北京初三数学期末调研卷(2021北京初三数学)

今天给各位同学分享北京初三数学期末调研卷的知识,其中也会对2021北京初三数学进行解释,如果能碰巧解决你现在面临的问题,别忘了分享本站,现在开始吧!

本文目录一览:

初三上数学期末试卷带答案

鲜花纷纷绽笑颜,捷报翩翩最灿烂。绽在心头芬芳绕,合家共同甜蜜笑。金榜题名无限好,不负十年多辛劳。继续扬帆勤钻研,书写明天新诗篇。祝你九年级数学期末考试取得好成绩,期待你的成功!以下是我为大家整理的初三上数学期末试卷,希望你们喜欢。

初三上数学期末试题

一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只

有一项是符合题目要求的.)

1.点(一1,一2)所在的象限为

A.第一象限 B.第二象限 c.第三象限 D.第四象限

2.反比例函数y=kx的图象生经过点(1,-2),则k的值为

A.-1 B.-2 C.1 D.2

3.若y= kx-4的函数值y随x的增大而减小,则k的值可能是下列的

A.-4 B.0 C.1 D.3

4.在平面直角坐标系中,函数y= -x+1的图象经过

A.第一,二,三象眼 B.第二,三,四象限

C.第一,二,四象限 D.第一,三,四象限

5.如图,AB是⊙O的直径,点C在⊙O上,若∠B=50°,则∠A的度数为

A.80° B.60° C.50° D.40°

6.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=

A.1 B.1.5 C.2

7.抛物线y=-3x2-x+4与坐标轴的交点的个数是

A.3 B.2 C.1 D.0

8.在同一平面直角坐标系中,函数y=mx+m与y=-mx (m≠0)的图象可能是

9.如图,点A是反比例函数y=2x(x0)的图象上任意一点,AB//x轴,交反比例函数y=-3x的 图象于点B,以AB为边作ABCD,其中C、D在x轴上,则SABCD为

A. 2 B. 3 C. 4 D. 5

10.如图,在平面直角坐标系中,⊙O的半径为1,则直线y=x一2与⊙O的位置关系是

A.相离 B.相切 C.相交 D.以上三种情况都有可能

11.竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at2+bt,其图象如图 所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是 A.第3秒 B.第3.9秒 C.第4.5秒 D.第6.5秒

12.如图,将抛物线y=(x—1)2的图象位于直线y=4以上的部分向下翻折,得到新的图像,若直线y=-x+m与新图象有四个交点,则m的取值范围为

A.43m /m

第Ⅱ卷(非选择题共84分)

二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在答题卡的横线上.)

13.直线y=kx+b经过点(0,0)和(1,2),则它的解析式为_____________

14.如图,A、B、C是⊙O上的点,若∠AOB=70°,则∠ACB的度数为__________

15.如图,己知点A(O,1),B(O,-1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C.则∠BAC等于____________度.

16.如图,在平面直角坐标系中,抛物线y=12x2经过平移得到抛物线y=12x2-2x,其对称轴与两段抛物线弧所围成的阴影部分的面积为______________

17.如图,已知点A、C在反比例函数y=ax(a0)的图象上,点B、D在反比例函数y=bx(b0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB与CD的距离为5,则a-b的值是________________

18.如图所示,⊙O的面积为1,点P为⊙O上一点,令记号【n,m】表示半径OP从如图所示的位置开始以点O为中心连续旋转n次后,半径OP扫过的面积.旋转的规则为:第1次旋转m度;第2次从第1次停止的位置向相同的方向再次旋转m2度:第3次从第2次停止的位置向相同的方向再次旋转m4度;第4次从第3次停止的位置向相同的方向再次旋转m8度……依此类推.例如【2,90】=38,则【2017, 180】=_______________

三、解答题(本大题共9个小题,共66分.解答应写出文字说明,证明过程或演算步骤.)

19.(本小题满分6分)

(1)计算sin245°+cos30°•tan60°

(2)在直角三角形ABC中,已知∠C=90°,∠A=60°,BC=3,求AC.

20.(本小题满分6分)

如图,⊙O的直径CD=10,AB是⊙O的弦,AB⊥CD,垂足为M, OM∶OC=3∶5.

求AB的长度.

21.(本小题满分6分)

如图,点(3,m)为直线AB上的点.求该点的坐标.

22.(本小题满分7分)

如图,在⊙O中,AB,CD是直径,BE是切线,连结AD,BC,BD.

(1)求证:△ABD≌△CDB;

(2)若∠DBE=37°,求∠ADC的度数.

23.(本小题满分7分)

某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.求当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?

24.(本小题满分8分)

如图所示,某数学活动小组要测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°,若坡角∠FAE=30°,求大树的高度.(结果保留整数,参考数据:sin48°≈0.74,

cos48°≈0.67, tan48°≈l.ll, 3≈1.73)

25.(本小题满分8分)

如图,矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数y=kx(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=12.

(1)求边AB的长;

(2)求反比例函数的解析式和n的值;

(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点D与点F重合,折痕分别与x、y轴正半轴交于H、G,求线段OG的长

26.(本小题满分9分)

如图,抛物线y=33(x2+3x一4)与x轴交于A、B两点,与y轴交于点C.

(1)求点A、点C的坐标,

(2)求点D到AC的距离。

(3)看点P为抛物线上一点,以2为半径作⊙P,当⊙P与直线AC相切时,求点P的横坐标.

27.(本小题满分9分)

(1)如图l,Rt△ABD和Rt△ABC的斜边为AB,直角顶点D、C在AB的同侧,

求证:A、B、C、D四个点在同一个圆上.

