关于衡中同卷文科数学试题的信息

本篇文章给同学们谈谈衡中同卷文科数学试题,以及对应的知识点,希望对各位同学有所帮助,不要忘记分享给你的朋友哦!

本文目录一览:

数学新高考一卷试题及答案2022

十年寒窗标记的生活刻度难以磨灭,伏案苦读也没法用一句“俱往矣”概括。下面是我为大家整理的2022年数学新高考一卷试题及答案,仅供参考,喜欢可以 收藏 分享一下哟!

数学新高考一卷试卷2022

2022数学新高考一卷答案

高中生的 学习 方法 与技巧

转变认识

高中阶段学习的内容较多,知识范畴扩大,要求也提高了许多。对于许多高中生,经常这科上去了,那科又下来了,某次考试有科不及格也是常有的事。所以,转变认识,

首先,要对此有客观的认识,要认识到问题的普遍性和不可避免性。既然是正常的就不要着急烦躁,但一定要用积极的思想研究问题,要用积极的态度面对问题,要用积极的行动解决问题。

其次,要在改进学习方法上下功夫。影响学习效果的原因是多方面的,除了客观原因外,学生是否从自身实际出发选用学习方法等都直接影响着学生的学习效果。有的同学也想改进方法,但总是感到时间不够,不舍得将宝贵的时间用在学习和改进学习方法上。而统统将时间投入到具体科目的学习上,殊不知这正是犯了一个极大的错误。这里介绍的良性循环学习法对高三年级的同学是一种简便易行立竿见影的 复习方法 。

再次,在掌握了适合自己的一套学习方法的同时,还要有一套可行的复习计划。剩下的时间毕竟是有限的,在这样的形势下,只有从战略的高度来制订计划多上求学网,处理问题才能决胜于千里之外,才能取得事半功倍的效果。

明确战略

明确战略就是从全局的角度来制订复习计划。从全部考试科目来看问题,而不是就一科论一科地看问题。战略高度就是每次考试结束后试卷发下来时,将各科存在的问题放在一起分成三类,对每一类问题制订出不同的策略。分类方法是:

第一类问题是会的却做错了的题。分明会做,反而做错了的;心知肚明是很有把握的题,却没做对;还有明明会又非常简单的题,却是落笔就错;确实会,答案就在嘴边盘旋,却在考场上怎么也回忆不起来了。有时一走出考场立即就想起来了;有时试卷发下来一看,都不太相信是自己答的,当时在考场上怎么会做成这个样子等等。这类问题是低级错误。出现这类问题是考试后最后悔的事情。所以一定要经常在求学网上练习。

第二类问题是模棱两可似是而非的问题。就是第一遍做对了,一改反而改错了,或第一遍做错了,后来又改对了,或回答不严密不完整的等等。这类问题是记忆的不准确,理解的不够透彻,应用的不够自如的问题。

第三类问题是不会的题。由于不会,因而答错了或蒙的。这是没记住不理解,更谈不上应用。

策略安排是:消灭第一类问题;攻克第二类问题;暂放第三类问题。有些同学对待三类问题的策略与此不同,方法有别,有人重点攻第三类问题;轻视第二类问题;忽略第一类问题。这套方案对于个别同学可能有效果,但对于绝大多数同学收效甚微,经常是事倍功半,不可取。还有一些同学是按科目找问题来解决问题。按科目找问题没错,重要的是将各科的问题集中到一起分类。就差这一步,效果就相去甚远。将问题分好类后,首先要消灭第一类问题。

数学新高考一卷试题及答案2022相关 文章 :

★ 2022新高考全国I卷数学卷试题及答案解析

★ 2022全国新高考Ⅰ卷文科数学试题及答案解析

★ 2022年新高考Ⅰ卷数学真题试卷及答案

★ 2022年全国一卷高考真题试卷试题

★ 2022年全国新高考1卷数学高考真题

★ 2022年北京高考数学试卷

★ 2022全国甲卷高考数学文科试卷及答案解析

★ 2022年全国新高考Ⅰ卷英语试题及答案最新

★ 2022高考北京卷数学真题及答案解析

★ 2022年高考数学全国乙卷(理科)试题答案(预测)

跪求05-10年广东省文科数学高考题(附答案解析的那种)

我这里只有07-09年的,而且有些图片发不了,不如你留个邮箱,我三个都发给你。或者你可以用百度文档搜一下,我已经上传两个去了。

2007年广东省高考数学(文科)试题及详细解答

一、选择题:本大题共l0小题,每小题5分,满分50分.在每小题给出的四个选项中.只有一项是符合题目要求的.

