本篇文章给同学们谈谈高一必修1数学周测卷,以及数学高一必修一卷子免费对应的知识点,希望对各位同学有所帮助,不要忘记分享给你的朋友哦!
本文目录一览:
高中数学必修一经典例题
新课标人教A高一数学必修1测试题
第Ⅰ卷(选择题 共60分)
一、选择题(本大题共10小题,每小题5分,共60分)
1.已知A={x|y=x,x∈R},B={y|y=x2,x∈R},则A∩B等于
A.{x|x∈R} B.{y|y≥0}
C.{(0,0),(1,1)} D.
2.方程x2-px+6=0的解集为M,方程x2+6x-q=0的解集为N,且M∩N={2},那么p+q等于
A.21 B.8 C.6 D.7
3. 下列四个函数中,在(0,+∞)上为增函数的是
A.f(x)=3-x B.f(x)=x2-3x
C.f(x)=- D.f(x)=-|x|
4.函数f(x)=x2+2(a-1)x+2在区间(-∞,4〕上递减,则a的取值范围是
A.〔-3,+∞〕 B.(-∞,-3)
C.(-∞,5〕 D.〔3,+∞)
5. 下列四个函数中,与y=x表示同一函数的是
A.y=( )2 B.y= C.y= D.y=
6. 函数y= +1(x≥1)的反函数是
A.y=x2-2x+2(x<1) B.y=x2-2x+2(x≥1)
C.y=x2-2x(x<1) D.y=x2-2x(x≥1)
7. 已知函数f(x)= 的定义域是一切实数,则m的取值范围是
A.0m≤4 B.0≤m≤1 C.m≥4 D.0≤m≤4
8.某商场对顾客实行购物优惠活动,规定一次购物付款总额:
(1)如果不超过200元,则不给予优惠;
(2)如果超过200元但不超过500元,则按标价给予9折优惠;
(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折 优惠.
某人两次去购物,分别付款168元和423元,假设他一次性购买上述两次同样的商品,则应付款是
A.413.7元 B.513.7元
C.546.6元 D.548.7元
9. 二次函数y=ax2+bx与指数函数y=( )x的图象只可能是
10. 已知函数f(n)= 其中n∈N,则f(8)等于
A.2 B.4 C.6 D.7
11.如图,设a,b,c,d0,且不等于1,y=ax , y=bx , y=cx ,y=dx 在同一坐标系中的图象如图,则a,b,c,d的大小顺序( )
A、abcd B、abdc
C、badc D、bacd
12..已知0a1,b-1,函数f(x)=ax+b的图象不经过:( )
A.第一象限; B.第二象限; C.第三象限; D.第四象限
第Ⅱ卷(非选择题 共70分)
二、填空题(本大题共4小题,每小题5分,共20分)
13.已知f(x)=x2-1(x0),则f-1(3)=_______.
14. 函数 的定义域为______________
15.某工厂8年来某产品产量y与时间t年的函数关系如下图,则:
①前3年总产量增长速度增长速度越来越快;
②前3年中总产量增长速度越来越慢;
③第3年后,这种产品停止生产;
④第3年后,这种产品年产量保持不变.
以上说法中正确的是_______.
16. 函数y= 的最大值是_______.
三、解答题
17. 求函数y= 在区间〔2,6〕上的最大值和最小值.(10分)
18.(本小题满分10分) 试讨论函数f(x)=loga (a>0且a≠1)在(1,+∞)上的单调性,并予以证明.
答案
一. BACCB BDCAD BA 二。13. 2 ,14. , 15. ①④ 16. 4
三.17.解:设x1、x2是区间〔2,6〕上的任意两个实数,且x1x2,则
f(x1)-f(x2)= -
=
= .
由2x1x26,得x2-x10,(x1-1)(x2-1)0,
于是f(x1)-f(x2)0,即f(x1)f(x2).
所以函数y= 是区间〔2,6〕上的减函数.
因此,函数y= 在区间的两个端点上分别取得最大值与最小值,即当x=2时,ymax=2;当x=6时,ymin= .
18.解:设u= ,任取x2>x1>1,则
u2-u1=
=
= .
∵x1>1,x2>1,∴x1-1>0,x2-1>0.
又∵x1<x2,∴x1-x2<0.
∴ <0,即u2<u1.
