本篇文章给同学们谈谈九年级上册周测冲刺卷数学,以及九年级上册周测冲刺卷数学答案对应的知识点,希望对各位同学有所帮助,不要忘记分享给你的朋友哦!
本文目录一览:
- 1、BFB数学九年级(上)周周清测试卷(一)
- 2、bbf数学九年级(上)周测月考评价卷(七)的答案
- 3、九年级数学上册第一二单元检测试题
- 4、谁可以帮我找一套初三上的数学练习题,附答案,好的话我会加分的,谢谢
- 5、九年级上数学全程测试卷答案 人教版
BFB数学九年级(上)周周清测试卷(一)
第二章 二次函数(B卷)
1~5DBACC 6~10DDDCC
11、向上 直线x=-1 (-1,-5) 12、y=(x-2)^2-1等 13、1 14、y=1/2(x+3)^2-2 15、(-1,-2) x-1 16、y=x^2 17、(2)(3)(4) 18、都是曲线 都具有对称性 抛物线有最大值 双曲线与坐标轴没有交点 19、1 (0,2)20、s=1/180v^2
21、图像略,x=1,y=1 22.(1)由图像知方程x^2-2x-3=0,解得x1=3,x2=-1 (2)x=1或x3时,函数的值大于0 (3)-1x3时,函数值小于0
23、y=-2x^2+4x-52 24、∵PA⊥x轴,AP=1∴点P的纵坐标为1.当y=1时,3/4 x^2-3/2 x+1/4=1,即x^2-2x-1=0,记得x1=1+根号2,x2=1-根号2,∵抛物线的对称轴为x=1,点P在对称轴的右侧,∴x=1+根号2,∴矩形PAOB的面积为(1+根号2)平方单位 25. (1)a=-3/50,c=6,所以抛物线解析式为y=-3/50x^2+6 (2)可设N(5,y),于是yN=-3/50×5^2+6=4.5,从而支柱MN的长度是10-4.5=5.5米(3)设DE是隔离带的宽,EG是三辆车的宽度和,则G点的坐标是(7,0)(7=2÷2+2×3),过G点作GH垂直AB交抛物线于点H,则yH=3/50×7^2+6=3+1/50>3,根据抛物线的特点可知,一条行车道能并排行驶这样的三辆汽车 26、符合条件的二次函数的表达式有:y=1/3(x-1)^2-1,y=根号3(x-1)^2-根号3,y=-1/3(x-1)^2+1,y=-根号3(x-1)^2+根号3
[img]bbf数学九年级(上)周测月考评价卷(七)的答案
你是哪的?
我可以给你选择题。
BDBAB ACCCD
刚做这张卷子,上面的是我做的,你相信我的话应该是没错的。
九年级数学上册第一二单元检测试题
一、选择题(每小题3分,共30分)
1、已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2可以配方成下列的( )A、(x-p)2=5 B、(x-p)2=9C、(x-p+2)2=9 D、(x-p+2)2=5
2、已知m是方程x2-x-1=0的一个根,则代数式m2-m的值等于( )
A、-1 B、0 C、1 D、2
3、若α、β是方程x2+2x-2005=0的两个实数根,则α2+3α+β的值为( )
A、2005 B、2003 C、-2005 D、4010
4、关于x的方程kx2+3x-1=0有实数根,则k的取值范围是( )
A、k≤-9999 B、k≥-且k≠0C、k≥- D、k-且k≠0 4444
5、关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是( )
A、 x2+3x-2=0 B、x2-3x+2=0 C、x2-2x+3=0 D、x2+3x+2=0
6、已知关于x的方程x2(-2k-1)x+k2=0有两个不相等的实根,那么k的最大整数值是( )
A、-2 B、-1 C、0 D、1
7、某城2004年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2006年底增加到363公顷,设绿化面积平均每年的增长率为x,由题意所列方程正确的是( )
A、300(1+x)=363 B、300(1+x)2=363
C、300(1+2x)=363 D、363(1-x)2=300
8、甲、乙两个同学分别解一道一元二次方程,甲因把一次项系数看错了,而解得方程两根为-3和5,乙把常数项看错了,解得两根为2+6和2-6,则原方程是( )
A、 x2+4x-15=0 B、x2-4x+15=0 C、x2+4x+15=0 D、x2-4x-15=0
9、若方程x2+mx+1=0和方程x2-x-m=0有一个相同的实数根,则m的值为( )
A、2 B、0 C、-1 D、1 4
y2?5y?6=0,则第三边长为( ) 10、已知直角三角形x、y两边的长满足|x2-4|+
A、 22或 B、5或22 C、或22 D、、22或
二、 填空题(每小题3分,共30分)
11、若关于x的方程2x2-3x+c=0的一个根是1,则另一个根是.