1.已知集合,,则=

A.{x|-1≤x<1} B.{x |x1} C.{x|-1<x<1} D.{x |x≥-1}

【解析】,故,选(C).

2.若复数(1+bi)(2+i)是纯虚数(i是虚数单位,b是实数),则b=

A.-2 B. C. D.2

【解析】,依题意, 选(D).

3.若函数f(x)=x3(x∈R),则函数y=f(-x)在其定义域上是

A.单调递减的偶函数 B.单调递减的奇函数

C.单凋递增的偶函数 D.单涮递增的奇函数

【解析】函数单调递减且为奇函数,选(B).

4.若向量满足,与的夹角为,则

A. B. C. D.2

【解析】,选(B).

5.客车从甲地以60km/h的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h的速度匀速行驶l小时到达丙地。下列描述客车从甲地出发,经过乙地,最后到达 丙地所经过的路程s与时间t之间关系的图象中,正确的是

【解析】依题意的关键字眼“以80km/h的速度匀速行驶l小时到达丙地”选得答案(C).

6.若是互不相同的空间直线,是不重合的平面,则下列命题中为真命题的是

【解析】逐一判除,易得答案(D).

7.图l是某县参加2007年高考的学 生身高条形统计图,从左到右的各条形表示的学生人数依次记为4,、A:、…、A,。(如A:表示身高(单位:cm)在[150,155)内的学生人数).图2是统计图l中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是

A.i9 B.i8 C.i7 D.i6

【解析】身高在160~180cm(含160cm,不含180cm)的学生人数为,算法流程图实质上是求和,不难得到答案(B).

8.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是

【解析】随机取出2个小球得到的结果数有种(提倡列举).取出的小球标注的数字之和为3或6的结果为共3种,故所求答案为(A).

9.已知简谐运动的图象经过点(0,1),则该简谐运动的最小正周期T 和初相分别为

【解析】依题意,结合可得,易得,故选(A).

10.图3是某汽车维修公司的维修点环形分布图公司在年初分配给

A、 B、C、D四个维修点某种配件各50件.在使用前发现需将

A、B、C、D四个维修点的这批配件分别调整为40、45、54、61件,

但调整只能在相邻维修点之间进行.那么要完成上述调整,最少

的调动件次(n件配件从一个维修点调整到相邻维修点的调动件次为n)为

A.18 B.17 C.16 D.15

【解析】很多同学根据题意发现n=16可行,判除A,B选项,但对于C,D选项则难以作出选择,事实上,这是一道运筹问题,需要用函数的最值加以解决.设的件数为(规定:当时,则B调整了件给A,下同!),的件数为,的件数为,的件数为,依题意可得,,,,从而,,,故调动件次,画出图像(或绝对值的几何意义)可得最小值为16,故选(C).

二、填空题:本大题共5小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题,两题全答的,只计算前一题得分.

11.在平面直角坐标系xOy中,已知抛物线关于x轴对称,顶点在原点O,且过点P(2,4),则该抛物线的方程是 .

【解析】设所求抛物线方程为,依题意,故所求为.

12.函数f(x)=xlnx(x0)的单调递增区间是 .

【解析】由可得,答案:.

13.已知数列{an}的前n项和Sn=n2-9n,则其通项an= ;若它的第k项满足5ak8,则k=

【解析】{an}等差,易得,解不等式,可得

14.(坐标系与参数方程选做题)在极坐标系中,直线l的方程为ρsinθ=3,则点(2,π/6)到直线l的距离为 .

【解析】法1:画出极坐标系易得答案2; 法2:化成直角方程及直角坐标可得答案2.

15.(几何证明选讲选做题)如图4所示,圆O的直径AB=6,C为圆周上一点,BC=3过C作圆的切线l,过A作l的垂线AD,垂足为D, 则∠DAC= .

【解析】由某定理可知,又,

故.

三、解答题:本大题共6小题,满分80分.

16.(本小题满分14分)

已知ΔABC_三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(c,0).