当a>1时,y=logax是增函数,∴logau2<logau1,
即f(x2)<f(x1);
当0<a<1时,y=logax是减函数,∴logau2>logau1,
即f(x2)>f(x1).
综上可知,当a>1时,f(x)=loga 在(1,+∞)上为减函数;当0<a<1时,f(x)=loga 在(1,+∞)上为增函数.
跪求高一数学必修1试卷及答案,100分满分的那种
高一数学必修1试卷及答案,100分满分的那种1.已知集合 ,那么 ( )
(A) (B) (C) (D)
2.下列各式中错误的是 ( )
A. B.
C. D.
3.若函数 在区间 上的最大值是最小值的 倍,则 的值为( )
A. B. C. D.
4.函数 的图象是( )
5.函数 的零点所在的区间是( )
A. B. C. D.
6.设函数 定义在实数集上,它的图像关于直线 对称,且当 时, ,则有( )
A. B.
C. D.
7.函数 的图像大致为( )
8.定义在R上的函数f(x)满足f(x)= ,则f(3)的值为( )
A.-1 B. -2 C.1 D. 2
9.函数 的定义域为
10.函数 的定义域是
11.函数y=x2+x (-1≤x≤3 )的值域是
12.计算:lg +(ln )
13.已知 ,若 有3个零点,则 的范围是
14.若函数 的零点有4个,则实数 的取值范围是
15.已知A、B两地相距150千米,某人开汽车以60千米/小时的速度从A地到B地,在B地停留1小时后
再以50千米/小时的速度返回A地,将汽车离开A地的距离x表示为时间t(小时)的函数
表达式是
16.国家规定个人稿费纳税办法为:不超过800元的不纳税;超过800元而不超过4000元的按超过部分的14%纳税;超过4000元的按全稿酬的11%纳税.某人出版了一书共纳税420元,这个人的稿费为
元。
17.某同学研究函数 ( ) ,分别给出下面几个结论:
①等式 在 时恒成立; ②函数 的值域为 (-1,1);
③若 ,则一定有 ; ④函数 在 上有三个零点.
其中正确结论的序号有 .
18.已知集合 , ,
(1)利用数轴分别求 , ;
(2)已知 ,若 ,求实数 的取值集合。
19.已知函数
(1)判断并证明函数在其定义域上的奇偶性 (2)判断并证明函数在 上的单调性
(3)解不等式
20.已知函数 是奇函数,且在定义域上单调递减,
(1)若 比较 的大小;
(2)若 的定义域为 ,且 求 的取值范围。
21.已知函数 ,判断 的奇偶性。
22.二次函数 满足 ,且 。
(1)求 的解析式;
(2)在区间 上, 的图象恒在 的图象上方,试确定实数 的范围。
答案
1. D 2. C 3. A 4.B 5.B 6.B
7. A 函数有意义,需使 ,其定义域为 ,排除C,D
又因为 ,所以当 时函数为减函数,故选A.
8.B 9.( ,1) 10. 11. 12. , 13.
14. 15. 16.3800 17.①②③
18.解:(1) ,
或 , 或 或
(2) 如图示(数轴略) ,解之得
19.解:(1)证明: , ,所以函数为奇函数
(2)定义证明略
(3)
20.解:(1) ,且 在定义域上单调递减,∴
(2) , 是奇函数,且在定义域 上单调递减
∴
21.解:当 时, 为偶函数;当 时, 函数 既不是奇函数,也不是偶函数。
22.解:(1)设 ,则
与已知条件比较得: 解之得, 又 ,
(2) 即 对 恒成立,易得 绝对正确!!!!!!!!!!!!!!!!!!!
[img]高一数学两道 急求!!!!!
1.(1)sinAsinB-cosAcosB=-cos(A+B),因为A、B∈(π/4,π/2),所以A+B在(π/2,π),cos(A+B)0,则-cos(A+B)0,sinAsinB-cosAcosB0.即sinAsinBcosAcosB。
(2)向量a*向量b=1,即 根号3*sinA-cosA=1,cos(A+π/3)=-1/2,又由于0Aπ,所以,A+π/3=(2π)/3,A=π/3。
2.是“使得等式sin(3π-a)=根号2*cos(3π-b),
根号3*cos(-a)=-根号2 *sin(π+B)同时成立?”,是的话,求得的应该不是确定值,你是不是给少条件了?