12、一元二次方程x2-3x-2=0的解是
13、如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值是
14、等腰△ABC中,BC=8,AB、AC的长是关于x的方程x2-10x+m=0的两根,则m的值是 .
15、2005年某市人均GDP约为2003年的1.2倍,如果该市每年的人均GDP增长率相同,那么增长率为 .
16、科学研究表明,当人的下肢长与身高之比为0.618时,看起来最美,某成年女士身高为153cm,下肢长为92cm,该女士穿的高根鞋鞋根的最佳高度约为cm.(精确到0.1cm)
17、一口井直径为2m,用一根竹竿直深入井底,竹竿高出井口0.5m,如果把竹竿斜深入井
口,竹竿刚好与井口平,则井深为 m,竹竿长为 m.
18、直角三角形的周长为2+
为 .
19、如果方程3x2-ax+a-3=0只有一个正根,则a2?8a?16的值是.
20、已知方程x2+3x+1=0的两个根为α、β,则6,斜边上的中线为1,则此直角三角形的面积??+的值为 .
三、 解答题(共60分)
21、解方程(每小题3分,共12分)
(1)(x-5)2=16 (2)x2-4x+1=0 (3)x3-2x2-3x=0 (4)x2+5x+3=0
22、(8分)已知:x1、x2是关于x的方程x2+(2a-1)x+a2=0的两个实数根,且(x1+2)(x2+2)=11,求a的值.
23、(8分)已知:关于x的方程x2-2(m+1)x+m2=0
(1) 当m取何值时,方程有两个实数根?为m选取一个合适的整数,使方程有两个
不相等的实数根,并求这两个根.
24、(8分)已知一元二次方程x2-4x+k=0有两个不相等的实数根
(1) 求k的取值范围 2. 如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0
与x2+mx-1=0有一个相同的根,求此时m的值.
25、(8分)已知a、b、c分别是△ABC中∠A、∠B、∠C所对的边,且关于x的方程(c-b)x2+2(b-a)x+(a-b)=0有两个相等的实数根,试判断△ABC的形状.
26、(8分)某工程队在我市实施棚户区改造过程中承包了一项拆迁工程,原计划每天拆迁1250m2,因为准备工作不足,第一天少拆迁了20%,从第二天开始,该工程队加快了拆迁速度,第三天拆迁了1440m2
求:(1)该工程队第二天第三天每天的拆迁面积比前一天增长的百分数相同,求这个百分数.
27、(分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,
经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克
(1) 现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少
元?若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?
7,.某商品进价为每件40元,如果售价为每件50
210件,如果售价超过50元,但不超过80元,每件商品的'售价每上涨10元,每个月少卖1件,如果售价超过80元后,若再涨价,每件商品的售价每涨1元,每个月少卖3件。设该商品的售价为X元。
(1)、每件商品的利润为 元。若超过50元,但不超过80元,每月售 件。 若超过80元,每月售 件。(用X的式子填空。)
(2)、若超过50元但是不超过80元,售价为多少时 利润可达到7200元
(3)、若超过80元,售价为多少时利润为7500元
8.某商场销售一批衬衫,平均每天可出售30件,每件赚50元,为扩大销售,加盈利,尽量减少库存,商场决定降价,如果每件降1元,商场平均每天可多卖2件,若商场平均每天要赚2100元,问衬衫降价多少元
11.一元二次方程解应用题 将进货单价为40元的商品按50元出售时,能卖500个,如果该商品每涨价1元,其销售量就减少10个。商店为了赚取8000元的利润,这种商品的售价应定为多少?应进货多少?
12.随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2006年拥有家庭轿车64辆,2008年底家庭轿车的拥有量达到100辆.(1) 若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2009年底家庭轿车将达到多少辆?
(2) 为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.
