直角坐标系中,点A(﹣2,2),B(3,5),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()

A.6,(﹣3,5) B.10,(3,﹣5) C.1,(3,4) D.3,(3,2)

二、填空题(共6小题,每小题3分,满分18分)

11.已知 =18.044,那么± =.

12.已知a3,不等式(3﹣a)xa﹣3解集为.

13.已知一个样本容量为60,在频数分布直方图中,各小长方形的高比为2:4:1:3,那么第二组的频数是.

14.如图,将三角板的直角顶点放在直尺的一边上,若∠1=70°,则∠2的度数为.

15.下列命题中,

(1)一个锐角的余角小于这个角;

(2)两条直线被第三条直线所截,内错角相等;

(3)a,b,c是直线,若a⊥b,b⊥c,则a⊥c;

(4)若a2+b2=0,则a,b都为0.

是假命题的有.(请填序号)

16.如图,已知A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…,则点A2017的坐标是.

三、解答题(共17分)

17.计算:(﹣1)2016+ ﹣3+ × .

18.解方程组: .

19.解不等式组 ,并求出它的整数解.

四、(共16分,20、21题各8分)

20.如图,AB∥CD,EF交AB于点G,交CD与点F,FH交AB于点H,∠AGE=70°,∠BHF=125°,FH平分∠EFD吗?请说明你的理由.

21.某次考试结束后,班主任老师和小强进行了对话:

老师:小强同学,你这次考试的语数英三科总分348分,在下次考试中,要使语数英三科总分达到382分,你有何计划?

小强:老师,我争取在下次考试中,语文成绩保持124分,英语成绩再多16分,数学成绩增加15%,则刚好达到382分.

请问:小强这次考试英语、数学成绩各是多少?

五、共19分,第22题8分,第23题11分

22.4月23日是“世界读书日”,学校开展“让书香溢满校园”读书活动,以提升青少年的阅读兴趣,九年(1)班数学活动小组对本年级600名学生每天阅读时间进行了统计,根据所得数据绘制了两幅不完整统计图(每组包括最小值不包括最大值).九年(1)班每天阅读时间在0.5小时以内的学生占全班人数的8%.根据统计图解答下列问题:

(1)九年(1)班有名学生;

(2)补全直方图;

(3)除九年(1)班外,九年级其他班级每天阅读时间在1~1.5小时的学生有165人,请你补全扇形统计图;

(4)求该年级每天阅读时间不少于1小时的学生有多少人?

23.善于思考的小明在解方程组 时,采用了一种“整体代换”的解法:

解:将方程②变形:4x+10y+y=5,即2(2x+5y)+y=5③

把方程①带入③得:2×3+y=5,∴y=﹣1

把y=﹣1代入①得x=4,∴方程组的解为 .

请你解决以下问题:

(1)模仿小明的“整体代换”法解方程组 ;

(2)已知x,y满足方程组

①求x2+9y2的值;

②求x+3y的值.[参考公式(a+b)2=a2+2ab+b2].

七年级数学下册期末试卷人教版参考答案

一、选择题(共10小题,每小题3分,满分30分)

1.下列图形中∠1和∠2是对顶角的是()

A. B. C. D.

【考点】对顶角、邻补角.

【分析】一个角的两边分别是另一个角的反向延伸线,这两个角是对顶角.依据定义即可判断.

【解答】解:互为对顶角的两个角:一个角的两边分别是另一个角的反向延伸线.满足条件的只有D.

故选D.

2.估计 的值在哪两个整数之间()

A.77和79 B.6和7 C.7和8 D.8和9

【考点】估算无理数的大小.

【分析】首先对 进行估算,再确定 是在哪两个相邻的整数之间.

【解答】解:∵ ,

∴8 9,

∴ 的值在8和9之间,

故选:D.

3.若m是任意实数,则点M(m2+2,﹣2)在第()象限.

A.一 B.二 C.三 D.四

【考点】点的坐标.

【分析】根据平方数非负数的性质判断出点M的横坐标是正数,再根据各象限内点的坐标特征解答.

【解答】解:∵m2≥0,

∴m2+2≥2,

∴点M(m2+2,﹣2)在第四象限.

故选D.