高一数学必修1试卷
(需要直接的文件可发一封邮件到邮箱729896375@QQ.COM索取)
2007-2008学年度第一学期期末复习试卷
高一数学试题
(考试时间:120分钟 总分160分)
注意事项:
1、本试卷共分两部分,第Ⅰ卷为选择题,第Ⅱ卷为填空题和解答题。
2、所有试题的答案均填写在答题纸上(选择题部分使用答题卡的学校请将选择题的答案直接填涂到答题卡上),答案写在试卷上的无效。
公式:锥体体积V= sh; 球的表面积S=4πR2; 圆锥侧面积S=πrl
一、填空题:
1. 已知平行四边形ABCD的三个顶点坐标为A(-1,2,3),B(2,-2,3),C(1,5,1),则第四个顶点D的坐标为 .
2. 用“<”从小到大排列 23, , , 0.53
.
3.求值:(lg5)2+lg2×lg50=________________。
4. 已知A={(x,y)|x+y-2=0},B={(x,y)|x-2y+4=0},C={(x,y)|y=3x+b},若(A∩B) C,则b=_____
5. 已知函数 是偶函数,且在(0,+∞)是减函数,则整数 的值是 .
6. 如图,假设 , ⊥ , ⊥ ,垂足分别是B、D,如果增加一个条件,就能推出BD⊥EF。现有下面3个条件:
① ⊥ ;
② 与 在 内的射影在同一条直线上;
③ ‖ .
其中能成为增加条件的是 .(把你认为正确的条件的序号都填上)
7.(1)函数 的最大值是
(2)函数 的最小值是
8. , 是两个不共线的向量,已知 , , 且 三点共线,则实数 =
9.已知 , ( ),且| |=| |( ),则 .
10.对于函数 ,给出下列四个命题:①存在 (0, ),使 ;②存在 (0, ),使 恒成立;③存在 R,使函数 的图象关于 轴对称;④函数 的图象关于( ,0)对称.其中正确命题的序号是
11.函数 的最小正周期是 。
12.已知 , ,以 、 为边作平行四边形OACB,则 与 的夹角为__________
二、解答题:(解答应写出必要的文字说明,证明过程或演算步骤。)
13.(14分)已知函数f(x)= (a0,a≠1,a为常数,x∈R)。
(1)若f(m)=6,求f(-m)的值;
(2)若f(1)=3,求f(2)及 的值。
14.(18分) 已知函数 。
(1)判断f(x)在 上的单调性,并证明你的结论;
(2)若集合A={y | y=f(x), },B=[0,1], 试判断A与B的关系;
(3)若存在实数a、b(ab),使得集合{y | y=f(x),a≤x≤b}=[ma,mb],求非零实数m的取值范围.
15.已知定义在R上的函数 周期为
(1)写出f(x)的表达式;
(2)写出函数f(x)的单调递增区间;
(3)说明f(x)的图象如何由函数y=2sinx的图象经过变换得到.
16.已知向量 .
①若点A、B、C不能构成三角形,求实数m应满足的条件;
②若△ABC为直角三角形,求实数m的值.
17. 已知函数
(1)求函数 的最小正周期和最大值;
(2)该函数图象可由 的图象按某个向量a平移得到,求满足条件的向量a.
18. (1) 若直角三角形两直角边长之和为12,求其周长p的最小值;
(2) 若三角形有一个内角为 ,周长为定值p,求面积S的最大值;
(3) 为了研究边长a、b、c满足9a8b4c3的三角形其面积是否存在最大值,现有解法如下:16S2(abc)(abc)(abc)(abc)
[(ab)2c2][c2(ab)2]c42(a2b2)c2(a2b2)2
[c2(a2b2)]4a2b2
而[c2(a2b2)]0,a281,b264,则S36,但是,其中等号成立的条件是c2a2b2,a9,b8,于是c2145,与3c4矛盾,所以,此三角形的面积不存在最大值。
以上解答是否正确?若不正确,请你给出正确的解答。
(注:16S2(abc)(abc)(abc)(abc)称为三角形面积的海伦公式,它已被证明是正确的)
参考答案:
1. (-2,9,1) 2. log0.53 log230.5-1 3. 1
4. 2 5. 1或3 6. ①②
7.(1) (2) 8.-8 9. 10.①,③,④
11.3 12.