(2)如图2,△ABC为锐角三角形,AD⊥BC于点D,CF⊥AB于点F,AD与CF交于点G,连结BG并延长交AC于点E,作点D关于AB的对称点P,连结PF.

求证:点P、F、E三点在一条直线上.

(3)如图3,△ABC中,∠A=30°,AB=AC=2,点D、E、F分别为BC、CA、AB边上任意一点,△DEF的周长有最小值,请你直接写出这个最小值.

下一页分享初三上数学期末试卷答案

[img]

初三数学期末质量检测试题

制订数学期末考试复习计划不要太满,要留出有效的时间做一套数学测试卷。

初三数学期末质量检测试卷

一、选择题(本大题共10小题,每小题4分,共40分。)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.

1.在等腰直角三角形ABC中,∠C =90°,则sinA等于( )

A. B. C. D. 1

2. 抛物线 的对称轴是( )

A. 直线x=-8 B. 直线x=8 C. 直线x=3 D. 直线x=-3

3.若a:b=3:5,且b是a、c的比例中项,那么b:c的值是( )

A. 3:2 B. 5:3 C. 3:5 D. 2:3

4.下列函数中,当x0时, 随 的增大而减小的是( )

A. y=3x B. C. D. y=2x2

5.在Rt△ABC中,∠C =90°,∠B =35°,AB=7,则BC的长为( )

A. B. 7 C. D.

6.已知在半径分别为4㎝和7㎝的两圆相交,则它们的圆心距可能是( )

A.1 ㎝ B. 3 ㎝ C. 10 ㎝ D.15 ㎝

7. 抛物线 向左平移2个单位,再向下平移1个单位,则所得的抛物线的解析式为( )

A.y=x2+4x+3 B. y=x2+4x+5 C. y=x2-4x+3 D. y=x2-4x+5

8. 如图,△ABC中,点D在线段AB上,且∠BAD=∠C则下列结论一定正确的是( )

A. AB2=AC•BD B. AB•AD=BD•BC C. AB2=BC•BD D. AB•AD=BD•CD

9. 如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,胡娇同学观察得出了下面四条

信息:(1)(a≠0)b2-4ac0;(2)c1;(3)2a-b0;(4)a+b+c0.你认为其中错误的信息有( )

A. 4个 B.3个 C. 2个 D.1个

10. 在桐城市第七届中学生田径运动会上,小翰在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示的方向经过B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翰的跑步过程.设小翰跑步的时间为t(单位:秒),他与教练距离为y(单位:米),表示y与t的函数关系的图象大致如图2,则这个固定位置可能是图1的( )

A.点M B.点N C.点P D.Q

二、填空题(本大题共4小题,每小题5分,满分20分)

11. 如图,AB是⊙O的切线,半径OA=2,OB交⊙O于C,∠B=30°,则劣弧AC的长是

(结果保留π)。

12. 如图,AD、AC分别是⊙O的直径和弦,且∠CAD=30°,OB⊥AD,交AC于点B。若OB=5,则弦AC的长等于 。

13.我们已经学过函数图象的平移变换。

如: 向左平移5个单位,向上平移5个单位 。

向左平移5个单位,向上平移5个单位 .

向左平移5个单位,向上平移5个单位 = .

类比可得: 向左平移5个单位,向上平移5个单位 。

14.如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接AC,将矩形纸片OABC沿AC折叠,使点B落在点D的位置,若B(1,2),则点D的横坐标是 。

得分

评卷人

三、(本大题共2小题,每小题8分,满分16分)

15.求值: sin60°+ 2sin30°tan30°-tan45°

16.已知抛物线

(1)用配方法确定它的顶点坐标、对称轴;

(2)x取何值时,y0?

四、(本大题共2小题,每小题8分,满分16分)

17. 如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,-1).把△ABC绕着原点O逆时针旋转90°得△A1B1C1,画出△A1B1C1,并写出C1的坐标。

18.如图,已知AB是⊙O的直径,点C、D在⊙O的上,点E在⊙O的外,∠EAC=∠D=60°.

(1)求∠ABC的度数;

(2)求证:AE是⊙O的的切线。

五、(本大题共2小题,每小题10分,满分20分)

19.向气球内充入一定质量的气体,当温度不变时,气球内气体的气压P(千帕)是气球体积V(米3)的反比例函数,其图象如图所示(千帕是一种压强单位)。

(1)这个函数的解析式是怎样的?

(2)当气球的体积为0.6米3时,气球内气体的气压是多少千帕?

(3)当气球内的气压大于168千帕时,气球将爆炸,为了安全起见,气体的体积应不小于多少?

20. 某商店购进一批冬季保暖内衣,每套进价为100元,售价为130元,每星期可卖出80套,现因临近春节,商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20套。

(1) 求商家降价前每星期的销售利润为多少元?

(2)降价后,商家要使每星期的销售利润最大,售价应定为多少元?最大销售利润是多少?

六、(本题满分12分)

七、(本题满分12分)

22.已知△ABC中,∠C=90°,AC=4,BC=3.