4.线段AB是由线段PQ平移得到的,点P(﹣1,3)的对应点为A(4,7),则点Q(﹣3,1)的对应点B的坐标是()

A.(2,5) B.(﹣6,﹣1) C.(﹣8,﹣3) D.(﹣2,﹣2)

【考点】坐标与图形变化-平移.

【分析】先根据点P、A的坐标判断平移的方向与距离,再根据点Q的坐标计算出点B的坐标即可.

【解答】解:∵点P(﹣1,3)的对应点为A(4,7),

∴线段向右平移的距离为:4﹣(﹣1)=5,向上平移的距离为:7﹣3=4,

∴点Q(﹣3,1)的对应点B的横坐标为:﹣3+5=2,纵坐标为:1+4=5,

∴B(2,5).

故选(A)

5.在实数0、π、 、2+ 、3.12312312…、﹣ 、 、1.1010010001…中,无理数的个数有()

A.3个 B.4个 C.5个 D.6个

【考点】无理数.

【分析】无理数的三种常见类型:①开方开不尽的数,②无限不循环小数,③含有π的数.

【解答】解:0是有理数;

π是无理数;

是一个分数,是有理数;

2+ 是一个无理数;

3.12312312…是一个无限循环小数,是有理数;

﹣ =﹣2是有理数;

是无理数;

1.1010010001…是一个无限不循环小数,是无理数.

故选:B.

6.如图,能判定EC∥AB的条件是()

A.∠B=∠ACB B.∠A=∠ACE C.∠B=∠ACE D.∠A=∠ECD

【考点】平行线的判定.

【分析】直接利用平行线的判定定理判定即可求得答案.注意排除法在解选择题中的应用.

【解答】解:∵当∠B=∠ECD或∠A=∠ACE时,EC∥AB;

∴B正确,A,C,D错误.

故选B.

7.若方程组 的解满足x+y=0,则a的取值是()

A.a=﹣1 B.a=1 C.a=0 D.a不能确定

【考点】二元一次方程组的解;二元一次方程的解.

【分析】方程组中两方程相加表示出x+y,根据x+y=0求出a的值即可.

【解答】解:方程组两方程相加得:4(x+y)=2+2a,

将x+y=0代入得:2+2a=0,

解得:a=﹣1.

故选:A.

8.下列调查中,适合采用全面调查(普查)方式的是()

A.一个城市某一天的空气质量

B.对某班40名同学体重情况的调查

C.对某类烟花爆竹燃放安全情况的调查

D.对端午期间市场上粽子质量情况的调查

【考点】全面调查与抽样调查.

【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.

【解答】解:A、调查一个城市某一天的空气质量,应该用抽样调查,

B、对某班40名同学体重情况的调查,应该用全面调查,

C、对某类烟花爆竹燃放安全情况的调查,应该用抽样调查,

D、对端午期间市场上粽子质量情况的调查,应该用抽样调查;

故选:B.

9.关于x的不等式2x+a≤﹣3的解集如图所示,则a的取值是()

A.0 B.﹣1 C.﹣2 D.﹣3

【考点】解一元一次不等式;在数轴上表示不等式的解集.

【分析】将a看作常数求得该不等式解集,再由不等式解集在数轴上的表示可得关于a的方程,解方程即可得a的值.

【解答】解:移项,得:2x≤﹣3﹣a,

系数化为1,得:x≤ ,

由不等式可知该不等式的解集为x≤﹣1,

∴ =﹣1,

解得:a=﹣1,

故选:B.

10.平面直角坐标系中,点A(﹣2,2),B(3,5),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()

A.6,(﹣3,5) B.10,(3,﹣5) C.1,(3,4) D.3,(3,2)

【考点】坐标与图形性质.

【分析】分析:由AC∥x轴,A(﹣2,2),根据坐标的定义可求得y值,根据线段BC最小,确定BC⊥AC,垂足为点C,进一步求得BC的最小值和点C的坐标.

【解答】解:依题意可得

∵AC∥x,

∴y=2,

根据垂线段最短,当BC⊥AC于点C时,

点B到AC的距离最短,即

BC的最小值=5﹣2=3

此时点C的坐标为(3,2)

故选:D

二、填空题(共6小题,每小题3分,满分18分)

11.已知 =18.044,那么± = ±1.8044 .

【考点】平方根;算术平方根.