(1)若,求c的值; (2)若C=5,求sin∠A的值.

【解析】(1)…………………………………………………………4分

由可得………………6分, 解得………………8分

(2)当时,可得, ΔABC为等腰三角形………………………10分

过作交于,可求得……12分 故……14分

(其它方法如①利用数量积求出进而求;②余弦定理正弦定理等!)

17.(本小题满分12分)

已知某几何体的俯视图是如图5所示的矩形,正视图(或称主

视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视

图)是一个底边长为6、高为4的等腰三角形.

(1)求该儿何体的体积V;

(2)求该几何体的侧面积S

【解析】画出直观图并就该图作必要的说明. …………………3分

(2)……………7分 (3)………12分

18(本小题满分12分)

F表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生

产能耗Y(吨标准煤)的几组对照数据

3 4 5 6

y 2.5 3 4 4.5

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,崩最小二乘法求出Y关于x的线性回归方程Y=bx+a;

(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?

(参考数值:32.5+43+54+64.5=66.5)

【解析】(1)画出散点图. …………………………………………………………………………3分

(2), , , …………………………………7分

由所提供的公式可得,故所求线性回归方程为………10分

(3)吨. ………………………………………………………12分

19(本小题满分14分)

在平面直角坐标系xOy巾,已知圆心在第二象限、半径为的圆C与直线相切于坐标原点0.椭圆与圆c的一个交点到椭圆两焦点的距离之和为10.

(1)求圆C的方程; (2)试探究圆C上是否存在异于原点的点Q,使Q到椭圆右焦点F的距离等于线段OF的长.若存在,请求出点Q的坐标;若不存在,请说明理由.

【解析】(1)设圆的方程为………………………2分

依题意,,…………5分

解得,故所求圆的方程为……………………7分

(注:此问若结合图形加以分析会大大降低运算量!)

(2)由椭圆的第一定义可得,故椭圆方程为,焦点……9分

设,依题意, …………………11分

解得或(舍去) ……………………13分 存在……14分

20.(本小题满分14分)

已知函数,是力程以的两个根(αβ),是的导数,设 (1)求的值;(2)已知对任意的正整数有,记,求数列的前项和.

【解析】(1)求根公式得, …………3分

(2)………4分 ………5分 ……7分

……10分

∴数列是首项,公比为2的等比数列………11分

∴………………………………………………………14分21.(本小题满分l4分)

已知是实数,函数.如果函数在区间[-1,1]上有零点,求的取值范围.

【解析】若,则,令,不符题意, 故………2分

当在 [-1,1]上有一个零点时,此时或………6分

解得或 …………………………………………………………………8分

当在[-1,1]上有两个零点时,则………………………………10分

解得即………………12分

综上,实数的取值范围为. ……………………………………14分

(别解:,题意转化为知求的值域,令得转化为勾函数问题.)

2008年普通高等学校招生全国统一考试(广东卷)(文科)全解析

一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求。

1.第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员}。集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是

A.AB????? B.BC C.A∩B=C D.B∪C=A

【解析】送分题呀!答案为D.

2.已知0<a<2,复数(i是虚数单位),则|z|的取值范围是

A.(1,) B. (1,) C.(1,3) D.(1,5)

【解析】,而,即,,选B.

3.已知平面向量,,且//,则=( )

A、 B、 C、 D、

【解析】排除法:横坐标为,选B.

4.记等差数列的前项和为,若,则该数列的公差( )

A、2 B、3 C、6 D、7

【解析】,选B.

5.已知函数,则是( )

A、最小正周期为的奇函数 B、最小正周期为的奇函数

C、最小正周期为的偶函数 D、最小正周期为的偶函数

【解析】,选D.

6.经过圆的圆心C,且与直线垂直的直线方程是( )

A、 B、 C、 D、

【解析】易知点C为,而直线与垂直,我们设待求的直线的方程为,将点C的坐标代入马上就能求出参数的值为,故待求

的直线的方程为,选C.(或由图形快速排

除得正确答案.)

7.将正三棱柱截去三个角(如图1所示A、B、C分

别是三边的中点)得到的几何体如图2,则

该几何体按图2所示方向的侧视图(或称左视图)为

【解析】解题时在图2的右边放扇墙(心中有墙),可得答案A.