谁可以帮我找一套初三上的数学练习题,附答案,好的话我会加分的,谢谢
九年级数学上学期期末检测试题卷
一、选择题(每小题3分,满分24分)
1.一元二次方程 的根是( )
A.x1=1,x2=6 B.x1=2,x2=3 C.x1=1,x2=-6 D.x1=-1,x2=6
2.下列四个几何体中,主视图、左视图与俯视图是全等图形的几何体是( )
A.球 B.圆柱 C.三棱柱 D.圆锥
3.到三角形三条边的距离相等的点是三角形( )
A.三条角平分线的交点 B.三条高的交点
C.三边的垂直平分线的交点 D.三条中线的交点
4.如果矩形的面积为6cm2,那么它的长 cm与宽 cm之间的函数关系用图象表示
大致( )
A B C D
5.下列函数中,属于反比例函数的是( )
A. B. C. D.
6.在Rt△ABC中,∠C=90°,a=4,b=3,则cosA的值是( )
A. B. C. D.
7.如图(1),△ABC中,∠A=30°,∠C=90°AB的垂直平分线 (1)
交AC于D点,交AB于E点,则下列结论错误的是( )
A、AD=DB B、DE=DC C、BC=AE D、AD=BC
8.顺次连结等腰梯形各边中点得到的四边形是 ( )
A、矩形 B、菱形 C、正方形 D、平行四边形
二、填空题(每小题3分,满分21分)
9.计算tan45°= .
10.已知函数 是反比例函数,则m的值为 .
11.请你写出一个反比例函数的解析式,使它的图象在第二、四象限 .
12.在直角三角形中,若两条直角边长分别为6cm和8cm,则斜边上的中线长
为 cm.
13. 已知菱形的周长为 ,一条对角线长为 ,则这个菱形的面积
为 (cm)2.
14.已知正比例函数 与反比例函数 的一个交点是(2,3),则另
一个交点是( , ).
15.如图,已知AC=DB,要使△ABC≌△DCB,需添加的一个
条件是 .
三、解答题(本大题共9个小题,满分75分)
16.(本小题8分)解方程:
17.(本小题8分)如图,在△ABD中,C是BD上的一点,
且AC⊥BD,AC=BC=CD.(1)求证:△ABD是等腰三角形.
(2)求∠BAD的度数.
18.(本小题8分)如图所示,课外活动中,小明在离旗杆AB的 米C处,用测角仪测得旗杆顶部A的仰角为 ,已知测角仪器的高CD= 米,求旗杆AB的高.(精确到 米)
(供选用的数据: , , )
19.(本小题8分)某商店四月份的营业额为40万元,五月份的营业额比四月份有所增长,六月份比五月份又增加了5个百分点,即增加了5%,营业额达到了50.6万元。求五月份增长的百分率。
20.(本小题8分)“一方有难,八方支援”.今年11月2日,鄂嘉出现洪涝灾害,牵动着全县人民的心,医院准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士支援鄂嘉防汛救灾工作.
(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果.
(2)求恰好选中医生甲和护士A的概率.
21.(本小题8分)如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.
(1)已知CD=4cm,求AC的长.
(2)求证:AB=AC+CD.
22.(8分)在如图的12×24的方格形纸中(每个小方格的边长都是1个单位)有一ΔABC. 现先把ΔABC分别向右、向上平移8个单位和3个单位得到ΔA1B1C1;再以点O为旋转中心把ΔA1B1C1按顺时针方向旋转90º得到ΔA2B2C2. 请在所给的方格形纸中作出ΔA1B1C1和ΔA2B2C2.
23.(本题满分9分)
如图,给出四个等式:①AE=AD;②AB=AC;③OB=OC;④∠B=∠C. 现选取其中的三个,以两个作为已知条件,另一个作为结论.
(1)请你写出一个正确的命题,并加以证明;
(2)请你至少写出三个这样的正确命题.
24、(10分)如图,已知反比例函数 和一次函数y=2x-1,其中一次函数的图象经过(a,b),(a+1,b+k)两点.
(1)求反比例函数的解析式;
(2)如图4,已知点A在第一象限,且同时在上述两个函数的图象上,求点A的坐标;
(3)利用(2)的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由.
九年级上数学全程测试卷答案 人教版
1、判断下列方程,是一元二次方程的有____________.