【分析】根据算术平方根的意义,被开方数的小数点每移动两位,其结果的小数点移动一位,据此判断即可.

【解答】解:∵ =18.044,

∴ =1.8044,

即± =±1.8044.

故答案为:±1.8044

12.已知a3,不等式(3﹣a)xa﹣3解集为 x﹣1 .

【考点】解一元一次不等式.

【分析】首先判断出3﹣a0,然后根据不等式的性质求出不等式的解集.

【解答】解:∵a3,

∴3﹣a0,

∴不等式(3﹣a)xa﹣3解集为x﹣1,

故答案为x﹣1.

13.已知一个样本容量为60,在频数分布直方图中,各小长方形的高比为2:4:1:3,那么第二组的频数是 24 .

【考点】频数(率)分布直方图;总体、个体、样本、样本容量.

【分析】根据各小长方形的高比为2:4:1:3,得频数之比为2:4:1:3,由此即可解决问题.

【解答】解:∵样本容量为60,各小长方形的高比为2:4:1:3,

∴那么第二组的频数是60× =24,

故答案为24.

14.如图,将三角板的直角顶点放在直尺的一边上,若∠1=70°,则∠2的度数为 20° .

【考点】平行线的性质.

【分析】根据两直线平行,同位角相等可得∠3=∠1,再根据平角等于180°列式计算即可得解.

【解答】解:∵直尺对边平行,

∴∠3=∠1=70°,

∴∠2=180°﹣70°﹣90°=20°.

故答案为:20°.

15.下列命题中,

(1)一个锐角的余角小于这个角;

(2)两条直线被第三条直线所截,内错角相等;

(3)a,b,c是直线,若a⊥b,b⊥c,则a⊥c;

(4)若a2+b2=0,则a,b都为0.

是假命题的有 (1)(3) .(请填序号)

【考点】命题与定理.

【分析】利于锐角的定义、平行线的性质、垂直的定义等知识分别判断后即可确定正确的选项.

【解答】解:(1)一个锐角的余角小于这个角,错误,是假命题;

(2)两条直线被第三条直线所截,内错角相等,正确,是真命题;

(3)a,b,c是直线,若a⊥b,b⊥c,则a∥c,故错误,是假命题;

(4)若a2+b2=0,则a,b都为0,正确,为真命题,

故答案为(1)(3).

16.如图,已知A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…,则点A2017的坐标是 (﹣505,﹣505) .

【考点】规律型:点的坐标.

【分析】经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加﹣1,纵坐标依次加1;在第三象限的点的横坐标依次加﹣1,纵坐标依次加﹣1,在第四象限的点的横坐标依次加1,纵坐标依次加﹣1,第二,三,四象限的点的横纵坐标的绝对值都相等,并且第三,四象限的横坐标等于相邻4的整数倍的各点除以4再加上1,由此即可求出点A2017的坐标.

【解答】解:易得4的整数倍的各点如A4,A8,A12等点在第二象限,

∵2017÷4=504…1;

∴A2017的坐标在第三象限,

横坐标为﹣|÷4+1|=﹣505;纵坐标为﹣505,

∴点A2017的坐标是(﹣505,﹣505).

故答案为:(﹣505,﹣505).

三、解答题(共17分)

17.计算:(﹣1)2016+ ﹣3+ × .

【考点】实数的运算.

【分析】先根据数的乘方与开 方法 则分别计算出各数,再根据实数混合运算的法则进行计算即可.

【解答】解:原式=1+2﹣3+1

=3﹣3+1

=1.

18.解方程组: .

【考点】解二元一次方程组.

【分析】方程组利用加减消元法求出解即可.

【解答】解:①+②×3得:5x=40,即x=8,

把x=8代入②得:y=2,

则方程组的解为 .

19.解不等式组 ,并求出它的整数解.

【考点】一元一次不等式组的整数解;解一元一次不等式组.

【分析】分别求出各不等式的解集,再求出其公共解集,在其公共解集范围内找出其整数解即可.

【解答】解:由①得,x﹣2,由②得,x≤2,

故不等式组的取值范围是﹣2

金太阳卷七年级数学难不难

难。数学的有点难,金太阳每年难度都不一样的,都是根据近期难度趋势弄出来的。多做做题目,就能厉害了,刚开始可能会错的多,能够早点发现自己的不足之处。金太阳试卷含金量大,金太阳卷就是根据全国一卷出的模拟卷,而且是全国大联考,如果分考的高,那成绩是非常优秀的。

七年级数学下册期末考试卷

七年级数学 期末考试将至。你准备好接受挑战了吗?我整理了关于七年级数学下册期末考试卷,希望对大家有帮助!