8. 命题“若函数在其定义域内是减函数,则”的逆否命题是( )

A、若,则函数在其定义域内不是减函数

B、若,则函数在其定义域内不是减函数

C、若,则函数在其定义域内是减函数

D、若,则函数在其定义域内是减函数

【解析】考查逆否命题,易得答案A.

9、设,若函数,,有大于零的极值点,则( )

A、 B、 C、 D、

【解析】题意即有大于0的实根,数形结合令,则两曲线交点在第一象限,结合图像易得,选A.

10、设,若,则下列不等式中正确的是( )

A、 B、 C、 D、

【解析】利用赋值法:令排除A,B,C,选D.

二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.

(一)必做题(11-13题)

11.为了调查某厂工人生产某种产品的能力,随机抽查 了20位工人某天生产该产品的数量.产品数量的分组区间为,,

由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在的人数是 .

【解析】,故答案为13.

12.若变量x,y满足则z=3x+2y的最大 值是________。

【解析】画出可行域,利用角点法可得答案70.

13.阅读图4的程序框图,若输入m=4,n=3,则输出a=_______,i=________。

(注:框图中的赋值符号“=”,也可以写成“←”或“:=”)

【解析】要结束程序的运算,就必须通过整除的条件运算,

而同时也整除,那么的最小值应为和的最小公倍

数12,即此时有。

(二)选择题(14-15题,考生只能从中选做一题)

14.(坐标系与参数方程选做题)已知曲线的极坐标方程分别为,则曲线 交点的极坐标为

【解析】我们通过联立解方程组解得,即两曲线的交点为.

15.(几何证明选讲选做题)已知PA是圆O的切点,切点为A,PA=2.AC是圆O的直径,PC与圆O交于B点,PB=1,则圆O的半径R=________.

【解析】依题意,我们知道,由相似三角形的性质我们有,即。

三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程和演算步骤.

16.(本小题满分13分)

已知函数的最大值是1,其图像经过点。

(1)求的解析式;(2)已知,且求的值。

【解析】(1)依题意有,则,将点代入得,而,,,故;

(2)依题意有,而,,

17.(本小题满分12分)

某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?

(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)

【解析】设楼房每平方米的平均综合费为f(x)元,则

, 令 得

当 时, ;当 时,

因此 当时,f(x)取最小值;

答:为了楼房每平方米的平均综合费最少,该楼房应建为15层。

18.(本小题满分14分)

如图5所示,四棱锥P-ABCD的底面ABCD是半径为R的圆的内接四边形,其中BD是圆的直径,。

(1)求线段PD的长;

(2)若,求三棱锥P-ABC的体积。

【解析】(1) BD是圆的直径 又 ,

, ;

(2 ) 在中,

底面ABCD

三棱锥的体积为 .

19.(本小题满分13分)

某初级中学共有学生2000名,各年级男、女生人数如下表:

初一年级 初二年级 初三年级

女生 373 x y

男生 377 370 z

已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.

求x的值;

现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?

已知y245,z245,求初三年级中女生比男生多的概率.

【解析】(1)

(2)初三年级人数为y+z=2000-(373+377+380+370)=500,

现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为: 名

(3)设初三年级女生比男生多的事件为A ,初三年级女生男生数记为(y,z);

由(2)知 ,且 ,基本事件空间包含的基本事件有:

(245,255)、(246,254)、(247,253)、……(255,245)共11个

事件A包含的基本事件有:(251,249)、(252,248)、(253,247)、(254,246)、(255,245) 共5个

20.(本小题满分14分)

设,椭圆方程为,抛物线方程为.如图6所示,过点作轴的平行线,与抛物线在第一象限的交点为,已知抛物线在点的切线经过椭圆的右焦点.