(1)如图1,正方形DEFG内接于△ABC,其中DE在AB上,点G在AC上,点F在BC上,试求出正方形DEFG的边长;

(2)①如图2,若三角形内有并排的两个全等的正方形,它们组成的矩形内接于△ABC,则正方形的边长为 ;

②如图3,若三角形内有并排的三个全等的正方形,它们组成的矩形内接于△ABC,则正方形的边长为 ;

③如图4,若三角形内有并排的n个全等的正方形,它们组成的矩形内接于△ABC,则正方形的边长为 ;

八、(本题满分14分)

23.类比转化、从特殊到一般等数学思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整。

原题:如图1,在平行四边形ABCD中,点E是BC边的中点,点F是线段AE上一点,BF的延长线交CD于点G。若 ,求 的值。

(1)尝试探究

在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是 ,CG和EH的数量关系是 , 的值是 。

(2)类比延伸

在原题的条件下,若 (m0),试求 的值(用含m的代数式表示,写出解答过程)。

(3)拓展迁移

如图2,在梯形ABCD中,AB∥CD,点E是BC边的中点,点F是线段AE上一点,若BF的延长线交CD于点G,且 ,则 的值是 。(用含m、n的代数式表示,不要求证明)。

初三数学期末质量检测试题答案

1 2 3 4 5 6 7 8 9 10

B C C B B C A C D B

11 12 13 14

15

15.

16.(1) ,顶点坐标( ),对称轴是直线 ;

(2)x-2或x 。

17. 如图所示,C1的坐标(1,4)。

18.(1)600;(2)略。

19. (1) ;(2)140千帕;(3)不小于0.5米3

20.(1)2400元;

(2)设降价x元,每星期的销售利润为y元。

当X=5时,售价应定为125元时,最大销售利润 。

21.62㎝.

22.(1) ;(2)① ; ② ; ③ 。

23.(1) AB=3EH,CG=2EH, 。

初三数学上期末调研测试卷及答案

对于初三数学期末考试的复习,制定计划做数学试题更有利于数学的学习和备考。

初三数学上期末调研测试卷

一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)

1.sin60°的值是

A. B. C.1 D.

2.图1是一个球体的一部分,下列四个选项中是它的俯视图的是

3.用配方法解方程 ,下列配方正确的是

A. B.

C. D.

4.图2是我们学过的反比例函数图象,它的函数解析式可能是

A. B. C. D.

5.如图3,已知∠BAD=∠CAD,则下列条件中不一定能使

△ABD≌△ACD的是

A.∠B=∠C B.∠BDA=∠CDA

C.AB=AC D.BD=CD

6.过某十 字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为

A. B. C. D.

7.矩形具有而菱形不具有的性质是

A.对角线互相平分 B.对角线互相垂直

C.对角线相等 D.是中心对称图形

8.关于二次函数 ,下列说法中正确的是

A.它的开口方向是向上 B.当x –1时,y随x的增大而增大

C.它的顶点坐标是(–2,3) D.当x = 0时,y有最小值是3

9.如图4,已知A是反比例函数 (x 0)图象上的一个

动点,B是x轴上的一动点,且AO=AB.那么当点A在图

象上自左向右运动时,△AOB的面积

A.增大 B.减小 C.不变 D.无法确定

10.如图5,已知AD是△ABC的高,EF是△ABC的中位线,

则下列结论中错误的是

A.EF⊥AD B.EF= BC

C.DF= AC D.DF= AB

11.某公司今年产值200万元,现计划扩大生产,使今后两年的产值都比前一年增长一个相同的百分数,这样三年(包括今年)的总产值就达到了1400万元.设这个百分数为x,则可列方程为

A.

B.

C.

D.

12.如图6,已知抛物线 与x轴分别交于A、B两点,顶点为M.将抛物线l1沿x轴翻折后再向左平移得到抛物线l2.若抛物线l2过点B,与x轴的另一个交点为C,顶点为N,则四边形AMCN的面积为

A.32 B.16 C.50 D.40

第二部分(非选择题,共64分)

二、填空题(每小题3分,共12分。)请把答案填在答题卷相应的表格里。

13.2011年深圳大运会期间,在一个有3000人的小区里,小明随机调查了其中的500人,发现有450人看深圳电视台的大运会晚间新闻.那么在该小区里随便问一人,他看深圳电视台的大运会晚间新闻的概率大约是答案请填在答题表内.

14.若方程 的一个根为1,则b的值为答案 请填在答题表内.

15.如图7,甲、乙两盏路灯相距20米,一天晚上,当小刚

从灯甲底部向灯乙底部直行16米时,发现自己的身影顶

部正好接触到路灯乙的底部,已知小刚的身高为1.6米,

那么路灯甲的高为答案请填在答题表内米.

16.如图8,四边形ABCD是边长为2的正方形,E是AD边上一点,将△CDE绕点C沿逆时针方向旋转至△CBF,连接EF交BC于点G.若EC=EG,则DE = 答案请填在答题表内.

三、解答题(本题共7小题,共52分)

17.(本题 5分)计算:

18.(本题5分)解方程:

19.(本题8分)如图9,等腰梯形ABCD中,AB//CD,AD = BC = CD,对角线BD⊥AD,DE⊥AB于E,CF⊥BD于F.

(1)求证:△ADE≌△CDF;(4分)

(2)若AD = 4,AE=2,求EF的长.(4分)

(1)转动该转盘一次,则指针指在红色区域内的概率为_______;

(2分)

(2)转动该转盘两次,如果指针两次指在的颜色能配成紫色(红

色和蓝色一起可配成紫色),那么游戏者便能获胜.请用列

表法或画树状图的方法求出游戏者能获胜的概率.(6分)

21.(本题8分)如图11,A、B、C是三座城市,A市在B市的正西方向.C市在A市北偏东60º的方向,在B市北偏东30º的方向.这三座城市之间有高速公路l1、l2、l3相互贯通.小亮驾车从A市出发,以平均每小时80公里的速度沿高速公路l2向C市驶去,3小时后小亮到达了C市.