七年级数学下册期末考试题

一、选择题(共10小题,每小题3分,满分30分)

1.方程2x- =0,3x+y=0,2x+xy=1,3x+y-2x=0,x2-x+1=0中,二元一次方程的个数是 ( )

A.5个 B.4个 C.3个 D.2个

2.下列分式中不管x取何值,一定有意义的是 (  )

A. B. C. D.

3.若 是关于x、y的方程ax﹣y=3的解,则a= (   )

A. 1 B. 2 C. 3 D. 4

4. 如图,直线AC∥BD,AB平分∠CAD,∠1=62°,则∠2的度数是 (   )

A.50° B.59° C.60° D.62°

5.下列事件中最适合使用全面调查方式收集数据的是 ( )

A.了解某班同学的身高情况 B.了解全国每天丢弃的废旧电池数

C.了解一批炮弹的杀伤半径 D.了解我国农民的年人均收入情况

6.下列生活现象中,属于平移的是 ( )

A. 足球 在草地上滚动 B.拉开抽屉

C.投影片的文字经投影转换到屏幕上 D.钟摆的摆动

7. 在样本容量为160的频数直方图中,共有3个小长方形,若中间一个小长方形的高与其余两个小长方形高的和之比是 ,则中间一组的频率为 ( )

A.40 B.32 C.0.25 D.0.2

8. 如图,AB∥EF∥DC,EG∥DB ,则图中与∠1相等的角(∠1除外)共有 ( )

A.6个 B.5个 C.4个 D .3个

9.若4x2﹣2(k﹣1)x+9是完全平方式,则k的值为 (   )

A.±2 B.±5 C.7或﹣5 D.﹣7或5

10.已知关于x,y的方程组 ,若x,y的值互为相反数,则a的值为 ( )

A.-5 B.5 C.-20 D. 20

二、填空题(共6小题,每小题3分,满分18分)

11.用科学记数 方法 表示 ,得 .

12.因式分解:a3-a = .

13.若代数式x2+3x+2可以表示为(x-1)2+a(x-1)+b的形式,则a+b的值是 .

14.如图,点E在AC的延长线上,对于给出的四个条件:

(1)∠3=∠4;

(2)∠1=∠2;

(3)∠A=∠DCE;

(4)∠D+∠ABD=180°;能判断AB∥CD的有   个.

15.有两个正方形A,B,现将B放 在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为 .

16.对于实数a,b,定义新运算如下:

a※b= ,例如2※3=2-3= ,

计算[2※(-4)]×[(-4)※(-2)]=___________.

三、解答题(共7小题,满分52分)

17.(6分)计算:(1) (2)

18. (5分)先化简 ÷(a+1)+ ,然后a在-1,1,2三个数中任选一个合适的数代入求值.

19.(10分)解下列方程(组)

(1) -1= (2)

20. (6分)某中学组织全体学生参加了“走出校门,服务社会”的活动,活动分为打扫街道,去敬老院服务和到社区文艺演出三项.从七年级参加活动的同学中抽取了部分同学,对打扫街道,去敬老院 服务和到社区文艺演出的人数进行了统计,并绘制了如下直方图和扇形统计图.请解决以下问题:

(1)求抽取的部分同学的人数;

(2)补全直方图的空缺部分;

(3)若七年级有200名学生,估计该年级去敬老院的人数.

21.(7分)已知:如图,∠ADE=∠B,∠DEC=115°.求∠C的度数.

22.(8分)小丽妈妈在网上做淘宝生意,专门销售女式鞋子,一次,小丽发现一个进货单上的一个信息是:A款鞋的进价比B款鞋进价多20元,花500元进A款鞋的数量和花400元进B款鞋的数量相同.(1)问A、B款鞋的进价分别是多少元?

(2)小丽在销售单上记录了两 天的数据如下表:

日期 A款女鞋销量 B款女鞋销量 销售总额

6月1日 12双 8双 2240元

6月2日 8双 10双 1960元

请问两种鞋的销售价分别是多少?