(1)求满足条件的椭圆方程和抛物线方程;

(2)设分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

【解析】(1)由得,

当得,G点的坐标为,,,

过点G的切线方程为即,

令得,点的坐标为,由椭圆方程得点的坐标为,

即,即椭圆和抛物线的方程分别为和;

(2)过作轴的垂线与抛物线只有一个交点,以为直角的只有一个,

同理 以为直角的只有一个。

若以为直角,设点坐标为,、两点的坐标分别为和,

关于的二次方程有一大于零的解,有两解,即以为直角的有两个,

因此抛物线上存在四个点使得为直角三角形。

21.(本小题满分14分)

设数列满足,, 。数列满足是非零整数,且对任意的正整数和自然数,都有。

(1)求数列和的通项公式;

(2)记,求数列的前项和。

【解析】(1)由得

又 , 数列是首项为1公比为的等比数列,

由 得 ,由 得 ,…

同理可得当n为偶数时,;当n为奇数时,;因此

(2)

当n为奇数时,

当n为偶数时

令 ……①

①×得: ……②

①-②得:

因此

2009年普通高等学校招生全国统一考试(广东A卷)

数学(文科)本试卷共4页,21小题,满分150分。考试用时120分钟。

参考公式:锥体的体积公式V=,其中S是锥体的底面积,h是锥体的高。

一、选择题:本大题共10小题,每小题5分,满分50分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U=R,则正确表示集合M={—1,0,1}和N={}关系的韦恩(Venn)图是

2.下列n的取值中,使in =1(i是虚数单位)的是

A.n=2 B.n=3 C.n=4 D.n=5

3.已知平面向量a =(x,1),b =(—x,x2 ),则向量a+b

A.平行于x轴 B.平行于第一、三象限的角平分线

C.平行于y轴 D.平行于第二、四象限的角平分线

4.若函数是函数的反函数,且,则

A. B. C. D.

5.已知等比数列的公比为正数,且,,则

A. B. C. D.

6.给定下列四个命题:

①若一个平面内的两条直线与另外一个平面都平行,那么这两个平面相互平行;

②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;

③垂直于同一直线的两条直线相互平行;

④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直。

其中,为真命题的是

A.①和② B.②和③ C.③和④ D.②和④

7.已知中,的对边分别为。若,且 ,则

A.2 B. C. D.

8.函数的单调递增区间是

A. B.(0,3) C.(1,4) D.

9.函数是

A.最小正周期为的奇函数 B.最小正周期为的偶函数

C.最小正周期为的奇函数 D.最小正周期为的偶函数

10.广州2010年亚运会火炬传递在A,B,C,D,E五个城市之间进行,各城市之间的路线距离(单位:百公里)见右表。若以A为起点,E为终点,每个城市经过且只经过一次,那么火炬传递的最短路线距离是

A.20.6 B.21 C.22 D.23

二、填空题:本大题共5小题,考生作答4小题,每小题5分,(一)必做题(11~13题)

11.某篮球队6名主力队员在最近三场比赛中投进的三分球个数如下表所示:

图1是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填

,输出的= 。

(注:框图中的赋值符号“=”也可以写成“”或“:=”)

12.某单位200名职工的年龄分布情况如图2,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,,196~200号)。若第5组抽出的号码为22,则第8组抽出的号码应是 。若用分层抽样方法,则40岁以下年龄段应抽取 人。

13.以点(2,-1)为圆心且与直线相切的圆的方程是_______________________。

(二)选做题(14、15题,考生只能从中选作一题)

14.(坐标系与参数方程选做题)若直线(为参数)与直线垂直,则常数=________。

15.(几何证明选讲选做题)如图3,点A,B,C是圆上的点,且,,则圆的面积等于__________________。

三、解答题:本大题共6小题,满分80分。解答须写出文字说明、证明过程和演算步骤。

16.(本小题满分12分)

已知向量与互相垂直,其中.

求和的值;

若,求的值。

17.(本小题满分13分)

某高速公路收费站入口处的安全标识墩如图4所示。墩的上半部分是正四棱锥,下半部分是长方体。图5、图6分别是该标识墩的正(主)视图和俯视图。

(1)请画出该安全标识墩的侧(左)视图;

(2)求该安全标识墩的体积;

(3)证明:直线平面.

18.(本小题满分13分)

随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7。

(1)根据茎叶图判断哪个班的平均身高较高;

(2)计算甲班的样本方差;

(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率。

19.(本小题满分14分)

已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,两个焦点分别为和,椭圆G上一点到和的距离之和为12。圆:的圆心为点。

(1)求椭圆G的方程;

(2)求面积;

(3)问是否存在圆包围椭圆G?请说明理由。

20.(本小题满分14分)

已知点是函数的图像上一点。等比数列的前n项和为。数列的首项为c,且前n项和满足

(1)求数列和的通项公式;

(2)若数列的前项和为,问满足>的最小正整数是多少?