(1) ; (2) ; (3) ;
(4) ;(5) ;(6) .
(提示:判断一个方程是不是一元二次方程,首先要对其整理成一般形式,然后根据定义判断.)
2、下列方程中不含一次项的是( )
A. B.
C. D.
3、方程 的二次项系数___________;一次项系数__________;常数项_________.
4、1、下列各数是方程 解的是( )
A、6 B、2 C、4 D、0
5、根据下列问题,列出关于 的方程,并将其化成一元二次方程的一般形式.
(1)4个完全相同的正方形的面积之和是25,求正方形的边长 .
(2)一个矩形的长比宽多2,面积是100,求矩形的长 .
(3)一个直角三角形的斜边长为10,两条直角边相差2,求较长的直角边长 .
◆典例分析
已知关于 的方程 .
(1) 为何值时,此方程是一元一次方程?
(2) 为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项。
分析:本题是含有字母系数的方程问题.根据一元一次方程和一元二次方程的定义,分别进行讨论求解.
解:(1)由题意得, 时,即 时,
方程 是一元一次方程 .
(2)由题意得, 时,即 时,方程 是一元二次方程.此方程的二次项系数是 、一次项系数是 、常数项是 .
◆课下作业
●拓展提高
1、下列方程一定是一元二次方程的是( )
A、 B、
C、 D、
2、 是关于 的一元二次方程,则 的值应为( )
A、 =2 B、 C、 D、无法确定
3、根据下列表格对应值:
3.24 3.25 3.26
-0.02 0.01 0.03
判断关于 的方程 的一个解 的范围是( )
A、 <3.24 B、3.24< <3.25
C、3.25< <3.26 D、3.25< <3.28
4、若一元二次方程 有一个根为1,则 _________;若有一个根是-1,则b与 、c之间的关系为________;若有一个根为0,则c=_________.
5、下面哪些数是方程 的根?
-3、-2、-1、0、1、2、3、
6、若关于 的一元二次方程 的常数项为0,求 的值是多少?
●体验中考
1、(2009年,武汉)已知 是一元二次方程 的一个解,则 的值是( )
A.-3 B.3 C.0 D.0或3
(点拨:本题考查一元二次方程的解的意义.)
2、(2009年,日照)若 是关于 的方程 的根,则 的值为( )
A.1 B.2 C.-1 D.-2
(提示:本题有两个待定字母 和 ,根据已知条件不能分别求出它们的值,故考虑运用整体思想,直接求出它们的和.)
参考答案:
◆随堂检测
1、(2)、(3)、(4) (1)中最高次数是三不是二;(5)中整理后是一次方程;(6)中只有在满足 的条件下才是一元二次方程.
2、D 首先要对方程整理成一般形式,D选项为 .故选D.
3、3;-11;-7 利用去括号、移项、合并同类项等步骤,把一元二次方程化成一般形式 ,同时注意系数符号问题.
4、B 将各数值分别代入方程,只有选项B能使等式成立.故选B.
5、解:(1)依题意得, ,
化为一元二次方程的一般形式得, .
(2)依题意得, ,
化为一元二次方程的一般形式得, .
(3)依题意得, ,
化为一元二次方程的一般形式得, .
◆课下作业
●拓展提高
1、D A中最高次数是三不是二;B中整理后是一次方程;C中只有在满足 的条件下才是一元二次方程;D选项二次项系数 恒成立.故根据定义判断D.
2、C 由题意得, ,解得 .故选D.
3、B 当3.24< <3.25时, 的值由负连续变化到正,说明在3.24< <3.25范围内一定有一个 的值,使 ,即是方程 的一个解.故选B.
4、0; ;0 将各根分别代入简即可.
5、解:将 代入方程,左式= ,即左式 右式.故 不是方程 的根.
同理可得 时,都不是方程 的根.
当 时,左式=右式.故 都是方程 的根.
6、解:由题意得, 时,即 时, 的常数项为0.
●体验中考
1、A 将 带入方程得 ,∴ .故选A.
2、D 将 带入方程得 ,∵ ,∴ ,
∴ .故选D.
莲山课件 原文地址:
关于九年级上册周测冲刺卷数学和九年级上册周测冲刺卷数学答案的介绍到此就结束了,不知道同学们从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。