(1)求C市到高速公路l1的最短距离;(4分)

(2)如果小亮以相同的速度从C市沿C→B→A的路线从高速公路返回A市.那么经过多长时间后,他能回到A市?(结果精确到0.1小时)( )(4分)

22.(本题9分)阅读材料:

(1)对于任意实数a和b,都有 ,∴ ,于是得到 ,当且仅当a = b时,等号成立.

(2)任意一个非负实数都可写成一个数的平方的形式。即:如果 ,则 .如:2= , 等.

例:已知a 0,求证: .

证明:∵a 0,∴

∴ ,当且仅当 时,等号成立。

请解答下列问题:

某园艺公司准备围建一个矩形花圃,其中一边靠墙(墙足够长),另外三边用篱笆围成(如图12所示).设垂直于墙的一边长为x米.

(1)若所用的篱笆长为36米,那么:

①当花圃的面积为144平方米时,垂直于墙的一边的长为多少米?(3分)

②设花圃的面积为S米2,求当垂直于墙的一边的长为多少米时,这个花圃的面积最大?并求出这个最大面积;(3分)

(2)若要围成面积为200平方米的花圃,需要用的篱笆最少是多少米?(3分)

23(本题9分)如图13-1,已知抛物线 (a≠0)与x轴交于A(–1,0)、B(3,0)两点,与y轴交于点C(0,3).

(1)求抛物线的函数表达式;(3分)

(2)若矩形EFMN的顶点F、M在位于x轴上方的抛物线上,一边EN在x轴上(如图13-2).设点E的坐标为(x,0),矩形EFMN的周长为L,求L的最大值及此时点E的坐标;(3分)

(3)在(2)的前提下(即当L取得最大值时),在抛物线对称轴上是否存在一点P,使△PMN沿直线PN折叠后,点M刚好落在y轴上?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由.(3分)

初三数学上期末调研测试卷答案

一、选择题(每小题3分,共36分)

BCBAD ACBCD DA

二、填空题(每小题3分,共12分)

13.0.9; 14. 4 ; 15. 8 ; 16.

三、解答题

17.解:原式 = 2分(每写对一个函数值得1分)

= 3–1 4分(每算对一个运算得1分)

= 2 5 分

18.解法一:移项得 1分

配方得

2分

即 或 3分

∴ , 5分

解法二:∵ , ,

∴ 1分

∴ 3分

∴ , 5分

解法三:原方程可化为 1分

∴x–1 = 0或x–3 = 0 3分

∴ , 5分

19.(1)证明:∵DE⊥AB,AB//CD

∴DE⊥CD

∴∠1+∠3=90º 1分

∵BD⊥AD

∴∠2+∠3=90º

∴∠1=∠2 2分

∵CF⊥BD,DE⊥AB

∴∠CFD=∠AED=90º 3分

∵AD=CD

∴△ADE≌△CDF 4分

(2)解:∵DE⊥AB,AE=2,AD=4

∴∠2=30º,DE= 5分

∴∠3=90º–∠2=60º

∵△ADE≌△CDF

∴DE=DF 6分

∴△DEF是等边三角形

∴EF=DF= 7分

(注:用其它方法解答的,请根据此标准酌情给分)

20.(1) 2分

红 黄 蓝

红 (红,红) (黄,红) (蓝,红)

黄 (红,黄) (黄,黄) (蓝,黄)

蓝 (红,蓝) (黄,蓝) (蓝,蓝)

(2)解:列表得

结果共有9种可能,其中能成紫色的有2种

∴P(获胜)=

(说明:第(2)小题中,列表可画树状图得4分,求出概率得2分,共6分)

21.(1)解:过点C作CD⊥l1于点D,则已知得 1分

AC=3×80=240(km),∠CAD=30º 2分

∴CD= AC= ×240=120(km)3分

∴C市到高速公路l1的最短距离是120km。4分

(2)解:由已知得∠CBD=60º

在Rt△CBD中,

∵sin∠CBD=

∴BC= 5分

∵∠ACB=∠CBD–∠CAB=60º–30º=30º

∴∠ACB=∠CAB=30º

∴AB=BC= 6分

∴t = 7分

答:经过约3.5小时后,他能回到A市。8分

(注:用其它方法解答的,请根据此标准酌情给分)

22.(1)解:由题意得 1分

化简后得

解得: , 2分

答:垂直于墙的一边长为6米或12米。 3分

(2)解:由题意得

S = 4分

= 5分

∵a =–20,∴当x = 9时,S取得最大值是162

∴当垂直于墙的一边长为9米时,S取得最大值,最大面积是162m2。6分

(3)解:设所需的篱笆长为L米,由题意得

7分

即: 8分

∴若要围成面积为200平方米的花圃,需要用的篱笆最少是40米,9分

23.(1)解:由题意可设抛物线为 1分

抛物线过点(0,3)

解得:a =–1 2分

抛物线的解析式为:

即: 3分

(2)解:由(1)得抛物线的对称轴为直线x = 1

∵E(x,0),

∴F(x, ),EN = 4分

化简得 5分

∵–20,

∴当x = 0时,L取得最大值是10,

此时点E的坐标是(0,0) 6分

(3)解:由(2)得:E(0,0),F(0,3),M(2,3),N(2,0)