(3)小丽妈妈说:“两款鞋的利润率相同”,请通过计算,结合(1)(2)所给信息,判断小丽妈妈的说法是 否正确,如果正确,请说明理由;如果错误,能否只调整其中一款的售价,使得两款鞋的利润率相同?能否同时调整两款的售价,使得两款鞋的利润率 相同?请说明理由.

23.(10分)一张如图1的长方形铁皮,四个角都剪去边长为30厘米的正方形,再四周折起,做成一个有底无盖的铁盒如图2,铁盒底面长方形的长是4a(cm),宽是3a(cm),这个无盖铁盒各个面的面积之和称为铁盒的全面积.(铁盒的长宽高)

(1)请用a的代数式表示图1中原长方形铁皮的面积;

(2)若要在铁盒的各个外表面漆上某种油漆,每元钱可漆的面积为 (cm2),则油漆这个铁盒需要多少钱(用a的代数式表示)?

(3)铁盒的底面积是全面 积的几分之几(用a的代数式表示)?若铁盒的底面积是全面积的 ,求a的值;

(4)是否存在一个正整数a,使得铁盒的全面积是底面积的正整数倍?若存在,请求出这个a,若不存在,请说明理由.

七年级数学下册期末考试卷参考答案

一、选择题:DCBBA BDBCD

二、填空题:11、9.07×10-5 12、a(a+1) (a-1) 13、11

14、 3 15、13 16、1

三、解答题:

17、(1) (2)6

18、原式= ,当a=2时,原式=5

19、(1)x=1为增根,舍去,原方程无解

(2)

20、(1)50人

(2)条形高度为10,图略

(3)40人

21、∵∠ADE=∠B ∴DE∥BC(同位角相等,两直线平行)

∴∠DEC+∠C=180° (两直线平行,同旁内角互补)

∵∠DEC=115°∴∠C=65°

22、(1)设B款鞋的进价是每双x元,则A款鞋的进价是每双(x+20)元,根据题意得 = ,解得x=80,经检验,x=80是原方程的解,x+ 20=80+20=100.

答:A款鞋的进价是每双100元,B款鞋的进价是每双80元;

(2)设A款鞋的销售价是每双a元,B款鞋的销售价是每双b元,根据题意得

,解得 .

答:A款鞋的销售价是每双120元,B款鞋的销售价是每双100元;

(3)∵A款鞋的利润率为: ×100%=20%,

B款鞋的利润率为: ×100%=25%,

∴两款鞋的利润率不相同,小丽妈妈的说法不正确.

如果只调整B款的售价,能够使得两款鞋的利 润率相同,设此时B款鞋的销售价是每双y元,由题意得 =20%,解得y=96;

如果只调整A款的售价,能够使得两款鞋的利润率相同,设此时A款鞋的销售价是每双z元,由题意得 =25%,解得z=125;

能同时调整两款的售价,使得两款鞋的利润率相同,设此时A款鞋的销售价是每双m元,B款鞋的销售价是每双n元,由题意得 = ,

解得m= n(n80).

23、(1)原铁皮的面积是(4a+60)(3a+60)=12a2+420a+3600;

(2)油漆这个铁盒的表面积是:12a2+2×30×4a+2×30×3a=12a2+420a,

则油漆这个铁盒需要的钱数是:(12a2+420a)÷ =(12a2+420a)× =600a+21000(元)

(3)铁盒的底面积是全面积的 = ;根据题意得: = ,

解得a=105;

(4)铁盒的全面积是4a×3a+4a×30×2+3a×30×2=12a2+420a,底面积是12a2,

假设存在正整数n,使12a2+420a=n(12a2)则(n﹣1)a=35,由题意可知a 10,

则a只能为35,n=2.所以存在铁盒的全面积是底面积的正整数倍,这时a=35.

七年级数学下册期末考试卷相关 文章 :

1. 七年级数学期末考试卷及答案

2. 七年级数学期末考试试卷

3. 初一下学期数学期末考试模拟试卷

4. 七年级数学期末考试卷人教版

5. 七年级数学期末测试卷答案

关于金太阳数学试卷初一下册和金太阳教育试卷答案数学初一的介绍到此就结束了,不知道同学们从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

本文转载自互联网,如有侵权,联系删除