21.(本小题满分14分)

已知二次函数的导函数的图像与直线平行,且在处取得极小值。设函数。

(1)若曲线上的点到点的距离的最小值为,求的值;

(2)如何取值时,函数存在零点,并求出零点。

2009年普通高等学校招生全国统一考试(广东卷)

数学(文科) 参考答案

选择题

BCCAB DADAB

1、【解析】由N= { x |x+x=0}得,选B.

2、【解析】因为,故选C.

3、【解析】,由及向量的性质可知,C正确.

4、【解析】函数的反函数是,又,即,

所以,,故,选A.

5、【解析】设公比为,由已知得,即,因为等比数列的公比为正数,所以,故,选B

6、【解析】①错, ②正确, ③错, ④正确.故选D

7、【解析】

由a=c=可知,,所以,

由正弦定理得,故选A

8、【解析】,令,解得,故选D

9、【解析】因为为奇函数,,所以选A.

10、【解析】由题意知,所有可能路线有6种:

①,②,③,④,⑤,⑥,

其中, 路线③的距离最短, 最短路线距离等于,

故选B.

填空题

11、【答案】,

【解析】顺为是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,所图中判断框应填,输出的s=.

12、【答案】37, 20

【解析】由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.

40岁以下年龄段的职工数为,则应抽取的人数为人.

13、【解析】将直线化为,圆的半径,所以圆的方程为

14、【答案】

【解析】将化为普通方程为,斜率,

当时,直线的斜率,由得;

当时,直线与直线不垂直.

综上可知,.

15、【答案】

【解析】连结AO,OB,因为 ,所以,为等边三角形,故圆O的半径,圆O的面积.

解答题

16、【解析】(1),,即

又∵, ∴,即,∴

又 ,

(2) ∵

, ,即

又 , ∴

17、【解析】(1)侧视图同正视图,如下图所示.

(2)该安全标识墩的体积为:

(3)如图,连结EG,HF及 BD,EG与HF相交于O,连结PO.

由正四棱锥的性质可知,平面EFGH ,

又 平面PEG

又 平面PEG;

18、【解析】(1)由茎叶图可知:甲班身高集中于之间,而乙班身高集中于 之间。因此乙班平均身高高于甲班;

(2)

甲班的样本方差为

=57

(3)设身高为176cm的同学被抽中的事件为A;

从乙班10名同学中抽中两名身高不低于173cm的同学有:(181,173) (181,176)

(181,178) (181,179) (179,173) (179,176) (179,178) (178,173)

(178, 176) (176,173)共10个基本事件,而事件A含有4个基本事件;

19、【解析】(1)设椭圆G的方程为: ()半焦距为c;

则 , 解得 ,

所求椭圆G的方程为:.

(2 )点的坐标为

(3)若,由可知点(6,0)在圆外,

若,由可知点(-6,0)在圆外;

不论K为何值圆都不能包围椭圆G.

20、【解析】(1),

,,

.

又数列成等比数列, ,所以 ;

又公比,所以 ;

又,, ;

数列构成一个首相为1公差为1的等差数列, ,

当, ;

();

(2)

由得,满足的最小正整数为112.

21、【解析】(1)设,则;

又的图像与直线平行

又在取极小值, ,

, ;

, 设

(2)由,

当时,方程有一解,函数有一零点;

当时,方程有二解,若,,

函数有两个零点;若,

,函数有两个零点;

当时,方程有一解, , 函数有一零点

《2020年全国高考I卷文科数学高考真题 百度网盘》epub下载在线阅读全文,求百度网盘云资源

高中数学合集百度网盘下载

链接:

?pwd=1234

提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

[img]

衡水中学自己出的卷子是不是特别难?和高考全国卷比怎么样?文科

衡中的卷子每套难度系数不定的,不能一概而论。

总体而言,语数外的话,高于全国卷,尤其是英语。数学衡中的卷子也比较难,尤其是相对今年那套简单到爆的全国数学卷。

ps。今年语文高考还挺难的。貌似比我在衡中做的绝大多数语文卷子难

文综的话我个人觉得今年的高考题还可以,一如既往的偏怪,衡中的比较基础

2010湖南高考文科数学试题

2010年普通高等学校招生全国统一考试(湖南卷)数学(文史类)