13.1)∵f(-x)= =f(x)
∴f(x)为偶函数
∴f(-m)=f(m)=6 (2)∵f(1)=3 ∴a+ =6
∴ =36 ∴ =34
∴f(2)=34/2=17 ∵ =8,∴
∴ ,
14.1)f(x)在 上为增函数
∵x≥1时,f(x)=1-
对任意的x1,x2,当1≤x1x2时
f(x1)- f(x2)=(1- )-(1- )=
∵x1x20,x1-x20
∴
∴f(x1) f(x2)
∴f(x)在 上为增函数
(2)证明f(x)在 上单调递减,[1,2]上单调递增
求出A=[0,1]说明A=B (3)∵ab,mamb,∴m0
∵f(x)≥0, ∴ma≥0,又a≠0,∴a0
1° 0ab≤1,由图象知,f(x)当x [a,b]递减,
∴ 与ab矛盾 2° 0a1b,这时f(1)=0,则ma=0,而ma0
这亦与题设不符; 3° 1≤ab,f(x)当x [a,b]递增
可知mx2-x+1=0在 内有两不等实根
由 ,得
综上可知
15.解:(1)
(2)在每个闭区间
(3)将函数y=2sinx的图象向左平移 个单位,再将得到的函数图象上的所有的点的纵坐标不变,横坐标缩短为原来的
16.解①已知向量
若点A、B、C不能构成三角形,则这三点共线,
故知
∴实数 时,满足的条件
②若△ABC为直角三角形,且(1)∠A为直角,则 ,
解得
17. 解:(1)
即
(2)设该函数图象能由 的图象按向量 平移得到,
则有
要求的所有向量可写成,
18.解:(1)设直角三角形的两直角边长是x,y,则x+y=12.于是斜边长z满足
于是,当x=6时,zmin= ,所以,该直角三角形周长的最小值是
(2)设三角形中边长为x,y的两边其夹角为
则此三角形的周长
其中等号当且仅当x=y时成立,于是 ,
而 ,所以,该三角形面积的最大值是
(3)不正确
而 , ,则 ,即 其中等号成立的条件是
,b=8,c=4,则 ,满足 ,所以当三角形为边长是4,8, 的直角三角形时,其面积取得最大值16
高一数学必修1函数的概念考试题及答案解析
函数的概念是函数整章的核心概念,学会用函数的观点和方法解决数学问题,是高中数学主要的学习任务之一。下面是我给大家带来的高一数学必修1函数的概念考试题及答案解析,希望对你有帮助。
高一数学函数的概念考试题及答案解析
1.下列说法中正确的为()
A.y=f(x)与y=f(t)表示同一个函数
B.y=f(x)与y=f(x+1)不可能是同一函数
C.f(x)=1与f(x)=x0表示同一函数
D.定义域和值域都相同的两个函数是同一个函数
解析:选A.两个函数是否是同一个函数与所取的字母无关,判断两个函数是否相同,主要看这两个函数的定义域和对应法则是否相同.
2.下列函数完全相同的是()
A.f(x)=|x|,g(x)=(x)2
B.f(x)=|x|,g(x)=x2
C.f(x)=|x|,g(x)=x2x
D.f(x)=x2-9x-3,g(x)=x+3
解析:选B.A、C、D的定义域均不同.
3.函数y=1-x+x的定义域是()
A.{x|x≤1} B.{x|x≥0}
C.{x|x≥1或x≤0} D.{x|0≤x≤1}
解析:选D.由1-x≥0x≥0,得0≤x≤1.
4.图中(1)(2)(3)(4)四个图象各表示两个变量x,y的对应关系,其中表示y是x的函数关系的有________.
解析:由函数定义可知,任意作一条直线x=a,则与函数的图象至多有一个交点,对于本题而言,当-1≤a≤1时,直线x=a与函数的图象仅有一个交点,当a1或a-1时,直线x=a与函数的图象没有交点.从而表示y是x的函数关系的有(2)(3).
答案:(2)(3)
1.函数y=1x的定义域是()
A.R B.{0}
C.{x|x∈R,且x≠0} D.{x|x≠1}
解析:选C.要使1x有意义,必有x≠0,即y=1x的定义域为{x|x∈R,且x≠0}.
2.下列式子中不能表示函数y=f(x)的是()
A.x=y2+1 B.y=2x2+1
C.x-2y=6 D.x=y
解析:选A.一个x对应的y值不唯一.
