九年级数学周测小卷(九上数学周测小卷)

本篇文章给同学们谈谈九年级数学周测小卷,以及九上数学周测小卷对应的知识点,希望对各位同学有所帮助,不要忘记分享给你的朋友哦!

本文目录一览:

人教版试题优化数学九年级下学期练习册小卷——二次函数的试题

一、填空题:(每小题3分,共30分)

1、 已知A(3,6)在第一象限,则点B(3,-6)在第象限

2、 对于y=-1x ,当x>0时,y随x的增大而 

3、 二次函数y=x2+x-5取最小值是,自变量x的值是

4、 抛物线y=(x-1)2-7的对称轴是直线x=

5、 直线y=-5x-8在y轴上的截距是

6、 函数y=12-4x 中,自变量x的取值范围是

7、 若函数y=(m+1)xm2+3m+1是反比例函数,则m的值为 

8、 在公式1-a2+a =b中,如果b是已知数,则a= 

9、 已知关于x的一次函数y=(m-1)x+7,如果y随x的增大而减小,则m的取值范围是 

10、 某乡粮食总产值为m吨,那么该乡每人平均拥有粮食y(吨),与该乡人口数x的函数关系式是

二、选择题:(每题3分,共30分)

11、函数y=x-5 中,自变量x的取值范围()

(A)x>5(B)x<5(C)x≤5 (D)x≥5

12、抛物线y=(x+3)2-2的顶点在 ()

(A)第一象限(B) 第二象限 (C) 第三象限(D) 第四象限

13、抛物线y=(x-1)(x-2)与坐标轴交点的个数为()

(A)0 (B)1(C)2(D)3

14、下列各图中能表示函数和在同一坐标系中的图象大致是()

 (A) (B) (C)(D)

15.平面三角坐标系内与点(3,-5)关于y轴对称点的坐标为( )

(A)(-3,5) (B)(3,5) (C)(-3,-5) (D)(3,-5)

16.下列抛物线,对称轴是直线x=12 的是( )

(A) y=12 x2(B)y=x2+2x(C)y=x2+x+2(D)y=x2-x-2

17.函数y=3x1-2x 中,x的取值范围是( )

(A)x≠0(B)x>12 (C)x≠12 (D)x<12

18.已知A(0,0),B(3,2)两点,则经过A、B两点的直线是( )

(A)y=23 x(B)y=32 x(C)y=3x(D)y=13 x+1

19.不论m为何实数,直线y=x+2m与y=-x+4 的交点不可能在( )

(A)第一象限(B)第二象限(C)第三象限(D)第四象限

20.某幢建筑物,从10米高的窗口A用水管和向外喷水,喷的水流呈抛物线(抛物线所在平面与墙面垂直,(如图)如果抛物线的最高点M离墙1米,离地面403 米,则水流下落点B离墙距离OB是( )

(A)2米 (B)3米 (C)4米 (D)5米

三.解答下列各题(21题6分,22----25每题4分,26-----28每题6分,共40分)

21.已知:直线y=12 x+k过点A(4,-3)。(1)求k的值;(2)判断点B(-2,-6)是否在这条直线上;(3)指出这条直线不过哪个象限。

22.已知抛物线经过A(0,3),B(4,6)两点,对称轴为x=53 ,

(1) 求这条抛物线的解析式;

(2) 试证明这条抛物线与X轴的两个交点中,必有一点C,使得对于x轴上任意一点D都有AC+BC≤AD+BD。

23.已知:金属棒的长1是温度t的一次函数,现有一根金属棒,在O℃时长度为200cm,温度提高1℃,它就伸长0.002cm。

(1) 求这根金属棒长度l与温度t的函数关系式;

(2) 当温度为100℃时,求这根金属棒的长度;

(3) 当这根金属棒加热后长度伸长到201.6cm时,求这时金属棒的温度。

24.已知x1,x2,是关于x的方程x2-3x+m=0的两个不同的实数根,设s=x12+x22

(1) 求S关于m的解析式;并求m的取值范围;

(2) 当函数值s=7时,求x13+8x2的值;

25.已知抛物线y=x2-(a+2)x+9顶点在坐标轴上,求a的值。

26、如图,在直角梯形ABCD中,∠A=∠D=Rt∠,截取AE=BF=DG=x,已知AB=6,CD=3,AD=4,求:

(1) 四边形CGEF的面积S关于x的函数表达式和X的取值范围;

(2) 当x为何值时,S的数值是x的4倍。

27、国家对某种产品的税收标准原定每销售100元需缴税8元(即税率为8%),台洲经济开发区某工厂计划销售这种产品m吨,每吨2000元。国家为了减轻工人负担,将税收调整为每100元缴税(8-x)元(即税率为(8-x)%),这样工厂扩大了生产,实际销售比原计划增加2x%。

(1) 写出调整后税款y(元)与x的函数关系式,指出x的取值范围;

(2) 要使调整后税款等于原计划税款(销售m吨,税率为8%)的78%,求x的值.