_____班 姓名_________

一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.复数 等于 ( )

A. B. C. -1+i D. -1-i

2. 下列命题中的假命题是 ( )

A. B. C. D.

3.某商品销售量y(件)与销售价格x(元/件)负相关,则其回归方程可能是 ( )

A. B. C. D..

4.极坐标方程 和参数方程 (t为参数)所表示的图形分别是 ( )

A.直线、直线 B.直线、圆 C.圆、圆 D.圆、直线

5.设抛物线y2=8x上一点P到y轴的距离是4,则点P到该抛物线的焦点的距离是 ( )

A. 4 B. 6 C. 8 D. 12

6.若非零向量 、 满足 , ,则 与 的夹角为 ( )

A.300 B. 600 C. 1200 D. 1500

7.在 中,角 的所对的边长分别为 ,若 ,则 ( )

A.ab B. ab C. a=b D. a与b 的大小关系不能确定.

8. 函数 与 在同一直角坐标系中的图象可能是 ( )

二 填空题:本大题共7个小题,每小题5分,共35分,把答案填在答题卡中对应题号后的横线上。

9 .已知集合A={1,2,3},B={2, m,4},A∩B={2,3},则m= .

10.已知一种材料的最佳入量在100g到200g之间.若用0.618法安排试验,则第一次试点的加入量可以是 g.

11.在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为

12 . 图1是求实数x的绝对值的算法程序框图,则判断框可填

13.图2中的三个直角三角形是 一个体积为20cm3的几何体的三视图,则 .

14. 若不同两点P,Q的坐标分别为(a,b) ,(3-b,3-a),则线段PQ的垂直平分线l的斜率为_________,圆 关于直线l对称的圆的方程为_________________________.

15. 若规定 的子集 为E的第k个子集,其中 ,则 (1) 是E的第_______个子集;

(2) E的第211个子集是________________.

三 解答题:每小题共6小题,共75分,解答应写出文字说明.证明过程或演算步骤。

16.(本小题满分12分)已知函数 .

(Ⅰ)求函数 的最小正周期; (II)求函数 的最大值及 取最大值时x的集合。

高校 相关人数 抽取人数

A 18 x

B 36 2

C 54 y

17.(本小题满分12分)为了对某课题进行研究,用分层抽样的方法从三所高校A、B、C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)

(I)求x,y;

(II)若从高校B、C抽取的人中选2人作专题发言,求这2人都来自高校C的概率.

18.(本小题满分12分) 如图3所示,在长方体ABCD- 中,AB=AD=1, AA1=2, M是棱C 的中点.

(Ⅰ)求异面直线 M和 所成的角的正切值;

(Ⅱ)证明:平面ABM 平面A1B1M.

19.(本小题满分13分)为了考察冰川的融化状况,一支科考队在某冰川上相距8km的A,B两点各建一个考察基地.视冰川面为平面形,以过A,B两点的直线为x轴,线段AB的垂直平分线为y轴建立平面直角坐标系(图4).考察范围为到A,B两点的距离之和不超过10km的区域。

(Ⅰ)求考察区域边界曲线的方程;

(Ⅱ)如图4所示,设线段P1P2是冰川的部分边界线(不考虑其他边界线),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动0.2km,以后每年移动的距离为前一年的2倍,问:经过多长时间,点A恰好在冰川边界线上?

20 (本小题满分13分) 给出下面的数表序列:

表1 表2 表3 …

1 1 3 1 3 5

4 4 8

12

其中表n(n=1,2,3, …)有n行,第1行的n个数是1,3,5,…,2n-1,从第二行起,每行中的每个数都等于它肩上的两数之和.

(Ⅰ)写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明);

(Ⅱ)某个数表中最后一行都只有一个数,它们构成数列1,4,12,…,记此数列为{bn},求和:

.

21.(本小题满分13分)已知函数 , 其中 且

(Ⅰ)讨论函数 的单调性;

(Ⅱ)设函数 (e是自然对数的底数),是否存在a,使g(x)在[a,-a]上是减函数?若存在,求a的取值范围;若不存在,请说明理由.

2010年普通高等学校招生全国统一考试(湖南卷)

数学(文史类)参考答案

一、

题号 1 2 3 4 5 6 7 8

答案 A C A D B C A D

二、 9. 3 10. 161.8或138.2 11. 12.x0或x0? 或x≥0 或x≥0?