3.下列说法正确的是()
A.函数值域中每一个数在定义域中一定只有一个数与之对应
B.函数的定义域和值域可以是空集
C.函数的定义域和值域一定是数集
D.函数的定义域和值域确定后,函数的对应关系也就确定了
解析:选C.根据从集合A到集合B函数的定义可知,强调A中元素的任意性和B中对应元素的唯一性,所以A中的多个元素可以对应B中的同一个元素,从而选项A错误;同样由函数定义可知,A、B集合都是非空数集,故选项B错误;选项C正确;对于选项D,可以举例说明,如定义域、值域均为A={0,1}的函数,对应关系可以是x→x,x∈A,可以是x→x,x∈A,还可以是x→x2,x∈A.
4.下列集合A到集合B的对应f是函数的是()
A.A={-1,0,1},B={0,1},f:A中的数平方
B.A={0,1},B={-1,0,1},f:A中的数开方
C.A=Z,B=Q,f:A中的数取倒数
D.A=R,B={正实数},f:A中的数取绝对值
解析:选A.按照函数定义,选项B中集合A中的元素1对应集合B中的元素±1,不符合函数定义中一个自变量的值对应唯一的函数值的条件;选项C中的元素0取倒数没有意义,也不符合函数定义中集合A中任意元素都对应唯一函数值的要求;选项D中,集合A中的元素0在集合B中没有元素与其对应,也不符合函数定义,只有选项A符合函数定义.
5.下列各组函数表示相等函数的是()
A.y=x2-3x-3与y=x+3(x≠3)
B.y=x2-1与y=x-1
C.y=x0(x≠0)与y=1(x≠0)
D.y=2x+1,x∈Z与y=2x-1,x∈Z
解析:选C.A、B与D对应法则都不同.
6.设f:x→x2是集合A到集合B的函数,如果B={1,2},则A∩B一定是()
A.∅ B.∅或{1}
C.{1} D.∅或{2}
解析:选B.由f:x→x2是集合A到集合B的函数,如果B={1,2},则A={-1,1,-2,2}或A={-1,1,-2}或A={-1,1,2}或A={-1,2,-2}或A={1,-2,2}或A={-1,-2}或A={-1,2}或A={1,2}或A={1,-2}.所以A∩B=∅或{1}.
7.若[a,3a-1]为一确定区间,则a的取值范围是________.
解析:由题意3a-1a,则a12.
答案:(12,+∞)
8.函数y=x+103-2x的定义域是________.
解析:要使函数有意义,
需满足x+1≠03-2x0,即x32且x≠-1.
答案:(-∞,-1)∪(-1,32)
9.函数y=x2-2的定义域是{-1,0,1,2},则其值域是________.
解析:当x取-1,0,1,2时,
y=-1,-2,-1,2,
故函数值域为{-1,-2,2}.
答案:{-1,-2,2}
10.求下列函数的定义域:
(1)y=-x2x2-3x-2;(2)y=34x+83x-2.
解:(1)要使y=-x2x2-3x-2有意义,则必须
-x≥0,2x2-3x-2≠0,解得x≤0且x≠-12,
故所求函数的定义域为{x|x≤0,且x≠-12}.
(2)要使y=34x+83x-2有意义,则必须3x-20,即x23, 故所求函数的定义域为{x|x23}.
11.已知f(x)=11+x(x∈R且x≠-1),g(x)=x2+2(x∈R).
(1)求f(2),g(2)的值;
(2)求f(g(2))的值.
解:(1)∵f(x)=11+x,
∴f(2)=11+2=13,
又∵g(x)=x2+2,
∴g(2)=22+2=6.
(2)由(1)知g(2)=6,
∴f(g(2))=f(6)=11+6=17.
12.已知函数y=ax+1(a0且a为常数)在区间(-∞,1]上有意义,求实数a的取值范围.
解:函数y=ax+1(a0且a为常数).
∵ax+1≥0,a0,∴x≤-1a,
即函数的定义域为(-∞,-1a].
∵函数在区间(-∞,1]上有意义,
∴(-∞,1]⊆(-∞,-1a],
∴-1a≥1,而a0,∴-1≤a0.
即a的取值范围是[-1,0).
关于高一必修1数学周测卷和数学高一必修一卷子免费的介绍到此就结束了,不知道同学们从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。