设存在满足条件的点P(1,y),

并设折叠后点M的对应点为M1

∴ NPM=NPM1=90,PM=PM1

PG = 3–y,GM=1,PH = | y |,HN = 1

∵∠NPM=90º

解得: ,

∴点P的坐标为(1, )或(1, )7分

当点P的坐标为(1, )时,连接PC

∵PG是CM的垂直平分线,∴PC=PM

∵PM=PM1,∴PC=PM=PM1

∴∠M1CM = 90º

∴点M1在y轴上8分

同理可得当点P的坐标为(1, )时,点M1也在y轴上9分

故存在满足条件的点P,点P的坐标为(1, )或(1, )

(说明:能正确求出一个点的坐标并能说明点M刚好落在y轴上,得2分)

2011年北京初三西城数学期末考试复习题

一、选择题:(每小题2分,共20分)

题 号 1 2 3 4 5 6 7 8 9 10

1.若不等式组的解集为-1≤x≤3,则图中表示正确的是 ( )

2.如果a‖b, b‖c, d⊥a,那么 ( )

A.b⊥d B.a⊥c C.b‖d D.c‖d

3. 已知 满足方程kx-2y=1,则k等于 ( )

(A)3 (B)4 (C)5 (D)6

4. 将下列长度的三条线段首尾顺次相接,能组成三角形的是 ( )

A、4cm 3cm 5cm B、1cm 2cm 3cm C、25cm 12cm 11cm D、2cm 2cm 4cm

5. 在同一平面内,两条直线可能的位置关系是 ( )

A. 平行 B. 相交 C.平行或相交 D. 平行、相交或垂直

6. 已知方程组 的解是 ,则m,n的值是 ( )

(A) (B) (C) (D)

7. 下列各图中,正确画出AC边上的高的是 ( )

A B C D

8. 小芳画一个有两边长分别为5和6的等腰三角形,则这个等腰三角形的周长是( )

A、 16 B、17 C、11 D、16或17

9.下列命题中是真命题的是 ( )

A.同位角都相等 B.内错角都相等 C.同旁内角都互补 D.对顶角都相等

10.用两个正三角形与下面的( )若干个可以形成平面镶嵌. ( )

A.正方形 B.正六边形 C.正八边形 D.正十二边形

二、填空题:(每小题2分,共20分)

1.如果点A(x-2,2y+4)在第二象限,那么x的取值范围是________,y的取值范围是_______.

2. 在四边形ABCD中,如果∠A+∠B+∠C=280º,那么∠D=

3. 如图,∠α=125°,∠1=50°,则∠β=_______.

4.点M(3,-2)可以由点N(-3,4)先沿x轴____ _____,再沿y轴___ _______得到.

5. 一个多边形的内角和比它的外角和3倍少180º,这个多边形的边数是 。

6. 奥运会会场里5排2号可以用(5,2)表示,则(7,4)表示 。

7. 不等式-4x≥-12的正整数解为 .

8.一个多边形对角线的数目是边数的2倍,这样的多边形的边数是_______.

9.已知∠1与∠2是对顶角,∠1与∠3是邻补角,则∠2+∠3=_______.

10.已知直线a‖b,点M到直线a的距离是5cm,到直线b的距离是3cm,那么直线a和直线b之间的距离为____ ___.

三、解下列二元一次方程组:(每小题6分,共12分)

1. 2.

四、解下列不等式,并把解集表示在数轴上:(每小题6分,共12分)

1. 2. 2x-14x+13

五、解下列不等式组:(每小题6分,共12分)

1. 2.

六、解答题:(共44分)

1.(8分)如图,已知直线AB‖CD,求∠A+∠C与∠AEC的大小关系并说明理由.

2.(8分)已知点A(-1,-2),点B(1,4)

(1)试建立相应的平面直角坐标系;

(2)描出线段AB的中点C,并写出其坐标;

(3)将线段AB沿水平方向向右平移3个单位长度得到线段A1B1,写出线段A1B1两个端点及线段中点C1的坐标

3. (8分)如图,△ABC中,∠A=70º,外角平分线CE‖AB.求∠B和∠ACB的度数.

4.(10分)(列二元一次方程组解答)某书店的两个下属分店共有某种图书5000册,若将甲书店的该种图书调出400册给乙书店,这样乙书店该种图书的数量仍比甲书店该种图书的数量的一半还少400册.求这两个书店原有该种图书的数量差.

5.(10分)某旅店有两种客房,甲种客房每间可安排4位客人入住,乙种客房每间可安排3位客人入住.如果将某班男生都安排到甲种客房,将有一间客房住不满;若都安排到乙种客房,还有2人没处住.已知该旅店两种客房的数量相等,求该班男生人数.

参考答案:

一、 D A A A C D D D D B

二、1.x2 y-2 2.80度 3.105度

4.向右平移6个单位长度,向下平移6个单位长度

5.7 6. 7排4号 7.1,2,3

8.7 9.180º 10.2cm或8cm

三、1. 2.

四、1.x≥-8 2.x-7 数轴表示略

五、1、-12≤x 2.x-5

六、1、∠A+∠C=∠AEC

理由:过E作EF‖AB

∵EF‖AB

∴∠A=∠AEF

∵AB‖CD,EF‖AB

∴EF‖CD

∴∠C=∠CEF

∵∠AEC=∠AEF+∠CEF

∴∠AEC=∠A+∠C

2、(1)略 (2)C(0,1) (3)A1(2,-2) B1 (4,4) C1 (3,1)

3、∠B=70º,∠ACB=40º

4、设甲书店原有图书x册,乙书店原有图书y册,根据题意得: 解得:x=4000,y=1000

x-y=3000

答:这两个书店原有该种图书的数量差为3000册。

初三上册数学期末试卷附答案

数学期末考试的脚步声近了,初三的数学基础知识点你都学会了吗?以下是我为你整理的初三上册数学期末试卷,希望对大家有帮助!