13. 4 14. -1 , x2+(y-1)2=1 15. 5;

三、16.解(Ⅰ) 因为

所以函数 的最小正周期

(II)由(Ⅰ)知,当 ,即 时, 取最大值 .

因此函数 取最大值时x的集合为

17解: (I)由题意可得 ,所以x=1,y=3

(II)记从高校B抽取的2人为b1,b2, 从高校C抽取的3人为c1,c2,c3,则从高校B、C抽取的5人中选2人作专题发言的基本事件有:

(b1,b2),(b1,c1), (b1,c2), (b1,c3), (b2,c1), (b2,c2), (b2,c3),( c1,c2), ( c1,c3), ( c2,c3)共10种.

设选中的2人都来自高校C的事件为X,则X包含的基本事件有( c1,c2), ( c1,c3), ( c2,c3)共3种.

因此 . 故选中的2人都来自高校C的概率为

18.解 Ⅰ)如图,因为 ,所以 异面

直线 M和 所成的角,因为 平面 ,

所以 ,而 =1, ,

故 .

即异面直线 M和 所成的角的正切值为

(Ⅱ)由 平面 ,BM 平面 ,得 BM ①

由(Ⅰ)知, , , ,所以 ,

从而BM B1M ② 又 , 再由① ②得BM 平面A1B1M,而BM 平面ABM,

因此平面ABM 平面A1B1M.

19. 解(Ⅰ)设边界曲线上点的坐标为P(x,y),则由|PA|+|PB|=10知,

点P在以A、B为焦点,长轴长为2a=10的椭圆上,此时短半轴

长 .所以考察区域边界曲线(如图)的方程

(Ⅱ)易知过点P1、P2的直线方程为4x-3y+47=0,

因此点A到直线P1P2的距离为

设经过n年,点A恰好在冰川边界线上,则利用等比数列求和公式可得

,解得 n=5. 即经过5年,点A恰好在冰川边界线上.

20. 解:(Ⅰ)表4为 1 3 5 7

4 8 12

12 20

32

它的第1,2,3,4行中的数的平均数分别为4,8,16,32. 它们构成首项为4,公比为2的等比数列.

将结这一论推广到表n(n≥3),即

表n各行中的数的平均数按从上到下的顺序构成首项为n,公比为2的等比数列.

(Ⅱ)表n第1行是1,3,5,…,2n-1,其平均数是

由(Ⅰ)知,它的各行中的数的平均数按从上到下的顺序构成首项为n,公比为2的等比数列(从而它的第k行中的数的平均数是 ),于是表n中最后一行的唯一一个数为 .因此

(k=1,2,3, …,n),故

21. (Ⅰ) 的定义域为 ,

(1)若-1a0,则当0x-a时, ;当-a x1时, ;当x1时, .故 分别在 上单调递增,在 上单调递减.

(2)若a-1,仿(1)可得 分别在 上单调递增,在 上单调递减.

(Ⅱ)存在a,使g(x)在[a,-a]上是减函数.

事实上,设 ,则

,再设 ,则当g(x)在[a,-a]上单调递减时,h(x)必在[a,0]上单调递,所以 ,由于 ,因此 ,而 ,所以 ,此时,显然有g(x)在[a,-a]上为减函数,当且仅当 在[1,-a]上为减函数,h(x)在[a,1上为减函数,且 ,由(Ⅰ)知,当a-2时, 在 上为减函数 ①

又 ②

不难知道,

因 ,令 ,则x=a或x=-2,而

于是 (1)当a-2时,若a x-2,则 ,若-2 x1,则 ,因而 分别在 上单调递增,在 上单调递减;

(2)当a=-2时, , 在 上单调递减.

综合(1)(2)知,当 时, 在 上的最大值为 ,所以, ③

又对 ,只有当a=-2时在x=-2取得,亦即 只有当a=-2时在x=-2取得.

因此,当 时,h(x)在[a,1上为减函数,从而由①,②,③知

综上所述,存在a,使g(x)在[a,-a]上是减函数,且a的取值范围为 .

衡中同卷文科数学试题的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于、衡中同卷文科数学试题的信息别忘了在本站进行查找喔。

本文转载自互联网,如有侵权,联系删除