九师联盟导数解题(九师联盟高三数学试卷)

本篇文章给同学们谈谈九师联盟导数解题,以及九师联盟高三数学试卷对应的知识点,希望对各位同学有所帮助,不要忘记分享给你的朋友哦!

本文目录一览:

高考数学导数解题技巧

高考数学导数解题技巧如下:

(1)利用导数研究切线问题

解题思路:关键是要有切点横坐标,以及利用三句话来列式。具体来说,题目必须出现切点横坐标,如果没有切点坐标,必须自设切点坐标。然后,利用三句话来列式:①切点在切线上;②切点在曲线上;③斜率等于导数。用这三句话,百分之百可以解答全部切线问题。

另外,二次函数的切线问题,则可不需要用这三句话来解答,可以直接联立切线和曲线的方程组,令判别式等于0。

(2)利用导数研究函数的单调性

解题思路:求定义域——求导——讨论参数,判断单调性。

首先,务必要先求定义域,以免单调区间落在定义域之外;其次,求导务必要仔细,要检查,否则求导错误,后面全军覆没;最后,带参数的函数,务必要谈论参数,根据参数来判断单调性和求单调区间。

(3)利用导数研究函数的极值和最值

解题思路:求定义域——求导——讨论参数,判断单调性——求极值——求最值

前面跟(2)的解题思路一样,后面衔接下去,就是求极值和求最值了。要想求极值,必须先判断单调性。而求最值,则需要依据单调性、极值和端点值来判断。

(4)利用导数研究不等式

解题思路:求定义域——求导——讨论参数,判断单调性——求极值——求最值——解不等式

从这个解题思路可以看得出,导数不等式的本质是最值问题。因此,导数不等式,就是必须先求最值。利用导数不等式,绝对是超级难点,也是高考导数大题的第2小问常考的考点。大家要紧紧抓住“导数不等式就是最值问题”这句话,循序渐进地思考解题,多训练,必能完成此类题的攻克和解题。

[img]

导数的题型及解题技巧

导数的题型及解题技巧主要有以下两个方面:

1.数形结合思想

2.整体代换思想

数形结合思想

数形结合是利用“数”和“形”的相互转化来解决数学问题的思想方法.它为代数问题和几何问题的相互转化架起了桥梁,数形结合重在结合,它们完美的结合,往往能起到事半功倍的效果.数形结合思想贯穿于中学数学的始终,在许多知识板块中都有它的身影.数形结合思想以其直观性、灵活性等特点倍受解题者的衷爱.本文举例说明数形结合的思想在求解导数问题中的灵活运用.

整体代换思想

我们在思考问题的时侯,如果能根据题目中的结构特点,把问题中貌似独立,但实质上又相互联系的量看成一个整体,从而在宏观上寻求解决问题的途径,这种思想称之为整体思想.整体思想主要有整体代换、整体求值、整体变形、整体构造等.这种思想若运用巧妙,不仅可以简化运算,而且能够激发学生思维的灵活性.本文仅举一例来说明整体代换思想在求解导数问题时的应用。

通过以上两种导数题型及解题技巧的学习,我相信大家已经有所了解了吧!

导数大题题型归纳解题方法有哪些?

1、按倒数定义求函数导数

2、初等函数单纯求导

3、求复合函数导数

4、求左右导数,并判断可导性

5、求反函数导数

6、求分段函数导数并判断可导性

7、隐函数导数

8、变限积分求导

一个函数也不一定在所有的点上都有导数。

若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以反过来求原来的函数,即不定积分。

九师联盟导数解题的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于九师联盟高三数学试卷、九师联盟导数解题的信息别忘了在本站进行查找喔。

本文转载自互联网,如有侵权,联系删除