初三上册数学期末试卷

一、精心选一选(本大题共8小题,每小题3分,共24分)

1.下面四幅图是两个物体不同时刻在太阳光下的影子,按照时间的先后排序

正确的是( )

(A)A→B→C→D (B)D→B→C→A (C)C→D→A→B (D)A→C→B→D

2.已知直角三角形的两边长是方程x2-7 x+12=0的两根,则第三边长为( )

(A)7 (B)5 (C) (D)5或

3.已知3是关于x的方程 x2-2a+1=0的一个解,则2a的值是 ( )

(A)11 (B)12 (C)13 (D)14

4.下列命题中错误的( )

(A)一对邻角互补的四边形是平行四边形;

(B)一组对边平行,一组对角相等的四边形是平行四边形;

(C)等腰梯形的对角线相等;

(D)平行四边形的对角线互相平分.

5.如图,在直角坐标系中,直线y=6-x与函数y = (x0)的图象

相交于点A、B,设点A的坐标为(x1 ,y1),那么长为x1,宽为y1

的矩形的面 积和周长分别为( )

(A)4,12 (B)8,12 (C)4,6 ( D)8,6

6.如果点A(-1, )、B(1, )、C( , )是反比例函数 图象上的三个点,

则下列结论正确的是( )

(A) (B) (C) D)

7.在联欢晚会上 ,有A、B、C三名同学站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳, 谁先抢到凳子谁获胜,为 使游戏公平,凳子最适当的位置在△ABC的( )

(A)三边中线的交点, (B)三条角平分线的交点 ,

(C)三边上高的交点, (D)三边中垂线的交点

8.边长为8cm的正方形纸片ABCD折叠 ,使点D落在BC边

中点E处,点A落在点F处,折痕为MN,则线段CN的

长是( ).

(A)2cm (B)3cm (C)4cm (D)5cm

二、认真填一填:(本大题共8小题,每小题3分,共24分.)

9.已知 是关于x的方程: 的一个解,则2a-1的值是 .

10.在一个有40万人口的县,随机调查了3000人,其中有2130人看中央电视台的焦点访谈节目,在该县随便问一个人,他看焦点访谈节目的概率大约是______________.

11.菱形有一个内角为600,较短的对角线长为6,则它的面积为 .

12.依次连接菱形各边中 点所得到的四边形是 .

13.如图,一几何体的三视图如右:

那么这个几何体是 .

14.用配方法将二次三项式 变形,

结果为 .

15.如图,若将四根木条钉成的矩形木框变为

平行四边形ABCD的形状,并使其面积为矩形

面积的一半,则这个平行四边形的一个最小内角

的值等于 .

16.如图,一个正方形摆放在桌面上,则正方形的边长为 .

三、细心做一做(17题每小题6分共12分18题8分)

17.(1)解方程 (2)解方程

18.(8分)如下图,一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN .

(1) 试判断是路灯还是太阳光产生的影子,如果是路灯产生的影子确定路灯的位置(用点P表示).如果是太阳光请画出光线.

(2) 在图中画出表示大树高的线段.

(3) 若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树的部分.

四 解答题(19题7分、20题9分)

19.(7分)杨华与季红用5张规格相同的硬纸片做拼图游戏,正面如图1所示,背面完全一样,将它们背面朝上搅匀后,同时抽出两张.规则如下:

当两张硬纸片上的图形可拼成电灯或小人时,杨华得1分;

当两张硬纸片上的图形可拼成房子或小山时,季红得1分(如图2).

问题:游戏规则对双方公平吗?请说明理由;若你认为不公平,如何修改游戏规则才能使游戏对双方公平?

20.(9分)如图,已知直线y = - x+4与反比例函数 的图象相交于点A(-2,a),并且与x轴相交于点B.

(1)求a的值.

(2)求反比例函数的表达式.

(3)求△AOB的面积.

五(21、22题各10分)

21.( 10分)将一块正方形铁皮的四个角剪去一个边长为4cm的小正方形,做成一个无盖的盒子.已知盒子的容积是400cm3,求原铁皮的边长.

22.(10分)已知:如图,在ΔABC中,AB=AC,AD⊥BC,垂足为点D,AN是ΔABC

外角∠CAM的平分线,CE⊥AN,垂足为点E.

(1)求证:四边形ADCE是矩形

(2)当 ΔABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.

六(23、24题各10分)

23.(10分)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆 的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?

24.(10分)如图,在□ABCD中,∠ DAB=60°,点E、F分别在CD、AB的延长线上,且AE=AD,CF=CB.

(1)求证:四边形AFCE是平行四边形;

(2)若去掉已知条件的“∠ DAB=60°”,上述的结论还成立吗? 若成立,请写出证明过程;若不成立,请说明理由.

七、(12分)

25.已知反比例函数 和一次函数y=2x-1,其中一次函数的图象经过

(a,b),(a+2,b+k)两点.

(1)求:反比例函数的解析式.

(2) 如图,已知点A在第一象限,且同时在上述两函数的图象上.求点A的坐标.

(3)利用(2)的结果,问在x轴上是否存在点P,使得AOP为等腰三角形.

若存在,把符合条件的P点坐标直接写出来;若不存在,说明理由.

八、(14分)

26.如图,在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10.点E在下底边BC上,点F在腰AB上.

(1)若EF平分等腰梯形ABCD的周长,设BE长为x,试用含x的代数式表示△BEF的面积 ;

(2)是否存在线段EF将等腰梯形ABCD的周长和面积同时平分?若存在,求出此时BE的长;若不存在,请说明理由;

(3)是否存在线段EF将等腰梯形ABCD的周长和面积同时分成1:2的两部分?若存在,求此时BE的长;若不存在,请说明理由.