28、已知抛物线y=x2+(2-m)x-2m(m≠2)与y轴的交点为A,与x轴的交点为B,C(B点在C点左边)

(1) 写出A,B,C三点的坐标;

(2) 设m=a2-2a+4试问是否存在实数a,使△ABC为Rt△?若存在,求出a的值,若不存在,请说明理由;

(3) 设m=a2-2a+4,当∠BAC最大时,求实数a的值。

万唯九年级数学大小卷难吗?

不难。万唯大小卷难度系数中等以上相对于53来说的话差不多还比五三更难一点,但是相对于压轴题就简单很多,万唯的小卷是基础题,所以不难。数学经常被缩写为math或maths,是研究数量、结构、变化、空间以及信息等概念的一门学科。

九年级数学上册期末质量检测试卷

同学们只要在九年级的数学期末复习过程中,抓住重点和常考点,数学测试中你一定会得心应手。

九年级数学上册期末质量检测试题

一.选择题(本大题共l2小题.在每小题给出的四个选项中.只有一项是正确的.请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.)

1.下列图形是中心对称图形但不是轴对称图形的是( )

2、视力表对我们来说并不陌生.如图是视力表的一部分,其中开口向上的两个E之间的变换是( )

A.平移 B.旋转

C.对称 D.位似

3、计算:tan45°+sin30°=( )

(A)2 (B) (C) (D)

4.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为( )

A. B. C. D.

5、如图,在 的正方形网格中, 绕某点旋转 ,得到 ,则其旋转中心可以是( )

A.点E B.点F

C.点G D.点H

6.把抛物线 向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为

A. B.

C. D.

7. 如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于(  )

A、 B、 C、 D、

8、二次函数y=ax2+bx+c的图象如图所示,若点A(1,y1)、B(-6,y2)是它图象上的两点,则y1与y2的大小关系是( )

A.y1y2 D.不能确定

9.如图,AC是⊙O的直径,BD是⊙O的弦,EC∥AB交⊙O于E,则图中与 ∠BOC相等的角共有( )

A. 2个 B. 3个 C. 4个 D. 5个

10.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中 相似的是 ( )

11.如图,⊙ 是△ABC的内切圆,切点分别是 、 、 ,已知∠ ,则∠ 的度数是( )

A.35° B.40°

C.45° D.70°

12.如图,半圆 的直径 ,与半圆 内切的小圆 ,与 切于点 ,设⊙ 的半径为 , ,则 关于 的函数关系式是( )

A. B.

C. D.

一 二 三 总分

19 20 21 22 23 24 25 26

二.填空题(本大题共5小题,共20分,只要求填写最后结果.每小题填对得4分.)

13.从1至9这9个自然数中任取一个数,这个数能被2整除的概率是.

14、如图,工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的直径 是 mm.

15.已知圆锥的母线长为5 ,底面半径为3 ,则它的侧面积是 。

16、如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为_____m.

17、二次函数 的图象如图所示,则① ,② ,③ 这3个式子中,值为正数的有_______________(序号)

三、解答题(本大题共7小题.共64分。解答要写出必要的文字说明、证明过程或演算步骤。)

18、(第(1)题4分、第(2)题5分,共9分)

(1) 计算: + .

(2). 抛物线 的部分图象如图所示,

(1)求出函数解析式;

(2)写出与图象相关的2个正确结论:

, .

(对称轴方程,图象与x正半轴、y轴交点坐标例外)

19.(本题满分7分)如图,热气球的探测器显示,从热气球看一栋高楼的顶部B的仰角为45°,看这栋高楼底部C的俯角为60°,热气球与高楼的水平距离AD为50m,求这栋楼的高度.( 取1.414, 取1.732)

(1)请用适当方式写出首场比赛出场的两个队的所有可能情况(用代码A、B、C、D、E、F表示);

(2)求首场比赛出场的两个队都是部队文工团的概率P.

21.(本题满分9分) 如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB.

(1)求证:AD⊥CD;

(2)若AD=2,AC= ,求AB的长.

22. (本题满分10分) 如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.

(1) 求证:△ADF∽△DEC;

(2) 若AB=4,AD=3 ,AE=3,求AF的长.

23.(本题满分10分)有一种葡萄:从树上摘下后不保鲜最多只能存放一周,如果放在冷藏室,可以延长保鲜时间,但每天仍有一定数量的葡萄变质,假设保鲜期内的重量基本保持不变,现有一位个体户,按市场价收购了这种葡萄200千克放在冷藏室内,此时市场价为每千克2元,据测算,此后每千克鲜葡萄的市场价格每天可以上涨0.2元,但是,存放一天需各种费用20元,平均每天还有1千克葡萄变质丢弃.

(1)存放x天后将鲜葡萄一次性出售,设鲜葡萄的销售金额为y元,写出y关于x的函数关系式;

(2)为了使鲜葡萄的销售金额为760元,又为了尽早清空冷藏室,则需要在几天后一次性出售完;

(3)问个体户将这批葡萄存放多少天后一次性出售,可获得最大利润?最大利润是多少?(本题不要求写出自变量x的取值范围)

24、(本题12分)如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上一动点,连结OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连结CF.

(1)当∠AOB=30°时,求弧AB的长度;

(2)当DE=8时,求线段EF的长;

(3)在点B运动过程中,当交点E在O,C之间时,

是否存在以点E、C、F为顶点的三角形与△AOB相

似,若存在,请求出此时点E的坐标;若不存在,

请说明理由.

九年级数学上册期末质量检测试卷答案

1.B 2.D 3.c 4.C 5.C 6.C 7.B 8.A 9.C 10.B 11.A 12.B

13. 14.8 15. 16.4 17.① ②

18、 + .

= =

19、

解答:因为抛物线过(1,0)(0,3),则 解得:

20、 解:(1)由题意画树状图如下:

A B C

D E F D E F D E F

所有可能情况是:(A,D)、(A,E) 、(A,F) 、(B,D) 、(B,E) 、(B,F) 、(C,D) 、(C,E) 、(C,F).4分

(2)所有可能出场的等可能性结果有9个,其中首场比赛出场两个队都是部队文工团的结果有3个,所以P(两个队都是部队文工团)= .7分

21、答案:(1)证明:连结BC. 1分

∵直线CD与⊙O相切于点C,

∴∠DCA=∠B. 2分

∵AC平分∠DAB,∴∠DAC=∠CAB.∴∠ADC=∠ACB.3分

∵AB为⊙O的直径,∴∠ACB=90°.∴∠ADC=90°,即AD⊥CD.5分

(2)解:∵∠DCA=∠B,∠DAC=∠CAB,∴△ADC∽△ACB.6分

∴ ∴AC2=AD•AB.

∵AD=2,AC= ,∴AB= .9分.

22、(1)证明:∵四边形ABCD是平行四边形

∴AD∥BC, AB∥CD,

∴∠ADF=∠CED,∠B+∠C=180°.

∵∠AFE+∠AFD=180,∠AFE=∠B,

∴∠AFD=∠C.

∴△ADF∽△DEC.6分

(2)解:∵四边形ABCD是平行四边形,

∴AD∥BC CD=AB=4.

又∵AE⊥BC ,∴ AE⊥AD.

在Rt△ADE中,DE= .

∵△ADF∽△DEC,∴ .∴ .AF= .10分

23. 解:(1)若存放x天后将鲜葡萄一次性出售,设鲜葡萄的销售总额为y元,则有 3分

答:分

(3)设将这批葡萄存放x天后出售,则有

因此这批葡萄存放45天后出售,可获得最大利润405元1分

24、(1)连结BC,

∵A(10,0), ∴OA=10 ,CA=5,

∵∠AOB=30°,

∴∠ACB=2∠AOB=60°,

∴弧AB的长= ; 4分

(2)连结OD,

∵OA是⊙C直径, ∴∠OBA=90°,

又∵AB=BD,

∴OB是AD的垂直平分线,

∴OD=OA=10,

在Rt△ODE中,

OE= ,

∴AE=AO-OE=10-6=4,

由 ∠AOB=∠ADE=90°-∠OAB,∠OEF=∠DEA,

得△OEF∽△DEA,

∴ ,即 ,∴EF=3;4分

(3)设OE=x,当交点E在O,C之间时,由以点E、C、F

为顶点的三角形与△AOB相似,

有∠ECF=∠BOA或∠ECF=∠OAB,

①当∠ECF=∠BOA时,此时△OCF为等腰三角形,点E为OC

中点,即OE= ,∴E1( ,0);(2分)

②当∠ECF=∠OAB时,有CE=5-x, AE=10-x,

∴CF∥AB,有CF= ,

∵△ECF∽△EAD,

∴ ,即 ,解得: ,

∴E2( ,0);(2分)

[img]

关于九年级数学周测小卷和九上数学周测小卷的介绍到此就结束了,不知道同学们从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

本文转载自互联网,如有侵权,联系删除