初三上册数学期末试卷答案

一.选择题(本大题共8个小题,每题只有一个正确的选项,每小题3分,满分24分)

1.C 2.D 3.C 4.A 5.A 6.A 7.D 8.B

二.填空题(本大题共8个小题,每小题3分,满分24分)

9.13 10.0.71 11.18 12.矩形 13.空心圆柱 14. -100 15.30o

16.

三题

17.(1)

………………………………3分

…………………………………5分

……………………………………………6分

18.题略 (1)………3分 (2)………6分 (3)………8分(图作对即可)

四题

19.解:不公平,因为杨华胜的概率为 0.4季红胜的概率为0.6不公平. ………3分

应该为:当两张硬纸片上的图形可拼成电灯或小人时,杨华得3分; …5分

当两张硬纸片上的图形可拼成房子或小山时,季红得2分.……7分

20.(本小题9分)

解:(1) 将A(-2,a)代入y=-x+4中,得:a=-(-2)+4 所以 a =6 …………3分

(2)由(1)得:A(-2,6)www. Xkb1.coM

将A(-2,6)代入 中,得到 即k=-12

所以反比例函数的表达式为: ………6分

(3)如图:过A点作AD⊥x轴于D

因为 A(-2,6) 所以 AD=6

在直线y=-x+4中,令y=0,得x=4

所以 B(4,0) 即OB=4

所以△AOB的面积S= ×OB×AD= ×4×6=12………9分

五题(21、22题各10分)

21题(10分)

解:设原正方形的边长为xcm,则这个盒子的底面边长为x-8

由题意列出方程 4(x-8)2=400 ……………………………………………………5分

整理,得 x2 – 16x -36=0

解方程,得 x1 = 18, x2 = -2 ……………………………………………8分

因为正方形的边长不能为负数,所以x2 = -2舍去 ……………………………9分

因此,正方形的边长为18cm

答:原正方形的边长为18cm …………………………………………………10分

22.题(10分)

(1)证明:∵AB=AC, AD⊥BC

∴∠BAD=∠CAD,即∠CAD = ∠BAC

∵AN是ΔABC外角∠CAM的平分线

∴∠CAN= ∠CAM

∴∠CAD+∠CAN= ∠BAC+ ∠CAM=90°

∴∠DAN=9 0° ……………………………………………3分

又∵CE⊥AN ,AD⊥BC

∴ ∠AEC=90°,∠ADC=90°

∴四边形ADCE是矩形 …………………………5分

∵ΔABC为等腰直角三角形时,AD⊥BC

∴AD= BC=DC ……………………………………8分

∵四边形ADCE是矩形

∴四边形ADCE是一个正方形 ………………10分

六题(23、24题各10分)

23.解:设每盆花苗增加 株,则每盆花苗有 株,平均单株盈利为 元,由题意,

得 . ……………………………………………………5分

化简,整理,的 .

解这个方程,得 ………………………………………… ………9分

答:要使得每盆的盈利达到10元,每盆应该植入4株或5株.………………10分

24.解:(1)证明:∵四边形ABCD是平行四边形

∴DC∥AB,∠DCB=∠DAB=60°

∴∠ADE=∠CBF=60°

∵AE=AD,CF=CB

∴△AED,△CFB是正三角形,ED=BF ………………2分

在 ABCD中,AD=BC,DC∥=AB

∴ED+DC=BF+AB

即 EC=AF ………………3分

又∵DC∥AB

即EC∥AF

∴四边形AFCE是平行四边形 ………………4分

(2)上述结论还成立

证明:∵四边形ABCD是平行四边形

∴DC∥AB,∠DCB=∠DAB,AD=BC,DC∥=AB

∴∠ADE=∠CBF

∵AE=AD,CF=CB

∴∠AED=∠ADE,∠CFB=∠CBF

∴∠AED=∠CFB ………………6分

又∵AD=BC

∴△ADE≌△CBF ………………8分

∴ED=FB

∵DC=AB

∴ED+DC=FB+AB

即EC=FA ………………9分

∵DC∥AB

∴四边形AFCE是平行四边形 ………………10分

七题(12分)

25.题

解:(1)(a,b)(a+2, b+k)代入y=2x+1得:

b=2a-1

b+k=2(a+2)-1

解得 k=4 …………………………………………………………………4分

(2)当 =2x-1得

x 1= - 0 .5 x2=1

∵A点在第一象限

∴点A的坐标为(1,1) ………………………………………………………8分

(3)点p( 1,0)p(2,0)p( ,0) p(- ,0)……………………………12分

八题(14分)

26.解:(1)由已知条件得:

梯形周长为24,高4 ,面积为28.

BF=24÷2 –x=12–x ………………………………2分

过点F作FG⊥BC于G,过点A作AK⊥BC于K

则可得:FG= 12-x5 ×4 …………………………3分

∴S△BEF=12 BE•FG=-25 x2+245 x(7≤x≤10)…5分

(2)存在. ……………………… ……………………………6分

由(1)得:-25 x2+245 x=14 ……………………7分

得x1=7 x2=5(不合舍去)

∴存在线段EF将等腰梯形ABCD的周长与面积同时平分,此时BE=7.……8分

(3)不存在 .………………………………………………………………………………9分

假设存在,显然是:S△BEF∶SAFECD=1∶2,(BE+BF)∶(AF+AD+DC)=1∶2……… ……11分

则有-25 x2 +165 x = 283

整理得:3x2-24x+70=0

△=576-8400

∴不存在这样的实数x. ………………………………………………………12分

即不存在线段EF将等腰梯形ABCD的周长和面积,同时分成1∶2的两部分. ……14分

初三数学上册期末模拟试卷含答案

初三数学期末考试中,有许多的数学难题等着我们去解答,所以不要放松自己。

初三数学上册期末模拟试卷

一、选择题:(本大题共6题,每题4分,满分24分)

【下列各题的四个结论中,有且只有一个结论是正确的,选对得4分;不选、错选或者多选得零分】

1. 下列图形一定是相似图形的是 ( )

(A)两个矩形; (B)两个正方形;

(C)两个直角三角形; (D)两个等腰三角形.

2. 在Rt⊿ABC中,∠B=90°,AC=20,tgA= ,下列各式中正确的是 ( )

(A) AB=16 (B) sinA=0.6 (C) BC=18 (D) tgC=0.75

3. 抛物线 的顶点坐标是( )

(A) ; (B) ; (C) ; (D) .

4. 已知点C是线段AB的中点,如果设 ,那么下列结论中,正确的是( ).

(A) ; (B) ;

(C) ; (D) .

5.若二次函数 的图象经过两点 、 ,则对称轴方程为( )

(A) ; (B) ; (C) ; (D)无法确定.

6、如图,在 中, , ,垂足为点 ,

的平分线分别交 、 于点 、 ,连结 ,

下列结论中错误的是( )

(A) ∽ ; (B) ∽ ;

(C) ∽ ; (D) ∽ .

二、填空题(本大题共12题,每题4分,满分48分)

9. 设2y-3x=0(y≠0),则 _____________________.

10. 计算:cos60°+ctg45°= .

11. 抛物线 沿 轴向左平移3个单位,再沿 轴向下平移2个单位,所得的图象对应的解析式是 .

12. 小杰乘雪橇沿坡比为1﹕ 的斜坡笔直滑下,滑下的 距离 (米)与时间 (秒)的关系为 ,若小杰滑到坡底的时间为4秒,则他下降的高度为

(第12题)

13. 如图,有一块直角三角形纸片,两直角边AC=3,BC=4,将直角三角形纸片ABC折叠,使直角边AC落在斜边AB上,折痕为AD,则BD=____________.

14. 如果抛物线 的顶点在 轴上,那么 .

15. 如图,在 中,已知 , 是 的重心,则 的值是 .

(第15题) (第17题) (第18题)

16. 已知等腰梯形的一条较短的底边长为6cm,较长的底边的一个底角的

正弦值为 ,梯形高为9cm,那么这个等腰梯形的较长的

底边长__________cm

17、二次函数y=a(x-1)2+c的图象如右下图所示,则直线y=-ax-c不经过第____象限

18、如图,在直角梯形 中, , , , , ,将梯形沿直线 翻折,使点 落在 边上的 点上, 点落在 边上的 点上,则 .

三、简答题:(本大题共7题,第19--22题,每题10分;第23、24题,

每题12分.第25题14分, 满分78分)

19. (本题满分10分)计算: .

20. 如图,在 中,点 是 中点,点 在边 上,且 ,如果 , , 求边 的长.

21. (本题满分10分)如图,已知在 中, ,点 在 上, ,且 ,若 .

(1)求 的值;

(2)求 的值.

22、已知一个二次函数的图像经过 、 、 三点.

(1)求这个二次函数的解析式; (2)指出所求函数图像的顶点坐标和对称轴,并画出其大致图像.

23、(本题满分10分)如图,在 中, , ,过点 作 ,交 的平分线 于点 .

(1)不添加字母,找出图中所有相似的三角形,并证明;

(2)证明: .

24、(本题满分12分)抛物线 的图象如图所示,已知该抛物线与 轴交于 、 两点,顶点为 ,

(1)根据图象所给信息,求出抛物线的解析式;(3分)

(2)求直线 与 轴交点 的坐标;(4分)

(3)点 是直线 上的一点,且 与 相似,求点 的坐标. (5分)

25.(本题满分14分)

已知,在 中 , .

(1)求 的长(如图a);(3分)

(2) 、 分别是 、 上的点,且 ,连结 并延长,交 的延长线于点 ,设 (如图b).

①求 关于 的函数解析式,并写出 的定义域;(5分)

②当 为何值时, 是等腰三角形?(6分)

初三数学上册期末模拟试卷答案

24.解:(1)设 1分

∵图像经过点(-1,0),

∴ 1分

∴ 1分

(2) ,解得 ,∴ 1分

设 , 解得 1分

∴ 1分

∴ .1分

(3)设 , 1分

当 ∽ , , 1分

1分

当 ∽ , 过点 作 轴,垂足为点 ,

∴ 1分

∴ ,∴ 1分

综上所述, 的坐标是 或 .

25.(1)过点 作 ,垂足为点 1分

∵在 中, ,

1分

∴在 中, 1分

(2)①

过点 作 ∥ ,交 于点 .1分

1分

∵ ∥ , 1分

, 2分

②若 , , ,矛盾∴ 不存在. 1分

若 ,则 , ,矛盾

∴ 不存在. 1分

若 ,过点 作 ,垂足为点 .

1分

1分

整理得 ,又 ,解得 (舍)1分

∴当 时, 是等腰三角形. 1分

北京初三数学期末调研卷的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于2021北京初三数学、北京初三数学期末调研卷的信息别忘了在本站进行查找喔。

本文转载自互联网,如有侵权,联系删除